1
|
Fakhri Y, Mahdavi V, Ranaei V, Pilevar Z, Sarafraz M, Mahmudiono T, Khaneghah AM. Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis, and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:211-220. [PMID: 36372738 DOI: 10.1515/reveh-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Contamination of food with mycotoxins can pose harmful effects on the health of consumers in the long term. Coffee contamination with mycotoxins has become a global concern. This study attempted to meta-analyze the concentration and prevalence of ochratoxin A (OTA) in coffee products and estimate consumers' health risks. The search was conducted among international databases, including Scopus, PubMed, Embase, and Web of Science, for 1 January 2010 to 1 May 2022. The concentration and prevalence of OTA in coffee products were meta-analyzed according to country subgroups. Health risk assessment was conducted based on Margin of Exposures (MOEs) using the Monte Carlo simulation (MCS) technique. The three countries that had the highest Pooled concentration of OTA in coffee were observed in Chile (100.00%), Kuwait (100.00%), and France (100.00%). The overall prevalence of OTA in coffee products was 58.01%, 95% CI (48.37-67.39). The three countries that had the highest concentration of OTA were Philippines (39.55 μg/kg) > Turkey (39.32 μg/kg) > and Panama (21.33 μg/kg). The mean of MOEs in the adult consumers in Panama (9,526) and the Philippines (8,873) was lower than 10,000, while the mean of MOEs in other countries was higher than 10,000. Therefore, monitoring and control plans should be carried out in different countries.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
2
|
Guadalupe GA, Grandez-Yoplac DE, Arellanos E, Doménech E. Probabilistic Risk Assessment of Metals, Acrylamide and Ochratoxin A in Instant Coffee from Brazil, Colombia, Mexico and Peru. Foods 2024; 13:726. [PMID: 38472839 DOI: 10.3390/foods13050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This study analysed the probabilistic risk to consumers associated with the presence of iAs, Cd, Cr, Hg, Pb, acrylamide (AA) and ochratoxin A (OTA) in instant coffee from Brazil, Colombia, Mexico and Peru. The results found iAs to be the metal with the highest concentrations (3.50 × 10-2 to 6.00 × 10-2 mg/kg), closely followed by Pb (1.70 × 10-2 to 2.70 × 10-2 mg/kg) and Cr (5.00 × 10-3 to 1.00 × 10-2 mg/kg), although these differences were not significant between countries. Cd and Hg were not detected. Focusing on AA, the concentrations ranged from 1.77 × 10-1 mg/kg (Peru) to 4.77 × 10-1 mg/kg (Brazil), while OTA ranged from 1.32 × 10-3 (Peru) to 1.77 × 10-3 mg/kg (Brazil) with significant differences between countries in both cases. As regards risk, the hazard quotient and hazard index were less than 1, meaning that the consumption of instant coffee represents a low level of concern for non-genotoxic effects. The results of the combination of margin of exposure and probability of exceedance indicated that the non-genotoxic effects of Pb, AA and OTA pose no threat. However, the probability values of suffering cancer from iAs and AA (between 1 × 10-6 and 1 × 10-4) indicated a moderate risk and that management measures should be taken.
Collapse
Affiliation(s)
- Grobert A Guadalupe
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Dorila E Grandez-Yoplac
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Erick Arellanos
- Instituto de Investigación en Ingeniería Ambiental (INAM), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Higos Urco 342, Chachapoyas 01001, Peru
| | - Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Abdissa ZK, Tola YB, Taye AH, Mohammed HH. Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee ( Coffea arabica L.). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:6677592. [PMID: 37795076 PMCID: PMC10547575 DOI: 10.1155/2023/6677592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 10/06/2023]
Abstract
Tunnel solar dryer is the recently used drying method for better quality and safety of parchment coffee. However, the higher variation of drying temperature and RH along the long tunnel solar dryer results in a heterogeneous environment in the tunnel, which could make parchment coffee dried at different times or with different moisture contents. This study is aimed at investigating the effect of solar tunnel dryer zones at different zones of the dryer, divided into three zones from the inlet to the exit side of the drier and drying layer thicknesses on the drying time, drying kinetics, physicochemical, sensory, and fungal growth loads of parchment coffee. Furthermore, seven mathematical models were evaluated to select the best-fitting model for a specific zone to predict drying time. Results showed that dryer zones significantly (p < 0.05) interacted with layer thickness for most of the measured parameters except titratable acidity and sensory properties. The dryer zone, coupled with the reduction in drying layer thickness, caused an increase in effective diffusivity and moisture removal rate and reduced drying time. The drying time to reach constant moisture content varied from 14 to 17 hours. Overall raw bean, cup, and total quality varied from 36.3 to 37, 48 to 51, and 84.3 to 87.3%, respectively. Values for physicochemical parameters ranged from 5.3 to 6.9 (pH), 2.1 to 2.6% (titratable acidity), 2.3 to 4.3°Brix TSS, 10.9 to 15.2% (ether extract), 39.2 to 53.5GAE/g (total phenolic content), and 38.5 to 59.2 (DPPH scavenging capacity). The fungal infection percentage at the end of drying varied from 4 to 93.3%, which could be associated with potential mycotoxin formation if recommended conditions were not maintained. In general, for better quality, similar drying times, and a lesser fungal load, it is recommended to use 4, 5, and 6 cm layer thickness in zones one, two, and three, respectively. The drying kinetics of parchment coffee in different dryer zones with different drying layer thicknesses showed variation. Zone one at 2 and 4 cm layer thicknesses is best described by the Verma model. Four- and six-centimetre layer thicknesses in zones 2 and 3 are best described by the modified Midilli model.
