1
|
Díaz PA, Araya M, Cantarero B, Miranda C, Varela D, Figueroa RI, Basti L, Carbonell P, Aravena Á, Pérez-Santos I, Nieves MG, Álvarez G. Are yessotoxins an emerging problem in Chile? Context and perspectives following the first report of YTX levels exceeding the regulatory limit in the Patagonian fjord system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124844. [PMID: 39209054 DOI: 10.1016/j.envpol.2024.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In late summer and early autumn 2022, an intense bloom of Protoceratium reticulatum-the main yessotoxin (YTX) producer along Chilean coasts and a major threat to artisanal fisheries, the aquaculture industry, and environmental health-was recorded in the Patagonian fjord system. The high YTX levels (>3.75 mg kg-1) resulted in the first ban of shellfish collection in Chile. At Puyuhuapi Fjord, a global "hotspot" of harmful algal bloom events, the cell density of P. reticulatum determined in integrated tube samples (0-10 m) at the end of April 2022 reached 407,000 cells L-1. At the same time, YTX levels well exceeded the regulatory limit by roughly 2.5-fold, with concentrations as high as 9.42 mg kg-1 measured in native populations of the blue mussel Mytilus chilensis. Five different YTX analogues, 45-OH-YTX, COOH-45-keto-YTX, COOH-45-OH-YTX, COOH-YTX, and 45,55-diOH-YTX, were also detected in relevant amounts. While the ban lasted close to 3 months, accumulation and detoxification processes were monitored over a 1-year period. This study assessed the implications of high levels of YTXs and their analogues on the local economy and ecosystem health, given the increase in P. reticulatum blooms predicted for NW Patagonia in the context of a changing climate.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Bárbara Cantarero
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Carolina Miranda
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Daniel Varela
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Leila Basti
- WorldFish Headquarters, Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang, Malaysia; College of Agriculture and Veterinary Science, Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Pamela Carbonell
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt, Chile
| | - Álvaro Aravena
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Iván Pérez-Santos
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - María Gabriela Nieves
- Programa de Doctorado en Acuicultura, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Álvarez
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Centro de Innovación Acuícola AQUAPACIFICO, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
2
|
Díaz PA, Álvarez G, Figueroa RI, Garreaud R, Pérez-Santos I, Schwerter C, Díaz M, López L, Pinto-Torres M, Krock B. From lipophilic to hydrophilic toxin producers: Phytoplankton succession driven by an atmospheric river in western Patagonia. MARINE POLLUTION BULLETIN 2023; 193:115214. [PMID: 37385183 DOI: 10.1016/j.marpolbul.2023.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Phytoplankton succession is related to hydroclimatic conditions. In this study we provide the first description of a toxic phytoplankton succession in the Patagonian Fjord System. The shift was modulated by atmospheric-oceanographic forcing and consisted of the replacement of the marine dinoflagellate Dinophysis acuta in a highly stratified water column during austral summer by the diatom Pseudo-nitzschia calliantha in a mixed water column during late summer and early autumn. This transition, accompanied by a change in the biotoxin profiles (from lipophilic dinophysis toxins to hydrophilic domoic acid), was induced by the arrival of an intense atmospheric river. The winds in Magdalena Sound may have been further amplified, due to its west-east orientation and its location within a tall, narrow mountain canyon. This work also documents the first known appearance of toxic P. calliantha in Northern Patagonian. The potential impacts of the biotoxins of this species on higher trophic levels are discussed.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Vigo, Spain
| | - René Garreaud
- Centro de Ciencia del Clima y la Resiliencia (CR2), Universidad de Chile, Chile; Departamento de Geofísica, Universidad de Chile, Santiago 8370449, Región Metropolitana, Chile
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Camila Schwerter
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Manuel Díaz
- Instituto de Acuicultura, Programa de Investigación Pesquera, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile
| | - Loreto López
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt, Chile
| | - Marco Pinto-Torres
- Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile; Centro FONDAP de Investigación de Ecosistemas de Altas Latitudes (IDEAL), Universidad Austral de Chile, Av. El Bosque 01789, Punta Arenas, Chile
| | - Bernd Krock
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
3
|
Díaz PA, Álvarez G, Pizarro G, Blanco J, Reguera B. Lipophilic Toxins in Chile: History, Producers and Impacts. Mar Drugs 2022; 20:122. [PMID: 35200651 PMCID: PMC8874607 DOI: 10.3390/md20020122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world's major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries' demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.
