1
|
Lindbäck T, Llarena AK, Aanrud SG, Monshaugen M, Mekonnen YB, Holmemo CW, Aspholm M. Genetic Profile and Toxigenic Potential of Bacillus cereus Isolates from a Norwegian Ice Cream Production Plant. Foods 2024; 13:3029. [PMID: 39410065 PMCID: PMC11475924 DOI: 10.3390/foods13193029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Members of the B. cereus group are spore-forming organisms commonly associated with spoilage of milk and dairy products. We have determined the genetic identity and growth characteristics of 57 B. cereus isolates collected from a Norwegian ice cream production plant. Our findings revealed persistence of B. cereus spp. strains for up to 19 months, suggesting the plant's susceptibility to long-term colonization. One of the mesophilic isolates, NVH-YM303, carried a complete cereulide synthetase operon. To assess the potential food poisoning risk associated with the presence of cereulide-producing strains in the production line, we examined the production of cereulide in ice cream and milk at different temperatures by NVH-YM303 and by the emetic psychrotrophic B. weihenstephanensis strain BtB2-4. Our findings revealed that NVH-YM303 produced higher levels of cereulide in ice cream as compared to milk. Furthermore, it was observed that NVH-YM303 produced more cereulide in ice cream at 25 °C compared to 15 °C. Conversely, BtB2-4 produced more cereulide in ice cream at 15 °C than at 25 °C. The results obtained in this study contribute to knowledge important for risk assessment of the potential hazards posed by the presence of B. cereus within ice cream production facilities.
Collapse
Affiliation(s)
- Toril Lindbäck
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | - Ann-Katrin Llarena
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | - Stine Göransson Aanrud
- Toxicology Unit, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Marte Monshaugen
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | - Yohannes B. Mekonnen
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | | | - Marina Aspholm
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| |
Collapse
|
2
|
Koike H, Kanda M, Monma C, Yoshikawa S, Hayashi H, Matsushima Y, Ohba Y, Hayashi M, Furuta N, Okada W, Nagano C, Yokoyama K, Yokoyama T, Sasamoto T. Development of a simple screening method for analyzing cereulide toxin in fried rice using liquid chromatography-tandem mass spectrometry. Forensic Toxicol 2024; 42:163-171. [PMID: 38519777 PMCID: PMC11269499 DOI: 10.1007/s11419-024-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE The presence of cereulide, an emetic toxin produced by Bacillus cereus, in fried rice samples is critical evidence of food poisoning even in situations where B. cereus could not be detected. This study aims to develop a screening method for analyzing cereulide in fried rice using the QuEChERS procedure and liquid chromatography-tandem mass spectrometry (LC-MS/MS). METHODS Cereulide was identified and quantified in fried rice samples using the QuEChERS extraction method and LC-MS/MS. The accuracies of the methods were determined by analyzing fortified blank samples at two concentrations (10 and 50 µg/kg) conducted on three samples daily for five days. RESULTS The QuEChERS procedure removed matrix compounds from fried rice. Characteristic MS/MS spectra enabled the identification of cereulide. As the matrix effects in seven fried rice samples were within ± 6%, an external solvent calibration curve could be used for quantification. This method exhibited good accuracy ranging from 88 to 89%. The relative standard deviations for both repeatability and intra-laboratory reproducibility were < 4%. These standard deviations satisfied the criteria of the Japanese validation guidelines for residues (MHLW 2010, Director Notice, Syoku-An No. 1224-1). The limit of quantification was 2 μg/kg. The applicability of this method was confirmed using the analysis of cereulide in fried rice samples incubated with emetic Bacillus cereus. CONCLUSIONS The QuEChERS extraction procedure described herein showed substantial promise as a reliable screening tool for cereulide in fried rice sample.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan.