Collapse
Affiliation(s)
- Zenaba Kadir Abdissa
- Jimma University College of Agriculture and Veterinary Medicine, Department of Postharvest Management, P.O. BOX 307, Ethiopia
| | - Yetenayet B. Tola
- Jimma University College of Agriculture and Veterinary Medicine, Department of Postharvest Management, P.O. BOX 307, Ethiopia
| | - Addisalem Hailu Taye
- Jimma University College of Agriculture and Veterinary Medicine, Department of Postharvest Management, P.O. BOX 307, Ethiopia
| | - Hayat Hassen Mohammed
- Jimma University College of Agriculture and Veterinary Medicine, Department of Postharvest Management, P.O. BOX 307, Ethiopia
| |
Collapse
|
4
|
Arimah A, Dewanti-Hariyadi R, Nuraida L. Estimasi Risiko Okratoksin A dari Konsumsi Kopi Bubuk di Indonesia. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2022. [DOI: 10.6066/jtip.2022.33.2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ochratoxin A (OTA) is a nephrotoxic and carcinogenic mycotoxin that can be found in coffee. This study aimed to obtain the processing steps commonly applied by coffee shops in Indonesia, calculate the level of OTA in coffee bean and ground coffee, and the risk estimate of OTA exposure from ground coffee in Indonesia. The processing steps were determined through an online survey while the level of OTA in coffee was calculated from available references. The consumption level of ground coffee was determined from the Indonesia total diet study report and the exposure assessment was carried out by deterministic approach. The risk estimates were expressed as % risk towards provisional tolerable weekly intake (PTWI) and margin of exposure (MOE). Based on the survey of coffee shops (n=20), ground coffee is commonly processed using dry method consisting of cherries sorting, sun drying, roasting and grinding. Ground coffee was the most common coffee consumed by adults. Based on references from countries with climate similar to Indonesia, the level of OTA in coffee bean ranged from 0.033 to 168 μg/kg with an average of 12.25 μg/kg and 0.018-55 μg/kg in ground coffee averaging at 5.60 μg/kg. The individual exposure to OTA from drinking coffee is 0.014-0.744 ng/kg bw/day. The risk estimates shows that risk of ochratoxin A from ground coffee consumption is low, with risk percentage of <100 % provisional tolerable weekly intake (PTWI) and a MOE of higher than 10000 for all age groups. The study suggested that adults (19-55 years) have higher exposure and risk than the other age groups.
