1
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
2
|
Miranda-Apodaca J, Artetxe U, Aguado I, Martin-Souto L, Ramirez-Garcia A, Lacuesta M, Becerril JM, Estonba A, Ortiz-Barredo A, Hernández A, Zarraonaindia I, Pérez-López U. Stress Response to Climate Change and Postharvest Handling in Two Differently Pigmented Lettuce Genotypes: Impact on Alternaria alternata Invasion and Mycotoxin Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:1304. [PMID: 36986993 PMCID: PMC10059781 DOI: 10.3390/plants12061304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Many species of Alternaria are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in A. alternata. In this study, we discuss the mechanism by which phenol content protects from A. alternata, since the red oak leaf cultivar (containing higher phenols) showed lower invasion than the green one, Batavia, and no mycotoxin production. A climate change scenario enhanced fungal growth in the most susceptible cultivar, green lettuce, likely because elevated temperature and CO2 levels decrease plant N content, modifying the C/N ratio. Finally, while the abundance of the fungi was maintained at similar levels after keeping the lettuces for four days at 4 °C, this postharvest handling triggered TeA and TEN mycotoxin synthesis, but only in the green cultivar. Therefore, the results demonstrated that invasion and mycotoxin production are cultivar- and temperature-dependent. Further research should be directed to search for resistant cultivars and effective postharvest strategies to reduce the toxicological risk and economic losses related to this fungus, which are expected to increase in a climate change scenario.
Collapse
Affiliation(s)
- Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Aguado
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andone Estonba
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Amaia Ortiz-Barredo
- NEIKER-Basque Institute for Agricultural Research and Development, 01080 Vitoria-Gasteiz, Spain
| | - Antonio Hernández
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Zarraonaindia
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
3
|
Li Y, Shao Y, Zhu Y, Chen A, Qu J, Gao Y, Lu S, Luo P, Mao X. Temperature-dependent mycotoxins production investigation in Alternaria infected cherry by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry. Int J Food Microbiol 2023; 388:110070. [PMID: 36610234 DOI: 10.1016/j.ijfoodmicro.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
For temperature-dependent Alternaria mycotoxins production analysis, cherry samples were inoculated with Alternaria sp. and incubated at two different temperatures (4 °C and 25 °C). Six Alternaria mycotoxins, including altenuene (ALT), alternariol monomethyl ether (AME), alternariol (AOH), altertoxin-I (ATX-I), tenuazonic acid (TeA), and tentoxin (TEN), in cherries were detected with integrated visible data-processing tools. Maximum concentration of these mycotoxins reached 71,862.2 μg/kg at 25 °C. Notably, considerable amount of TeA (290.4 μg/kg) was detected at 4 °C, which indicated that low temperature is not a safe storage condition for fruits. A total of 102 compounds were detected with a neutral loss of 162.0528 Da, and TeA-glucose was identified in this work. Based on MS/MS cosine similarity, products were verified and annotated with feature based molecular networking (FBMN) in global natural products social networking (GNPS). The results showed Alternaria mycotoxins in cherry samples were mainly demethylation, hydrogenation, and dehydration. This work revealed the production of Alternaria mycotoxins in cherries under different storage temperature, which will provide theoretical basis for the control of mycotoxin contamination in food commodities.
Collapse
Affiliation(s)
- Yanshen Li
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Ying Shao
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Ya'ning Zhu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Anqi Chen
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Jingyao Qu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Yonglin Gao
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Sunan Lu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Pengjie Luo
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, PR China
| | - Xin Mao
- Yantai University, Yantai, Shandong Province 264005, PR China.
| |
Collapse
|
4
|
Wang J, Huang Q, Guo W, Guo D, Han Z, Nie D. Fe 3O 4@COF(TAPT-DHTA) Nanocomposites as Magnetic Solid-Phase Extraction Adsorbents for Simultaneous Determination of 9 Mycotoxins in Fruits by UHPLC-MS/MS. Toxins (Basel) 2023; 15:toxins15020117. [PMID: 36828431 PMCID: PMC9966527 DOI: 10.3390/toxins15020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In this study, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed to simultaneously purify and enrich nine mycotoxins in fruits, with the magnetic covalent organic framework nanomaterial Fe3O4@COF(TAPT-DHTA) as an adsorbent. The Fe3O4@COF(TAPT-DHTA) was prepared by a simple template precipitation polymerization method, using Fe3O4 as magnetic core, and 1,3,5-tris-(4-aminophenyl) triazine (TAPT) and 2,5-dihydroxy terephthalaldehyde (DHTA) as two building units. Fe3O4@COF(TAPT-DHTA) could effectively capture the targeted mycotoxins by virtue of its abundant hydroxyl groups and aromatic rings. Several key parameters affecting the performance of the MSPE method were studied, including the adsorption solution, adsorption time, elution solvent, volume and time, and the amount of Fe3O4@COF(TAPT-DHTA) nanomaterial. Under optimized MSPE conditions, followed by analysis with UHPLC-MS/MS, a wide linear range (0.05-200 μg kg-1), low limits of detection (0.01-0.5 μg kg-1) and satisfactory recovery (74.25-111.75%) were achieved for the nine targeted mycotoxins. The established method was further successfully validated in different kinds of fruit samples.