| | - Maki Kanda
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Chie Monma
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Souichi Yoshikawa
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Hiroshi Hayashi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yoko Matsushima
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yumi Ohba
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Momoka Hayashi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Natsumi Furuta
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Wakaba Okada
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Chieko Nagano
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Keiko Yokoyama
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Tomoko Yokoyama
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Takeo Sasamoto
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| |
Collapse
|
3
|
Masquelier J, Segers C, Jacobs B, Van Nieuwenhuysen T, Delbrassinne L, Van Hoeck E. Validation of a Targeted LC-MS/MS Method for Cereulide and Application in Food and Faeces. Toxins (Basel) 2023; 16:13. [PMID: 38251230 PMCID: PMC10819378 DOI: 10.3390/toxins16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cereulide is an emetic toxin produced by some strains of Bacillus cereus. This bacterial toxin, a cyclic 1.2 kDa dodecadepsipeptide, is stable to heat and acids and causes nausea and vomiting when ingested via contaminated food. This work aimed to develop and validate a targeted analytical method applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify this toxin in food and human faeces. Samples were extracted with acetonitrile in the presence of 13C6-cereulide, a labelled internal standard, and purified by centrifugation and filtration. The limits of quantification were 0.5 and 0.3 µg kg-1 for food and faeces, respectively. The linearity of the method was very good, with calculated R2 values above 0.995. The mean recovery of the method was within the acceptable range of 70.0%-120.0%, the repeatability was not higher than 7.3%, and the highest intra-laboratory reproducibility was 8.9%. The estimated range for the expanded measurement uncertainty was between 5.1% and 18.0%. The LC-MS/MS method was used to analyse one food sample (rice) from a Belgian foodborne outbreak and five faecal samples from patients with clinical symptoms after consumption of the contaminated rice. The levels of cereulide were 12.22 µg g-1 for food and between 6.32 and 773.37 ng g-1 for faecal samples.
Collapse
Affiliation(s)
- Julien Masquelier
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Céline Segers
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Bram Jacobs
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Tom Van Nieuwenhuysen
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Laurence Delbrassinne
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Els Van Hoeck
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Detection of emetic Bacillus cereus and the emetic toxin cereulide in food matrices: Progress and perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Characterization of Bacillus cereus sensu lato isolates from milk for consumption; phylogenetic identity, potential for spoilage and disease. Food Microbiol 2020; 93:103604. [PMID: 32912579 DOI: 10.1016/j.fm.2020.103604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022]
Abstract
This study addresses the biodiversity of Bacillus cereus group population present along the value chain of milk for consumption. The B. cereus population did not grow and remained mainly unaltered during storage of milk at 4 °C while storage at a suboptimal temperature at 8 °C (representative of a broken cold chain) caused a major shift in its composition. Mesophilic strains dominated the B. cereus population in raw milk and after storage at 4 °C, while psycrotrophic strains dominated after storage at 8 °C. All psycrotrophic and mesophilic isolates (n = 368) demonstrated high spoilage potentials of the milk components. Fifteen out of 20 mesophilic isolates but only two out of 40 psychrotrophic isolates, exhibited vero cell toxicity. No genes encoding the emetic toxin cereulide were detected in the genomes of 100 milk isolates while 14 of them harbored the enterotoxin genes cytK1/cytK2. Both psycrotrophic and mesophilic isolates carried the enterotoxin genes nheA and hblA. Together, the results provide insight into the composition and properties, of the B. cereus population present in milk along the value chain and during storage at optimal refrigerated temperature and at suboptimal temperature. This knowledge is useful in the dairy industry's work to assure high quality products and for risk assessment.
Collapse
|
6
|
|
7
|
Removal of B. cereus cereulide toxin from monoclonal antibody bioprocess feed via two-step Protein A affinity and multimodal chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:194-202. [PMID: 31059926 DOI: 10.1016/j.jchromb.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/17/2019] [Accepted: 04/06/2019] [Indexed: 12/22/2022]
Abstract
A rapid and sensitive liquid chromatography-mass spectrometry assay was developed and used to quantify emetic cereulide peptide exotoxin, which can be related to possible Bacillus cereus contamination in monoclonal antibody (mAb) bioprocess feeds. The assay limit of detection was 0.05 ng/mL (~1 fmol injected) and limit of quantification 0.16 ng/mL (~3 fmol injected) over a standard curve with >3 orders of magnitude linear dynamic range. The assay allowed quantification of toxin removal in an established two-step mAb purification process consisting of Protein A affinity chromatography followed by multi-modal anion exchange chromatography. Toxin content was ascertained in process stream sample fractions as well as on the Protein A affinity column. An optimized analytical method allowed separation of cereulide toxin from other mAb cell culture components within 6 min. Spiking experiments showed that samples should be collected in high (80% v/v) content acetonitrile to reduce nonspecific losses of the cereulide. The majority of mAb purification process-associated cereulide was detected in the Protein A flow through fraction, whereas only residual amounts were found in wash, strip, and elution fractions. Column cleaning-in-place (CIP) procedures were evaluated to prevent carryover between affinity capture cycles. No carryover was detected between cycles, however trace amounts of cereulide were extracted from the Protein A resin. Increasing the CIP NaOH concentration from 0.1 M to 0.5 M, and contact time from 15 min to 1 h, improved removal of residual cereulide from the resin. Applicability of CIP clearance of cereulide during Protein A chromatography was confirmed with three different mAb feeds. Post Protein A polishing, via target flow through on a multi-modal anion exchange chromatography column, resulted in a product pool with no detectable cereulide. Approximately 5 logs of reduction in cereulide concentration was obtained over the two-step chromatography process. Cereulide contamination is well known and of concern in food processing, however this research may be the first LC-MS quantification of cereulide contamination, and its clearance, in biopharmaceutical mAb processing. The analytical method may also be used to rapidly screen for cereulide contamination in upstream cell culture process streams, prior to downstream product purification. This will allow appropriate measures to be taken to reduce toxin exposure to downstream bioprocess raw materials, consumables and equipment.