Collapse
|
5
|
Viegas C, Gomes B, Oliveira F, Dias M, Cervantes R, Pena P, Gomes AQ, Caetano LA, Carolino E, de Andrade ET, Viegas S. Microbial Contamination in the Coffee Industry: An Occupational Menace besides a Food Safety Concern? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13488. [PMID: 36294069 PMCID: PMC9602572 DOI: 10.3390/ijerph192013488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/06/2023]
Abstract
Respiratory abnormalities among workers at coffee roasting and packaging facilities have already been reported; however, little is known about microbiological contamination inside coffee production facilities. This study intends to assess the microbial contamination (fungi and bacteria) in two coffee industries from Brazil with a multi-approach protocol for sampling and for subsequent analyses using four main sources of samples: filtering respiratory protection devices (FRPD) used by workers, settled dust, electrostatic dust cloths (EDC) and coffee beans. The fungal contamination in the assessed industries was also characterized through the molecular detection of toxigenic species and antifungal resistance. Total bacteria contamination presented the highest values in FRPD collected from both industries (7.45 × 104 CFU·m-2; 1.09 × 104 CFU·m-2). Aspergillus genera was widespread in all the environmental samples collected and sections with clinical relevance (Fumigati) and with toxigenic potential (Nigri and Circumdati) were recovered from FRPD. Circumdati section was observed in 4 mg/mL itraconazole. Sections Circumdati (EDC, coffee beans and settled dust) and Nidulantes (EDC, coffee beans and FRPD) were detected by qPCR. Some of the targeted Aspergillus sections that have been identified microscopically were not detected by qPCR and vice-versa. Overall, this study revealed that microbial contamination is a potential occupational risk in the milling stage and should be tackled when assessing exposure and performing risk assessment. In addition, a multi-sampling campaign should be the approach to follow when assessing microbial contamination and FRPD should be included in this campaign. Occupational exposure to mycotoxins should be considered due to high fungal diversity and contamination. A One Health approach should address these issues in order to prevent consumption of coffee crops and beans infected by fungi and, more specifically, to avoid widespread azole resistance.
Collapse
Affiliation(s)
- Carla Viegas
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Bianca Gomes
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Filipe Oliveira
- Department of Agricultural Engineering, Faculty of Engineering, Federal University of Lavras, Lavras 37203-202, Brazil
| | - Marta Dias
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Renata Cervantes
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Pedro Pena
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Anita Quintal Gomes
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Liliana Aranha Caetano
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Elisabete Carolino
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Ednilton Tavares de Andrade
- Department of Agricultural Engineering, Faculty of Engineering, Federal University of Lavras, Lavras 37203-202, Brazil
| | - Susana Viegas
- H & TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
6
|
Duque‐Dussán E, Banout J. Improving the drying performance of parchment coffee due to the newly redesigned drying chamber. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo Duque‐Dussán
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague ‐ Suchdol Czech Republic
| | - Jan Banout
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague ‐ Suchdol Czech Republic
| |
Collapse
|
7
|
Dey DK, Kang JI, Bajpai VK, Kim K, Lee H, Sonwal S, Simal-Gandara J, Xiao J, Ali S, Huh YS, Han YK, Shukla S. Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Crit Rev Food Sci Nutr 2022; 63:8489-8510. [PMID: 35445609 DOI: 10.1080/10408398.2022.2059650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mycotoxins are produced primarily as secondary fungal metabolites. Mycotoxins are toxic in nature and naturally produced by various species of fungi, which usually contaminate food and feed ingredients. The growth of these harmful fungi depends on several environmental factors, such as pH, humidity, and temperature; therefore, the mycotoxin distribution also varies among global geographical areas. Various rules and regulations regarding mycotoxins are imposed by the government bodies of each country, which are responsible for addressing global food and health security concerns. Despite this legislation, the incidence of mycotoxin contamination is continuously increasing. In this review, we discuss the geographical regulatory guidelines and recommendations that are implemented around the world to control mycotoxin contamination of food and feed products. Researchers and inventors from various parts of the world have reported several innovations for controlling mycotoxin-associated health consequences. Unfortunately, most of these techniques are restricted to laboratory scales and cannot reach users. Consequently, to date, no single device has been commercialized that can detect all mycotoxins that are naturally available in the environment. Therefore, in this study, we describe severe health hazards that are associated with mycotoxin exposure, their molecular signaling pathways and processes of toxicity, and their genotoxic and cytotoxic effects toward humans and animals. We also discuss recent developments in the construction of a sensitive and specific device that effectively implements mycotoxin identification and detection methods. In addition, our study comprehensively examines the recent advancements in the field for mitigating the health consequences and links them with the molecular and signaling pathways that are activated upon mycotoxin exposure.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ji In Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kwanwoo Kim
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Yong-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| |
Collapse
|
8
|
Comprehensive Review of Fungi on Coffee. Pathogens 2022; 11:pathogens11040411. [PMID: 35456086 PMCID: PMC9024902 DOI: 10.3390/pathogens11040411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Coffee is grown in more than 80 countries as a cash crop and consumed worldwide as a beverage and food additive. It is susceptible to fungal infection during growth, processing and storage. Fungal infections, in particular, can seriously affect the quality of coffee and threaten human health. The data for this comprehensive review were collected from the United States Department of Agriculture, Agricultural Research Service (USDA ARS) website and published papers. This review lists the fungal species reported on coffee based on taxonomy, life mode, host, affected plant part and region. Five major fungal diseases and mycotoxin-producing species (post-harvest diseases of coffee) are also discussed. Furthermore, we address why coffee yield and quality are affected by fungi and propose methods to control fungal infections to increase coffee yield and improve quality. Endophytic fungi and their potential as biological control agents of coffee disease are also discussed.