Collapse
Affiliation(s)
- Patricio A. Díaz
- Centro i~mar (CeBiB), Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile;
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 17811421, Chile
| | - Gemita Pizarro
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Enrique Abello 0552, Punta Arenas 6200000, Chile;
| | - Juan Blanco
- Centro de Investigacións Mariñas (Xunta de Galicia), Apto. 13, 36620 Vilanova de Arousa, Pontevedra, Spain;
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Pontevedra, Spain
| |
Collapse
|
4
|
Sandoval-Sanhueza A, Aguilera-Belmonte A, Basti L, Figueroa RI, Molinet C, Álvarez G, Oyanedel S, Riobó P, Mancilla-Gutiérrez G, Díaz PA. Interactive effects of temperature and salinity on the growth and cytotoxicity of the fish-killing microalgal species Heterosigma akashiwo and Pseudochattonella verruculosa. MARINE POLLUTION BULLETIN 2022; 174:113234. [PMID: 34922228 DOI: 10.1016/j.marpolbul.2021.113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Fish-killing blooms of Heterosigma akashiwo and Pseudochattonella verruculosa have been devastating for the farmed salmon industry, but in Southern Chile the conditions that promote the growth and toxicity of these microalgae are poorly understood. This study examined the effects of different combinations of temperature (12, 15, 18 °C) and salinity (10, 20, 30 psu) on the growth of Chilean strains of these two species. The results showed that the optimal growth conditions for H. akashiwo and P. verruculosa differed, with a maximum rate of 0.99 day-1 obtained at 15 °C and a salinity of 20 psu for H. akashiwo, and a maximum rate of 1.06 day-1 obtained at 18 °C and a salinity of 30 psu for P. verruculosa. Cytotoxic assays (2 × 101 - 2 × 105 cell mL-1; cells, filtrates, and cell lysates) performed at salinities of 20 and 30 psu showed a 100% reduction in the viability of embryonic fish cells exposed to intact cells of H. akashiwo and a 39% reduction following exposure to culture filtrates of P. verruculosa. Differences in the fish-killing mechanisms (direct cell contact vs. extracellular substances) and physiological traits of H. akashiwo and P. verruculosa explain the recent occurrence of very large blooms under contrasting (cold-brackish vs. hot-salty) extreme climate conditions in Chile.
Collapse
Affiliation(s)
| | - Alejandra Aguilera-Belmonte
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | - Leila Basti
- Faculty of Marine Environment and Resources, Tokyo University of Marine Science and Technology, 108-8477 Tokyo, Japan
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Carlos Molinet
- Programa de Investigación Pesquera, Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Programa Integrativo, Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - Sandra Oyanedel
- Fraunhofer Chile Research - Fundación Chile, Quillaipe Aquaculture Center, Km 23.8 Quillaipe, Puerto Montt, Chile
| | - Pilar Riobó
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain
| | | | - Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| |
Collapse
|
5
|
Otero P, Vale C, Boente-Juncal A, Costas C, Louzao MC, Botana LM. Detection of Cyclic Imine Toxins in Dietary Supplements of Green Lipped Mussels ( Perna canaliculus) and in Shellfish Mytilus chilensis. Toxins (Basel) 2020; 12:E613. [PMID: 32987858 PMCID: PMC7601114 DOI: 10.3390/toxins12100613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Seafood represents a significant part of the human staple diet. In the recent years, the identification of emerging lipophilic marine toxins has increased, leading to the potential for consumers to be intoxicated by these toxins. In the present work, we investigate the presence of lipophilic marine toxins (both regulated and emerging) in commercial seafood products from non-European locations, including mussels Mytilus chilensis from Chile, clams Tawerea gayi and Metetrix lyrate from the Southeast Pacific and Vietnam, and food supplements based on mussels formulations of Perna canaliculus from New Zealand. All these products were purchased from European Union markets and they were analyzed by UPLC-MS/MS. Results showed the presence of the emerging pinnatoxin-G in mussels Mytilus chilensis at levels up to 5.2 µg/kg and azaspiracid-2 and pectenotoxin-2 in clams Tawera gayi up to 4.33 µg/kg and 10.88 µg/kg, respectively. This study confirms the presence of pinnatoxins in Chile, one of the major mussel producers worldwide. Chromatograms showed the presence of 13-desmethyl spirolide C in dietary supplements in the range of 33.2-97.9 µg/kg after an extraction with water and methanol from 0.39 g of the green lipped mussels powder. As far as we know, this constitutes the first time that an emerging cyclic imine toxin in dietary supplements is reported. Identifying new matrix, locations, and understanding emerging toxin distribution area are important for preventing the risks of spreading and contamination linked to these compounds.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (C.V.); (A.B.-J.); (C.C.); (M.C.L.); (L.M.B.)