Collapse
|
8
|
Ulrich S, Gottschalk C, Dietrich R, Märtlbauer E, Gareis M. Identification of cereulide producing Bacillus cereus by MALDI-TOF MS. Food Microbiol 2019; 82:75-81. [PMID: 31027822 DOI: 10.1016/j.fm.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022]
Abstract
The Bacillus (B.) cereus group consists of nine recognized species which are present worldwide. B. cereus play an important role in food-borne diseases by producing different toxins. Yet, only a small percentage of B. cereus strains are able to produce the heat stable cereulide, the causative agent of emetic food poisoning. To minimize the entry of emetic B. cereus into the food chain, food business operators are dependent on efficient and reliable methods enabling the differentiation between emetic and non-emetic strains. Currently, only time-consuming cell bioassays, molecular methods and tandem mass spectrometry are available for this purpose. Thus, the aim of the present study was to establish a fast and reliable method for the differentiation between emetic/non-emetic strains by MALDI-TOF MS. Selected strains/isolates of the B. cereus group as well as other Bacillus spp. (total n = 121) were cultured on sheep blood agar for 48 h before analysis. Subsequently, the cultures were directly analyzed by MALDI-TOF MS without prior extraction steps. The samples were measured in the mass range of m/z 800-1800 Da. Using ClinProTools 3.0 statistical software and Flex analysis software (Bruker Daltonics GmbH, Bremen, Germany), a differentiation between emetic/non-emetic isolates was possible with a rate of correct identification of 99.1% by means of the evaluation of two specific biomarkers (m/z 1171 and 1187 Da).
Collapse
Affiliation(s)
- Sebastian Ulrich
- Food Safety, Veterinary Faculty, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.
| | - Christoph Gottschalk
- Food Safety, Veterinary Faculty, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Richard Dietrich
- Hygiene and Technology of Milk, Veterinary Faculty, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Erwin Märtlbauer
- Hygiene and Technology of Milk, Veterinary Faculty, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Manfred Gareis
- Food Safety, Veterinary Faculty, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| |
Collapse
|
9
|
Koike H, Kanda M, Hayashi H, Matsushima Y, Ohba Y, Nakagawa Y, Nagano C, Sekimura K, Hirai A, Shindo T, Kamiie J, Sasamoto T, Hashimoto T. Identification and quantification of cereulide in cow’s milk using liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2424-2433. [DOI: 10.1080/19440049.2018.1544722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hiroshi Koike
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Maki Kanda
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | | | - Yumi Ohba
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Chieko Nagano
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Akihiko Hirai
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Tetsuya Shindo
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takeo Sasamoto
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | |
Collapse
|
10
|
Decleer M, Jovanovic J, Vakula A, Udovicki B, Agoua RSEK, Madder A, De Saeger S, Rajkovic A. Oxygen Consumption Rate Analysis of Mitochondrial Dysfunction Caused by Bacillus cereus Cereulide in Caco-2 and HepG2 Cells. Toxins (Basel) 2018; 10:E266. [PMID: 30004412 PMCID: PMC6070949 DOI: 10.3390/toxins10070266] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
