1
|
Llano-Suárez P, Sánchez-Visedo A, Ortiz-Gómez I, Fernández-Argüelles MT, Prado M, Costa-Fernández JM, Soldado A. Sesame Detection in Food Using DNA-Functionalized Gold Nanoparticles: A Sensitive, Rapid, and Cost-Effective Colorimetric Approach. BIOSENSORS 2024; 14:377. [PMID: 39194606 DOI: 10.3390/bios14080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Food safety control is a key issue in the food and agriculture industries. For such purposes, developing miniaturized analytical methods is critical for enabling the rapid and sensitive detection of food supplements, allergens, and pollutants. Here, a novel bioanalytical methodology based on DNA-functionalized gold nanoparticles (AuNPs) and colorimetric detection was developed to detect the presence of sesame (a major allergen) through sesame seed DNA as a target, in food samples. The presence of sesame DNA induces controlled nanoparticle aggregation/desegregation, resulting in a color change (from blue to red) proportional to sesame DNA concentration. The incorporation of multicomponent nucleic acid enzymes (MNAzymes) in this strategy has been carried out to perform an isothermal signal amplification strategy to improve the sensitivity of detection. Also, open-source software for color analysis was used to ensure an unbiased visual color-change detection, enhancing detection accuracy and sensitivity and opening the possibility of performing a simple and decentralized analyte detection. The method successfully detected the presence of sesame DNA in sesame seed, sesame oil, olive oil, and sunflower oil. In brief, the developed approach constitutes a simple and affordable alternative to perform a highly sensitive detection of DNA in food without complex methodologies or the requirement of expensive instrumentation.
Collapse
Affiliation(s)
- Pablo Llano-Suárez
- Department of Physical and Analytical Chemistry, University of Oviedo, c/Julián Clavería, 8, 33006 Oviedo, Spain
| | - Adrián Sánchez-Visedo
- Department of Physical and Analytical Chemistry, University of Oviedo, c/Julián Clavería, 8, 33006 Oviedo, Spain
| | - Inmaculada Ortiz-Gómez
- Department of Physical and Analytical Chemistry, University of Oviedo, c/Julián Clavería, 8, 33006 Oviedo, Spain
| | | | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga Sthis n, 4715-330 Braga, Portugal
| | - José Manuel Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, c/Julián Clavería, 8, 33006 Oviedo, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, c/Julián Clavería, 8, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Zeng J, Ma F, Zhai L, Du C, Zhao J, Li Z, Wang J. Recent advance in sesame allergens: Influence of food processing and their detection methods. Food Chem 2024; 448:139058. [PMID: 38531299 DOI: 10.1016/j.foodchem.2024.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Sesame (Sesamum indicum L.) is a valuable oilseed crop with numerous nutritional benefits containing a diverse range of bioactive compounds. However, sesame is also considered an allergenic food that triggers various mild to severe adverse reactions (e.g., anaphylaxis). Strict dietary avoidance of sesame components is the best option to protect the sensitized consumers. Sesame or sesame-derived foods are always consumed after certain food processing operations, which would cause a considerable impact on the structure of sesame proteins, changing their sensitization capacity and detectability. In the review, the molecular structure properties, and immunological characteristics of the sesame allergens were described. Meanwhile, the influence of food processing techniques on sesame proteins and the relevant detection techniques used for the sesame allergens quantification are also emphasized critically. Hopefully, this review could provide valuable insight into the development and management for the new "Big Eight" sesame allergen in food industry.
Collapse
Affiliation(s)
- Jianhua Zeng
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Feifei Ma
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense 32004, Spain
| | - Ligong Zhai
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Chuanlai Du
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China.
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
3
|
Suh SM, Kim K, Yang SM, Lee H, Jun M, Byun J, Lee H, Kim D, Lee D, Cha JE, Kim JS, Kim E, Park ZY, Kim HY. Comparative analysis of LC-MS/MS and real-time PCR assays for efficient detection of potential allergenic silkworm. Food Chem 2024; 445:138761. [PMID: 38367561 DOI: 10.1016/j.foodchem.2024.138761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.