| | | | | | | | | | | |
Collapse
|
6
|
Díaz PA, Álvarez G, Seguel M, Marín A, Krock B. First detection of pectenotoxin-2 in shellfish associated with an intense spring bloom of Dinophysis acuminata on the central Chilean coast. MARINE POLLUTION BULLETIN 2020; 158:111414. [PMID: 32753198 DOI: 10.1016/j.marpolbul.2020.111414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTX) produced by endemic species of the genus Dinophysis, mainly D. acuta and D. acuminata, pose a big threat to public health, artisanal fisheries and the aquaculture industry in Southern Chile. This work reports the first detection of lipophilic toxins, including pectenotoxin-2 (PTX-2) and gymnodimine-A (GYM-A), in hard razor clam (Tagelus dombeii) associated with an unprecedented spring bloom -38.4 × 103 cells L-1 in integrated hose sampler (0-10 m) - of Dinophysis acuminata in coastal waters of central Chile. The socio-economic challenges to small-scale fisheries are discussed. The study points to the pressing need for sound policies to face unexpected HAB event, probably due to biogeographical expansions, with a focus on fisheries management, participation of stakeholders, and development of adaptive capacities.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - Miriam Seguel
- Centro Regional de Análisis de Recursos y Medio Ambiente (CERAM), Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt, Chile
| | - Andrés Marín
- Centro de Estudios del Desarrollo Regional y Políticas Públicas (CEDER), Universidad de Los Lagos, Osorno, Chile
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
7
|
Oyaneder-Terrazas J, Polanco C, Figueroa D, Barriga A, García C. In vitro biotransformation of OA-group and PTX-group toxins in visceral and non-visceral tissues of Mytilus chilensis and Ameghinomya antiqua. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1216-1228. [PMID: 32515303 DOI: 10.1080/19440049.2020.1750710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipophilic marine toxins (LMTs) are made up of multiple groups of toxic analogues, which are characterised by different levels of cellular and toxic action. The most prevalent groups in the southern Pacific zone are: a) okadaic acid group (OA-group) which consists of okadaic acid (OA) and dinophysistoxin-1 (DTX-1); and, b) pectenotoxin-2 (PTX2) group which consists of pectenotoxin-2 (PTX-2). The main objective of our study was to examine in vitro biotransformation of OA-group and PTX-group in the tissues of two endemic species of bivalves from southern Chile; blue mussels (Mytilus chilensis) and clams (Ameghinomya antiqua). The biotransformation processes of both groups were only detected in the digestive glands of both species using LC-MS/MS. The most frequently detected analogues were acyl derivatives (≈2.0 ± 0.1 μg ml-1) for OA-group and PTX-2SA (≈1.4 ± 0.1 μg ml-1) for PTX-group, with a higher percentage of biotransformation for OA-group (p < .001). In addition, simultaneous incubations of the different analogues (OA/PTX-2; DTX-1/PTX-2 and OA/DTX-1/PTX-2) did not show any interaction between the biotransformation processes. These results show that the toxicological variability of endemic species leads to biotransformation of the profile of toxins, so that these new analogues may affect people's health.
Collapse
Affiliation(s)
- Javiera Oyaneder-Terrazas
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile.,Faculty of Technology, Universidad de Santiago , Santiago, Chile
| | - Cassandra Polanco
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile.,Faculty of Technology, Universidad de Santiago , Santiago, Chile
| | - Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile
| | - Andres Barriga
- CEPEDEQ, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile , Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile
| |
Collapse
|
8
|
Yang L, Singh A, Lankford SK, Stuart J, Rice D, Wu WH, Hungerford JM. A Rapid Method for the Detection of Diarrhetic Shellfish Toxins and Azaspiracid Shellfish Toxins in Washington State Shellfish by Liquid Chromatography Tandem Mass Spectrometry. J AOAC Int 2020; 103:792-799. [DOI: 10.1093/jaoacint/qsaa009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/16/2023]
Abstract
Abstract
Background
Diarrhetic shellfish toxins (DSTs) in domestic shellfish and azaspiracids (AZAs) in imported products are emerging seafood safety issues in the United States. In addition to causing gastrointestinal illnesses, some of these toxins are also carcinogenic and genotoxic. Efficient analytical strategies are needed for their monitoring in U.S. domestic and imported shellfish.