The emetic syndrome of Bacillus cereus is a food intoxication caused by cereulide (CER) and manifested by emesis, nausea and in most severe cases with liver failure. While acute effects have been studied in the aftermath of food intoxication, an exposure to low doses of cereulide might cause unnoticed damages to the intestines and liver. The toxicity which relies on the mitochondrial dysfunction was assessed on Caco-2 and HepG2 cells after exposure of one, three and ten days to a range of low doses of cereulide. Oxygen consumption rate analyses were used to study the impact of low doses of CER on the bioenergetics functions of undifferentiated Caco-2 and HepG2 cells using Seahorse XF extracellular flux analyzer. Both Caco-2 and HepG2 cells experienced measurable mitochondrial impairment after prolonged exposure of 10 days to 0.25 nM of cereulide. Observed mitochondrial dysfunction was greatly reflected in reduction of maximal cell respiration. At 0.50 nM CER, mitochondrial respiration was almost completely shut down, especially in HepG2 cells. These results corresponded with a severe reduction in the amount of cells and an altered morphology, observed by microscopic examination of the cells. Accurate and robust quantification of basal respiration, ATP production, proton leak, maximal respiration, spare respiratory capacity, and non-mitochondrial respiration allowed better understanding of the effects of cereulide in underlying respiratory malfunctions in low-dose exposure.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jelena Jovanovic
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Anita Vakula
- Department of Food Preservation Engineering, Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Bozidar Udovicki
- Department of Food Safety and Food Quality Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11081 Zemun-Belgrade, Serbia.
| | - Rock-Seth E K Agoua
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Faculty of Sciences, Campus Sterre, Krijgslaan 281, Building S4, 9000 Gent, Belgium.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Andreja Rajkovic
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Guérin A, Rønning HT, Dargaignaratz C, Clavel T, Broussolle V, Mahillon J, Granum PE, Nguyen-The C. Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures. Food Microbiol 2017; 65:130-135. [DOI: 10.1016/j.fm.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/15/2022]
|
12
|
García‐Calvo J, Ibeas S, Antón‐García E, Torroba T, González‐Aguilar G, Antunes W, González‐Lavado E, Fanarraga ML. Potassium-Ion-Selective Fluorescent Sensors To Detect Cereulide, the Emetic Toxin of B. cereus, in Food Samples and HeLa Cells. ChemistryOpen 2017; 6:562-570. [PMID: 28794952 PMCID: PMC5542764 DOI: 10.1002/open.201700057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 12/26/2022] Open
Abstract
We report the development of new chemical probes for cereulide, a toxic metabolite produced by specific strains of Bacillus cereus, through displacement of potassium cations from a preformed specific complex and a subsequent change in the fluorescence emission. For this purpose, we designed fluorescent probes for potassium cations that were suitable for displacement assays with cereulide from organic extracts. The fluorescence detection of natural cereulide in rice samples was achieved by using synthetic cereulide as a reference and a potassium fluorescent reporter, and this was found to be useful as a portable and fast method for the in situ detection of cereulide in food extracts. To study the fate of cereulide in live cells, we designed a procedure that was suitable for live-cell microscopy imaging of HeLa cells by comparing the cellular location of the potassium fluorogenic probe, which stained intracellular endolysosomes, in the absence and presence of cereulide; we concluded that in the presence of cereulide, the fluorescence of the probe was decreased because of complexation of the potassium ions by cereulide.