Collapse
Affiliation(s)
- Seung-Man Suh
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kyungdo Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hana Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minkyung Jun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jisun Byun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeongjoo Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Daseul Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dain Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae-Eun Cha
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun-Su Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zee-Yong Park
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
4
|
Villa C, Costa J, Mafra I. First nanoplate digital PCR method to trace allergenic foods: Improved sensitivity for the detection of sesame. Food Chem 2024; 444:138650. [PMID: 38330611 DOI: 10.1016/j.foodchem.2024.138650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Sesame (Sesamum indicum L.) is an important allergenic food whose presence can be the cause of severe allergic reactions in sensitised individuals. In this work, nanoplate digital PCR (ndPCR) was used to develop two methods to detect trace amounts of sesame in processed foods and compared with previously proposed real-time PCR assays. Two independent ndPCR approaches were successfully advanced, achieving sensitivities of 5 and 0.1 mg/kg of sesame in dough/biscuits, targeting the CO6b-1 and ITS regions, respectively. The sensitivity using both targets was improved by one order of magnitude comparing with real-time PCR and was not affected by food processing. CO6b-1 system was not influenced by food matrix, exhibiting similar performance regardless the use of complex matrix extracts or serial diluted DNA. Herein, ndPCR was proposed for the first time for the detection of allergenic foods with the advantage of providing better performance than real-time PCR regarding sensitivity and robustness.
Collapse
Affiliation(s)
- Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal.
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| |
Collapse
|
5
|
Villa C, Costa J, Mafra I. Detection and quantification of white and black sesame as potential allergenic ingredients in processed foods: A comparative gene marker study. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Villa C, Costa J, Mafra I. Sesame as a source of food allergens: clinical relevance, molecular characterization, cross-reactivity, stability toward processing and detection strategies. Crit Rev Food Sci Nutr 2022; 64:4746-4762. [PMID: 36377716 DOI: 10.1080/10408398.2022.2145263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sesame is an allergenic food with an increasing allergy prevalence among the European/USA population. Sesame allergy is generally life-persisting, being the cause of severe/systemic adverse immune responses in sesame-allergic individuals. Herein, clinical data about sesame allergy, including prevalence, diagnosis, relevance, and treatments are described, with focus on the molecular characterization of sesame allergens, their cross-reactivity and co-sensitization phenomena. The influence of food processing and digestibility on the stability/immunoreactivity of sesame allergens is critically discussed and the analytical approaches available for their detection in foodstuffs. Cross-reactivity between sesame and tree nuts or peanuts is frequent because of the high similarities among proteins of the same family. However, cross-reactivity phenomena are not always correlated with true clinical allergy in sensitized patients. Data suggest that sesame allergens are resistant to heat treatments and digestibility, with little effect on their immunoreactivity. Nevertheless, data are scarce, evidencing the need for more research to understand the effect of food processing on sesame allergenicity modulation. The demands for identifying trace amounts of sesame in foods have prompted the development of analytical methods, which have targeted both protein and DNA markers, providing reliable, specific, and sensitive tools, crucial for the effective management of sesame as an allergenic food.