Objective
In the US, DSTs and AZAs are the only lipophilic shellfish toxins addressed in regulations. Streamlining of existing methods for several classes of lipophilic toxins, based on liquid chromatography coupled with triple quadrupole mass spectrometry, was pursued.
Method
The resulting simplified LC-MS/MS method is focused on the separation and detection of just the AZAs and total DSTs using a C18 Hypersil gold column. Filter vials are used to expedite and simplify sample handling.
Results
The method has a run time of 7.25 min. LOQs for the AZAs and DSTs in shellfish were 0.3–0.4 µg/kg. Recoveries (AZAs and total DSTs) for three spiking levels in three matrixes ranged from 68 to 129%. Trueness was established using certified reference materials. Method equivalence was established using shellfish provided blind by the Washington State Department of Health Public Health Laboratory (WA DOH PHL). Data obtained from these samples agreed well with data from another LC-MS/MS method used in harvest control by WA DOH PHL (R = 0.999; P < 0.0001).
Conclusions
The LC-MS/MS method described offers more rapid sample handling and has excellent sensitivity, linearity, and repeatability.
Collapse
Affiliation(s)
- Li Yang
- U.S. Food and Drug Administration, Office of the Commissioner, Commissioner’s Fellowship Program, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - Avi Singh
- Washington State Department of Health, Public Health Laboratories, 1610 NE 150th St, Shoreline, WA 98155, USA
| | - Shelley K Lankford
- Washington State Department of Health, Public Health Laboratories, 1610 NE 150th St, Shoreline, WA 98155, USA
| | - James Stuart
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - Daniel Rice
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - Wen-Hsin Wu
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - James M Hungerford
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| |
Collapse
|
9
|
Contreras HR, García C. Inter-species variability of okadaic acid group toxicity in relation to the content of fatty acids detected in different marine vectors. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:464-482. [DOI: 10.1080/19440049.2019.1569265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Héctor R. Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Alves-de-Souza C, Iriarte JL, Mardones JI. Interannual Variability of Dinophysis acuminata and Protoceratium reticulatum in a Chilean Fjord: Insights from the Realized Niche Analysis. Toxins (Basel) 2019; 11:toxins11010019. [PMID: 30621266 PMCID: PMC6356771 DOI: 10.3390/toxins11010019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 11/18/2022] Open
Abstract
Here, we present the interannual distribution of Dinophysis acuminata and Protoceratium reticulatum over a 10-year period in the Reloncaví Fjord, a highly stratified fjord in southern Chile. A realized subniche approach based on the Within Outlying Mean Index (WitOMI) was used to decompose the species’ realized niche into realized subniches (found within subsets of environmental conditions). The interannual distribution of both D. acuminata and P. reticulatum summer blooms was strongly influenced by climatological regional events, i.e., El Niño Southern Oscillation (ENSO) and the Southern Annual Mode (SAM). The two species showed distinct niche preferences, with blooms of D. acuminata occurring under La Niña conditions (cold years) and low river streamflow whereas P. reticulatum blooms were observed in years of El Niño conditions and positive SAM phase. The biological constraint exerted on the species was further estimated based on the difference between the existing fundamental subniche and the realized subniche. The observed patterns suggested that D. acuminata was subject to strong biological constraint during the studied period, probably as a result of low cell densities of its putative prey (the mixotrophic ciliate Mesodinium cf. rubrum) usually observed in the studied area.
Collapse
Affiliation(s)
- Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC, University of North Carolina Wilmington, 5600 Marvin Moss K. Lane, Wilmington, NC 29409, USA.
| | - José Luis Iriarte
- Instituto de Acuicultura and Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes-IDEAL, Universidad Austral de Chile, Puerto Montt 5480000, Chile.