Collapse
|
9
|
Aguilar-Alvarez ME, Saucedo-Castañeda G, Durand N, Perraud-Gaime I, González-Robles RO, Rodríguez-Serrano GM. The variety, roasting, processing, and type of cultivation determine the low OTA levels of commercialized coffee in Chiapas State, Mexico. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Duong B, Marraccini P, Maeght JL, Vaast P, Lebrun M, Duponnois R. Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.607935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intensive coffee production is accompanied by several environmental issues, including soil degradation, biodiversity loss, and pollution due to the wide use of agrochemical inputs and wastes generated by processing. In addition, climate change is expected to decrease the suitability of cultivated areas while potentially increasing the distribution and impact of pests and diseases. In this context, the coffee microbiota has been increasingly studied over the past decades in order to improve the sustainability of the coffee production. Therefore, coffee associated microorganisms have been isolated and characterized in order to highlight their useful characteristics and study their potential use as sustainable alternatives to agrochemical inputs. Indeed, several microorganisms (including bacteria and fungi) are able to display plant growth-promoting capacities and/or biocontrol abilities toward coffee pests and diseases. Despite that numerous studies emphasized the potential of coffee-associated microorganisms under controlled environments, the present review highlights the lack of confirmation of such beneficial effects under field conditions. Nowadays, next-generation sequencing technologies allow to study coffee associated microorganisms with a metabarcoding/metagenomic approach. This strategy, which does not require cultivating microorganisms, now provides a deeper insight in the coffee-associated microbial communities and their implication not only in the coffee plant fitness but also in the quality of the final product. The present review aims at (i) providing an extensive description of coffee microbiota diversity both at the farming and processing levels, (ii) identifying the “coffee core microbiota,” (iii) making an overview of microbiota ability to promote coffee plant growth and to control its pests and diseases, and (iv) highlighting the microbiota potential to improve coffee quality and waste management sustainability.
Collapse
|
11
|
Gonzalez AL, Lozano VA, Escandar GM, Bravo MA. Determination of ochratoxin A in coffee and tea samples by coupling second-order multivariate calibration and fluorescence spectroscopy. Talanta 2020; 219:121288. [PMID: 32887030 DOI: 10.1016/j.talanta.2020.121288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
A new method to quantify the mycotoxin ochratoxin A (OTA) in coffee and tea samples is proposed based on second-order multivariate calibration and excitation-emission fluorescence matrix (EEFM) data. Experimental conditions were optimized by studying the effect of pH and various organized media on the fluorescence signal of OTA. For each analysed matrix (coffee grains and tea leaves), several sample pretreatments and calibration methods (external or standard addition) and data processing by chemometric models (e.g., parallel factor analysis/PARAFAC and multivariate curve resolution-alternating least squares/MCR-ALS) were evaluated and discussed. The MCR-ALS algorithm provided an adequate fit to the data for both samples, while PARAFAC was satisfactory only for the tea samples. Regarding the figures of merit, the limits of detection were in the range of 0.2-0.3 ng mL-1; furthermore, low relative prediction errors, between 2% and 4%, were achieved in both the fortified and real samples. Accordingly, the proposed methodology was applied to analyse fortified roasted and green coffee and real tea leaf samples. Satisfactory recoveries were achieved (ranging from 92 to 110%), and the obtained concentrations were in agreement with the values obtained by the reference method (based on high-performance liquid chromatography with fluorescence detection/HPLC-FLD). In addition, all samples contained OTA levels lower than the maximum permissible levels. Finally, the proposed strategy allows the use of green analytical chemistry principles; for instance, the use of organic solvents and the generation of waste products were significantly lower than for similar analytical methods reported in the literature.