Collapse
Affiliation(s)
- Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| |
Collapse
|
7
|
Pi X, Peng Z, Liu J, Jiang Y, Wang J, Fu G, Yang Y, Sun Y. Sesame allergy: mechanisms, prevalence, allergens, residue detection, effects of processing and cross-reactivity. Crit Rev Food Sci Nutr 2022; 64:2847-2862. [PMID: 36165272 DOI: 10.1080/10408398.2022.2128031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesame allergy is a serious public health problem and is mainly induced by IgE-mediated reactions, whose prevalence is distributed all over the world. Sesame has been included on the priority allergic food list in many countries. This review summarizes the mechanism and prevalence of sesame allergy. The characteristics, structures and epitopes of sesame allergens (Ses i 1 to Ses i 7) are included. Moreover, the detection methods for sesame allergens are evaluated, including nucleic-acid, immunoassays, mass spectrometry, and biosensors. Various processing techniques for reducing sesame allergenicity are discussed. Additionally, the potential cross-reactivity of sesame with other plant foods is assessed. It is found that the allergenicity of sesame is related to the structures and epitopes of sesame allergens. Immunoassays and mass spectrometry are the major analytical tools for detecting and quantifying sesame allergens in food. Limited technologies have been successfully used to reduce the antigenicity of sesame, involving microwave heating, high hydrostatic pressure, salt and pH treatment. More technologies for reducing the allergenicity of sesame should be widely investigated in future studies. The reduction of allergenicity in processed sesames should be ultimately confirmed by clinical studies. What's more, sesame may exhibit cross-reactivity with peanut and tree nuts.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zeyu Peng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiafei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiarong Wang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Fanelli V, Mascio I, Miazzi MM, Savoia MA, De Giovanni C, Montemurro C. Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods 2021; 10:1644. [PMID: 34359514 PMCID: PMC8306823 DOI: 10.3390/foods10071644] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role. Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplification-based methods and DNA metabarcoding have only recently found application in the agri-food sector. In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agri-food traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products.
Collapse
Affiliation(s)
- Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Institute for Sustainable Plant Protection–Support Unit Bari, National Research Council of Italy (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
9
|
Torricelli M, Pierboni E, Rondini C, Altissimi S, Haouet N. Sesame, Pistachio, and Macadamia Nut: Development and Validation of New Allergenic Systems for Fast Real-Time PCR Application. Foods 2020; 9:E1085. [PMID: 32784504 PMCID: PMC7464690 DOI: 10.3390/foods9081085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023] Open
Abstract
Food allergy is a worldwide health problem that concerns infants to adults. The main health risk for sensitised individuals is due to the presence of traces of allergens as the result of an accidental contamination during food processing. The labelling of allergens such as sesame, pistachio, and macadamia nut on food products is mandatory according to Regulation (EU) N. 1169/2011; therefore, the development of suitable and specific analytical methodologies is advisable. The aim of this study was to perform a multi-allergen real-time PCR system that works well in fast mode at the same annealing temperature and with the same thermal profile. The real-time PCR was developed designing new, specific, and efficient primer and probe systems for the 2S albumingene for sesame and pistachio and for the vicilin precursorgene for macadamia nut. These systems were subjected to a robust intra-laboratory qualitative validation process prior to their application, by DNA extraction and fast real-time PCR, on some real market samples to reproduce a potential allergen contamination along the food chain. The developed system results were specific and robust, with a sensible limit of detection (0.005% for sesame; 0.004% for pistachio; 0.006% for macadamia nut). The performance and the reliability of the target systems were confirmed on commercial food samples. This molecular approach could be used as a screening or as a support tool, in association with the other widespread monitoring techniques (such as ELISA).
Collapse
Affiliation(s)
- Martina Torricelli
- Experimental Zooprophylactic Institute of Umbria and Marche Regions “Togo Rosati” (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (C.R.); (S.A.); (N.H.)
| | - Elisa Pierboni
- Experimental Zooprophylactic Institute of Umbria and Marche Regions “Togo Rosati” (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (C.R.); (S.A.); (N.H.)
| | | | | | | |
Collapse
|
10
|
Allen KJ, Taylor SL. The Consequences of Precautionary Allergen Labeling: Safe Haven or Unjustifiable Burden? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018. [DOI: 10.1016/j.jaip.2017.12.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
García-García A, Madrid R, García T, Martín R, González I. Use of multiplex ligation-dependent probe amplification (MLPA) for screening of wheat, barley, rye and oats in foods. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Multiplex ligation-dependent probe amplification (MLPA) for simultaneous detection of DNA from sunflower, poppy, flaxseed, sesame and soy allergenic ingredients in commercial food products. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|