- COPAS-Sur Austral, Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Concepción 4030000, Chile.
| | - Jorge I Mardones
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt 5501679, Chile.
| |
Collapse
|
11
|
Alarcan J, Biré R, Le Hégarat L, Fessard V. Mixtures of Lipophilic Phycotoxins: Exposure Data and Toxicological Assessment. Mar Drugs 2018; 16:E46. [PMID: 29385038 PMCID: PMC5852474 DOI: 10.3390/md16020046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023] Open
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplanktonic species. They accumulate in filter-feeding shellfish and can cause human intoxication. Regulatory limits have been set for individual toxins, and the toxicological features are well characterized for some of them. However, phycotoxin contamination is often a co-exposure phenomenon, and toxicological data regarding mixtures effects are very scarce. Moreover, the type and occurrence of phycotoxins can greatly vary from one region to another. This review aims at summarizing the knowledge on (i) multi-toxin occurrence by a comprehensive literature review and (ii) the toxicological assessment of mixture effects. A total of 79 publications was selected for co-exposure evaluation, and 44 of them were suitable for toxin ratio calculations. The main toxin mixtures featured okadaic acid in combination with pectenotoxin-2 or yessotoxin. Only a few toxicity studies dealing with co-exposure were published. In vivo studies did not report particular mixture effects, whereas in vitro studies showed synergistic or antagonistic effects. Based on the combinations that are the most reported, further investigations on mixture effects must be carried out.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Ronel Biré
- Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 94706 Maisons-Alfort, France.
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| |
Collapse
|
12
|
Bodero M, Bovee TFH, Wang S, Hoogenboom RLAP, Klijnstra MD, Portier L, Hendriksen PJM, Gerssen A. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:351-365. [PMID: 28884655 DOI: 10.1080/19440049.2017.1368720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins, and also lipophilic marine biotoxins (LMBs). However, the neuro-2a assay is rarely used for routine testing of samples due to matrix effects that, for example, lead to false positives when testing for LMBs. As a result there are only limited data on validation and evaluation of its performance on real samples. In the present study, the standard extraction procedure for LMBs was adjusted by introducing an additional clean-up step with n-hexane. Recovery losses due to this extra step were less than 10%. This wash step was a crucial addition in order to eliminate false-positive outcomes due to matrix effects. Next, the applicability of this assay was assessed by testing a broad range of shellfish samples contaminated with various LMBs, including diarrhetic shellfish toxins/poisons (DSPs). For comparison, the samples were also analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. Extracts of 87 samples, both blank and contaminated with various toxins, were tested. The neuro-2a outcomes were in line with those of LC-MS/MS analysis and support the applicability of this assay for the screening of samples for LMBs. However, for use in a daily routine setting, the test might be further improved and we discuss several recommended modifications which should be considered before a full validation is carried out.
Collapse
Affiliation(s)
- Marcia Bodero
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands.,b Division of Toxicology , Wageningen University and Research , Wageningen , the Netherlands
| | - Toine F H Bovee
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Si Wang
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Ron L A P Hoogenboom
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Mirjam D Klijnstra
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Liza Portier
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Peter J M Hendriksen
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Arjen Gerssen
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| |
Collapse
|
13
|
Orellana G, Van Meulebroek L, De Rijcke M, Janssen CR, Vanhaecke L. High resolution mass spectrometry-based screening reveals lipophilic toxins in multiple trophic levels from the North Sea. HARMFUL ALGAE 2017; 64:30-41. [PMID: 28427570 DOI: 10.1016/j.hal.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/01/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Lipophilic marine biotoxins, which are mainly produced by small dinoflagellates, are increasingly detected in coastal waters across the globe. As these producers are consumed by zooplankton and shellfish, the toxins are introduced, bioaccumulated and possibly biomagnified throughout marine food chains. Recent research has demonstrated that ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) is an excellent tool to detect marine toxins in algae and seafood. In this study, UHPLC-HRMS was used to screen lipophilic marine biotoxins in organisms from different trophic levels of the Belgian coastal zone ecosystem. A total of 20 tentatively identified lipophilic compounds was detected. Hereby, the trophic transfer of lipophilic marine biotoxins to the upper trophic level was considered to be rather limited. Furthermore, 36% of the compounds was clearly transferred between different organisms. A significant biotransformation of compounds from the okadaic acid and spirolide toxin groups was observed (64%), mainly in filter feeders. Through a multi-targeted approach, this study showed that marine organisms in the Belgian coastal zone are exposed to a multi-toxin mixture. Further research on both single compound and interactive toxic effects of the frequently detected lipophilic marine toxin ester metabolites throughout the food chain is therefore needed. As a future perspective, confirmatory identification of potential toxins by studying their fragmentation spectra (using new tools such as hybrid quadrupole Q-Exactive™ Orbitrap-MS) is designated.