Collapse
Affiliation(s)
- Albani L Gonzalez
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2950, Valparaíso, Chile
| | - Valeria A Lozano
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Graciela M Escandar
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Manuel A Bravo
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2950, Valparaíso, Chile.
| |
Collapse
|
12
|
Antimicrobial activity of gaseous chlorine dioxide against Aspergillus flavus on green coffee beans. Food Microbiol 2020; 86:103308. [DOI: 10.1016/j.fm.2019.103308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
|
13
|
Khaneghah AM, Fakhri Y, Abdi L, Coppa CFSC, Franco LT, de Oliveira CAF. The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol 2019; 123:611-617. [DOI: 10.1016/j.funbio.2019.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]
|
14
|
Balendres MAO, Karlovsky P, Cumagun CJR. Mycotoxigenic Fungi and Mycotoxins in Agricultural Crop Commodities in the Philippines: A Review. Foods 2019; 8:E249. [PMID: 31288486 PMCID: PMC6678526 DOI: 10.3390/foods8070249] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/02/2022] Open
Abstract
The tropical, warm, and humid conditions that are favorable to the growth and development of mycotoxigenic fungi put the Philippines at a high risk of mycotoxin contamination. To date, seven mycotoxigenic Aspergillus species, four Fusarium species, and one Penicillium species have been isolated from various agricultural crop commodities in the country. There are five mycotoxin groups (aflatoxin, fumonisin, ochratoxin, nivalenol, and zearalenone) that have been detected in both the raw form and the by-products of major crops grown in the country. Since the first scientific report of aflatoxin contamination in the Philippines in 1972, new information has been generated on mycotoxins and mycotoxigenic fungi, but little has been known of other mycotoxins until the last two decades. Further, despite the increase in the understanding of mycotoxigenic fungi and mycotoxins in the country, very limited knowledge exists on practices and measures that control both the fungi and the toxins. This paper reviews the current literature on mycotoxigenic fungi and mycotoxins in the Philippines with emphasis on the last two decades and on other mycotoxins.
Collapse
Affiliation(s)
- Mark Angelo O Balendres
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Christian Joseph R Cumagun
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany.
- Institute of Weed Science, Entomology and Plant Pathology, University of the Philippines Los Baños, College, Laguna 4031, Philippines.
| |
Collapse
|
15
|
Viegas C, Nurme J, Piecková E, Viegas S. Sterigmatocystin in foodstuffs and feed: aspects to consider. Mycology 2018; 11:91-104. [PMID: 32923018 PMCID: PMC7448898 DOI: 10.1080/21501203.2018.1492980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023] Open
Abstract
Sterigmatocystin (STC) is a possible human carcinogen (2B) according to International Agency for Research on Cancer classification and has been associated with immunotoxic and immunomodulatory activity, together with mutagenic effects. It might be found in numerous substrates, from foods and feeds to chronically damp building materials and indoor dust. Although European Food Safety Authority concluded that the exposure to STC to be of low concern for public health, reinforces the need of data concerning exposure of European citizens. Climate change can represent an increased risk of exposure to STC since it is a crucial factor for agro-ecosystem powering fungal colonisation and mycotoxin production This aspect can represent an increased risk for European countries with temperate climates and it was already reported by the scientific community.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Janne Nurme
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Elena Piecková
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Su C, Hu Y, Gao D, Luo YI, Chen AJ, Jiao X, Gao W. Occurrence of Toxigenic Fungi and Mycotoxins on Root Herbs from Chinese Markets. J Food Prot 2018; 81:754-761. [PMID: 29620485 DOI: 10.4315/0362-028x.jfp-17-405] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herbs derived from roots, leaves, flowers, or fruits of plants are unavoidably contaminated with fungi and mycotoxins during growth, harvest, and storage, thereby posing a health threat to humans. Especially, root herbs (RHs) are more easily contaminated with fungi and mycotoxins because the roots are in direct contact with the soil. Here, we investigated the occurrence of fungi, aflatoxins (AFs), and ochratoxin A (OTA) in eight RHs that are used as medicines, beverages, dietary supplements, and functional foods in China and other countries. Morphological observation and MultiGeneBlast (β-tubulin and calmodulin) were used to identify the potentially toxigenic fungi. Of the 48 samples tested, all were contaminated by fungi, and 1,844 isolates belonging to 25 genera were detected. The genera Aspergillus and Penicillium, which contain potentially toxigenic fungal species, represented a frequency of 10 and 25%, respectively. Thirty-three isolates of Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger, and Penicillium polonicum were arbitrarily selected for analysis of their toxigenic potential. Five of 13 isolates of A. flavus and 1 isolate of A. parasiticus produced AFs, whereas OTA production was not detected for any of the isolates of A. niger and P. polonicum. The occurrence of AFs and OTA in the 48 samples of eight RHs was tested by ultraperformance liquid chromatography-tandem mass spectrometry; 37.50% of samples from six RHs were contaminated with AFs and 16.67% of samples from four RHs were contaminated with OTA. Seven (14.58%) and four (8.33%) samples of ginseng, polygala, and liquorice exceeded the permissible limits of aflatoxin B1 and AFs, respectively. Because ginseng, polygala, and liquorice are widely used as herbs, dietary supplements, and functional foods, the high frequency of AF contamination of these herbs indicated by our current study warrant attention to raise public awareness.