Collapse
Affiliation(s)
- José García‐Calvo
- Department of Chemistry, Faculty of ScienceUniversity of Burgos09001BurgosSpain
| | - Saturnino Ibeas
- Department of Chemistry, Faculty of ScienceUniversity of Burgos09001BurgosSpain
| | | | - Tomás Torroba
- Department of Chemistry, Faculty of ScienceUniversity of Burgos09001BurgosSpain
| | | | - Wilson Antunes
- Laboratório de Bromatologia e de Defesa Biológica (LBDB) do ExércitoAv. Dr. Alfredo Bensaúde1849-012LisboaPortugal
| | | | | |
Collapse
|
13
|
Decleer M, Rajkovic A, Sas B, Madder A, De Saeger S. Development and validation of ultra-high-performance liquid chromatography-tandem mass spectrometry methods for the simultaneous determination of beauvericin, enniatins (A, A1, B, B1) and cereulide in maize, wheat, pasta and rice. J Chromatogr A 2016; 1472:35-43. [PMID: 27776774 DOI: 10.1016/j.chroma.2016.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 01/13/2023]
Abstract
Rapid and accurate UPLC-MS/MS methods for the simultaneous determination of beauvericin and the related enniatins (A, A1, B, B1), together with cereulide were successfully developed and validated in cereal and cereal-based food matrices such as wheat, maize, rice and pasta. Although these emerging foodborne toxins are of different microbial origin, the similar structural, toxicological and food safety features provided rationale for their concurrent detection in relevant food matrices. A Waters Acquity UPLC system coupled to a Waters Quattro Premier XE™ Mass Spectrometer operating in ESI+ mode was employed. Sample pretreatment involved a fast and simple liquid extraction of the target toxins without any further clean-up step. For all toxins the sample preparation resulted in acceptable extraction recoveries with values of 85-105% for wheat, 87-106% for maize, 84-106% for rice and 85-105% for pasta. The efficient extraction protocol, together with a fast chromatographic separation of 7min allowed substantial saving costs and time showing its robustness and performance. The validation of the developed method was performed based on Commission Decision 2002/657/EC. The obtained limits of detection ranged from 0.1 to 1.0μgkg-1 and the limits of quantification from 0.3 to 2.9μgkg-1 for the targeted toxins in the selected matrices. The obtained sensitivities allow detection of relevant toxicological concentrations. All relative standard deviations for repeatability (intra-day) and intermediate precision (inter-day) were lower than 20%. Trueness, expressed as the apparent recovery varied from 80 to 107%. The highly sensitive and repeatable validated method was applied to 57 naturally contaminated samples allowing detection of sub-clinical doses of the toxins.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium; Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Ghent University, Coupure Links 653, Ghent, Belgium.
| | - Andreja Rajkovic
- Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Benedikt Sas
- Department of Food Safety and Food Quality, Food2Know, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|
14
|
Cui Y, Liu Y, Liu X, Xia X, Ding S, Zhu K. Evaluation of the Toxicity and Toxicokinetics of Cereulide from an Emetic Bacillus cereus Strain of Milk Origin. Toxins (Basel) 2016; 8:toxins8060156. [PMID: 27275834 PMCID: PMC4926125 DOI: 10.3390/toxins8060156] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023] Open
Abstract
Bacillus cereus is an opportunistic foodborne agent causing food poisoning and many infectious diseases. The heat-stable emetic toxin cereulide is one of the most prevalent toxins produced by pathogenic B. cereus, resulting in symptoms such as emesis and liver failure. In the present work, the toxicity and toxicokinetics of cereulide from an emetic B. cereus isolate (CAU45) of raw milk were evaluated. The production of cereulide was tested by a cytotoxicity test and enzyme immunoassay, and confirmed by the presence of the ces (cereulide synthetase) gene and the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. All results showed that the amount and toxicity of cereulide produced by CAU45 was 7 to 15.3 folds higher than the reference emetic B. cereus DSMZ 4312. Cereulide in plasma was collected at different time points after a single intravenous injection to evaluate its toxicokinetics in rabbits. The maximum concentration of cereulide was achieved in 2.6 ± 3.4 h after administration, with the elimination half-life of 10.8 ± 9.1 h, which expands our understanding of the toxic effects of cereulide. Together, it suggests that urgent sanitary practices are needed to eliminate emetic toxins and emetic B. cereus in raw milk.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shuangyang Ding
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Phat C, Kim S, Park J, Lee C. Detection of Emetic Toxin Genes inBacillus cereusIsolated from Food and their Production of Cereulide in Liquid Culture. J Food Saf 2016. [DOI: 10.1111/jfs.12293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chanvorleak Phat
- School of Food Science and Technology; Chung-Ang University; Anseong-Si Gyeonggi-Do 456-756 Republic of Korea
| | - Suhwan Kim
- School of Food Science and Technology; Chung-Ang University; Anseong-Si Gyeonggi-Do 456-756 Republic of Korea
| | - Juhee Park
- School of Food Science and Technology; Chung-Ang University; Anseong-Si Gyeonggi-Do 456-756 Republic of Korea
| | - Chan Lee
- School of Food Science and Technology; Chung-Ang University; Anseong-Si Gyeonggi-Do 456-756 Republic of Korea
| |
Collapse
|