Collapse
Affiliation(s)
- Gabriel Orellana
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium; Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | - Lieven Van Meulebroek
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Maarten De Rijcke
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | - Colin R Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | - Lynn Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
14
|
García C, Oyaneder-Terrazas J, Contreras C, Del Campo M, Torres R, Contreras HR. Determination of the toxic variability of lipophilic biotoxins in marine bivalve and gastropod tissues treated with an industrial canning process. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1711-1727. [PMID: 27646025 DOI: 10.1080/19440049.2016.1239032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Contamination of shellfish with lipophilic marine biotoxins (LMB), pectenotoxins (PTXs), yessotoxins (YTXs) and okadaic acid (OA) toxin groups in southern Chile is a constant challenge for the development of miticulture considering the high incidence of toxic episodes that tend to occur. This research is focused on using methodologies for assessing the decrease in toxins of natural resources in Chile with high value, without altering the organoleptic properties of the shellfish. The species were processed through steaming (1 min at 121°C) and subsequent canning (5 min at 121°C). Changes in the profiles of toxins and total toxicity levels of LMB in endemic bivalves and gastropods were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total reduction of toxicity (≈ 15%) was not related to the destruction of the toxin, but rather to the loss of LMB on removing the shells and packing media of canned products (***p < 0.001). Industrial processing of shellfish reduces LMB contents by up to 15% of the total initial contents, concomitant only with the interconversion of PTX-group toxins into PTX-2sa. In soft bottom-dwelling species with toxicities beyond the standard for safe human consumption (≥ 160 μg OA-eq kg-1), toxicity can be reduced to safe levels through industrial preparation procedures.
Collapse
Affiliation(s)
- Carlos García
- a Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | - Javiera Oyaneder-Terrazas
- a Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | - Cristóbal Contreras
- a Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | - Miguel Del Campo
- b Departamento de Investigación y Desarrollo , Fundación Ciencia y Tecnología para el Desarrollo , Santiago , Chile
| | - Rafael Torres
- c Departamento de Investigación , Departamento de Estudios de la Biblioteca del Congreso Nacional , Santiago , Chile
| | - Héctor R Contreras
- d Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| |
Collapse
|
15
|
García C, Pérez F, Contreras C, Figueroa D, Barriga A, López-Rivera A, Araneda OF, Contreras HR. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:984-1002. [PMID: 25769036 DOI: 10.1080/19440049.2015.1028107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a toxicity < 80 μg OA eq kg(-1), but with 74% of those toxins detected in the adductor muscle. In all evaluated species, there was no detection of lipophilic toxins associated with biotransformation in molluscs and carnivorous gastropods. In addition, the STX-group and OA-group toxin concentrations in shellfish was not associated with the presence of HAB. The ranking of toxin concentration in the tissues of most species was: digestive glands > mantle > adductor muscle for the STX-group toxins and foot > digestive gland for the OA-group toxins. These results gave a better understanding of the variability and compartmentalisation of STX-group and OA-group toxins in different bivalve and gastropod species from the south of Chile, and the analyses determined that tissues could play an important role in the biotransformation of STX-group toxins and the retention of OA-group toxins.
Collapse
Affiliation(s)
- Carlos García
- a Marine Toxins Laboratory, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Reguera B, Riobó P, Rodríguez F, Díaz PA, Pizarro G, Paz B, Franco JM, Blanco J. Dinophysis toxins: causative organisms, distribution and fate in shellfish. Mar Drugs 2014; 12:394-461. [PMID: 24447996 PMCID: PMC3917280 DOI: 10.3390/md12010394] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/29/2013] [Accepted: 12/31/2013] [Indexed: 11/25/2022] Open
Abstract
Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins) and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP), even at low cell densities (<103 cells·L⁻¹). They are the main threat, in terms of days of harvesting bans, to aquaculture in Northern Japan, Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins), and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated.
Collapse
Affiliation(s)
- Beatriz Reguera
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Pilar Riobó
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Francisco Rodríguez
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Patricio A Díaz
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Gemita Pizarro
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Beatriz Paz
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - José M Franco
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Juan Blanco
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| |
Collapse
|
17
|
Zamorano R, Marín M, Cabrera F, Figueroa D, Contreras C, Barriga A, Lagos N, García C. Determination of the variability of both hydrophilic and lipophilic toxins in endemic wild bivalves and carnivorous gastropods from the Southern part of Chile. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1660-77. [DOI: 10.1080/19440049.2013.805438] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|