Collapse
Affiliation(s)
- Chunyan Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Yongjian Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Dan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Y I Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Amanda Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Xiaolin Jiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
17
|
Barcelo JM, Barcelo RC. Post-harvest practices linked with ochratoxin A contamination of coffee in three provinces of Cordillera Administrative Region, Philippines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:328-340. [DOI: 10.1080/19440049.2017.1393109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jonathan M. Barcelo
- Department of Medical Laboratory Science, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| | - Racquel C. Barcelo
- Department of Biology, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| |
Collapse
|
18
|
Viegas C, Pacífico C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Gomes AQ, Viegas S. Fungal contamination in green coffee beans samples: A public health concern. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:719-728. [PMID: 28548622 DOI: 10.1080/15287394.2017.1286927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Studies on the microbiology of coffee cherries and beans have shown that the predominant toxigenic fungal genera (Aspergillus and Penicillium) are natural coffee contaminants. The aim of this study was to investigate the distribution of fungi in Coffea arabica L. (Arabica coffee) and Coffea canephora L. var. robusta (Robusta coffee) green coffee samples obtained from different sources at the pre-roasting stage. Twenty-eight green coffee samples from different countries of origin (Brazil, Timor, Honduras, Angola, Vietnam, Costa Rica, Colombia, Guatemala, Nicaragua, India, and Uganda) were evaluated. The fungal load in the contaminated samples ranged from 0 to 12330 colony forming units (CFU)/g, of which approximately 67% presented contamination levels below 1500 CFU/g, while 11% exhibited intermediate contamination levels between 1500 and 3000 CFU/g. Contamination levels higher than 3000 CFU/g were found in 22% of contaminated coffee samples. Fifteen different fungi were isolated by culture-based methods and Aspergillus species belonging to different sections (complexes). The predominant Aspergillus section detected was Nigri (39%), followed by Aspergillus section Circumdati (29%). Molecular analysis detected the presence of Aspergillus sections Fumigati and Circumdati. The% coffee samples where Aspergillus species were identified by culture-based methods were 96%. Data demonstrated that green coffee beans samples were contaminated with toxigenic fungal species. Since mycotoxins may be resistant to the roasting process, this suggests possible exposure to mycotoxins through consumption of coffee. Further studies need to be conducted to provide information on critical points of coffee processing, such that fungal contamination may be reduced or eliminated and thus exposure to fungi and mycotoxins through coffee handling and consumption be prevented.
Collapse
Affiliation(s)
- Carla Viegas
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- b Centro de Investigação em Saúde Pública Escola Nacional de Saúde Pública , Universidade Nova de Lisboa , Lisbon , Portugal
| | - Cátia Pacífico
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Tiago Faria
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Ana Cebola de Oliveira
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Liliana Aranha Caetano
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- c Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , University of Lisbon , Lisbon , Portugal
| | - Elisabete Carolino
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Anita Quintal Gomes
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- d Instituto de Medicina Molecular , Faculdade de Medicina de Lisboa , Lisboa , Portugal
| | - Susana Viegas
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- b Centro de Investigação em Saúde Pública Escola Nacional de Saúde Pública , Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|
19
|
Geremew T, Abate D, Landschoot S, Haesaert G, Audenaert K. Occurrence of toxigenic fungi and ochratoxin A in Ethiopian coffee for local consumption. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Alvindia DG, de Guzman MF. Survey of Philippine coffee beans for the presence of ochratoxigenic fungi. Mycotoxin Res 2016; 32:61-7. [DOI: 10.1007/s12550-016-0240-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/24/2022]
|
21
|
Martins IJ. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases. Int J Mol Sci 2015; 16:29554-73. [PMID: 26690419 PMCID: PMC4691133 DOI: 10.3390/ijms161226190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/19/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.
Collapse
Affiliation(s)
- Ian James Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia.
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
- McCusker Alzheimer's Research Foundation, Hollywood Medical Centre, 85 Monash Avenue, Suite 22, Nedlands 6009, Australia.
| |
Collapse
|