Collapse
Affiliation(s)
- Jie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qingwen Huang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wenbo Guo
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dakai Guo
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dongxia Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: ; Tel.: +86-21-37196975
| |
Collapse
|
5
|
Pushparaj K, Meyyazhagan A, Pappuswamy M, Mousavi Khaneghah A, Liu W, Balasubramanian B. Occurrence, identification, and decontamination of potential mycotoxins in fruits and fruit by‐products. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore Tamil Nadu India
| | - Arun Meyyazhagan
- Department of Life Science CHRIST (Deemed to be University) Bengaluru Karnataka India
| | - Manikantan Pappuswamy
- Department of Life Science CHRIST (Deemed to be University) Bengaluru Karnataka India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute Warsaw Poland
| | - Wen‐Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang China
| | | |
Collapse
|
6
|
Meng J, Guo W, Zhao Z, Zhang Z, Nie D, Tangni EK, Han Z. Production of Alternaria Toxins in Yellow Peach ( Amygdalus persica) upon Artificial Inoculation with Alternaria alternate. Toxins (Basel) 2021; 13:656. [PMID: 34564660 PMCID: PMC8473313 DOI: 10.3390/toxins13090656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
The yellow peach (Amygdalus persica), an important fruit in China, is highly susceptible to infection by Alternaria sp., leading to potential health risks and economic losses. In the current study, firstly, yellow peaches were artificially inoculated with Alternariaalternate. Then, the fruits were stored at 4 °C and 28 °C to simulate the current storage conditions that consumers use, and the Alternaria toxins (ATs) contents from different parts of the fruits were analyzed via ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The results showed that the growth of A. alternate and the ATs production were dramatically affected by the storage temperature. At 28 °C, the fungi grew rapidly and the lesion diameter reached about 4.0 cm within 15 days of inoculation, while, at 4 °C, the fungal growth was noticeably inhibited, with no significant change in the lesion diameter. To our surprise, high contents of ATs were produced under both storage conditions even though the fungal growth was suppressed. With an increase in the incubation time, the amounts of ATs showed a steady tendency to increase in most cases. Remarkably, alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) were detected in the rotten tissue and also in the surrounding tissue, while a large amount of TeA could also be found in the healthy tissue. To the best of our knowledge, this is the first report regarding the production of ATs by the infection of Alternaria sp. in yellow peach fruits via artificial inoculation under regulated conditions, and, based on the evidence herein, it is recommended that ATs be included in monitoring and control programs of yellow peach management and food safety administration.
Collapse
Affiliation(s)
- Jiajia Meng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Wenbo Guo
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Zhiqi Zhang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Dongxia Nie
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | | | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| |
Collapse
|
7
|
Wang X, Han Y, Zhang L, Ge Z, Liu M, Zhao G, Zong W. Removal of Alternaria mycotoxins from aqueous solution by inactivated yeast powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5182-5190. [PMID: 32519761 DOI: 10.1002/jsfa.10567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Alternariol (AOH) and alternariol monomethyl ether (AME), produced by Alternaria spp., are the two mycotoxins with the highest outbreak rates in food systems. The purpose of this study was to investigate the removal of AOH and AME from aqueous solutions by inactivated yeast cells. The effects of strains, yeast powder amount, temperature, and pH were evaluated. The kinetics of AOH and AME adsorption on inactivated yeast cells was fitted with four models and a release assay was carried out. RESULTS All three tested yeasts could remove AOH and AME. GIM 2.119 was the most effective strain. The reduction rate of both AOH and AME could be as much as 100% with 40 g‧L-1 of yeast powder. For both mycotoxins, pH = 9 was the best environment for toxin removal. The pseudo-second-order kinetic model was the best model, with R2 ranging from 0.989 to 0.999. However, the R2 of the pseudo-first-order and Elovich models was also relatively high. Alternariol and AME could be partially eluted by methanol and acetonitrile. CONCLUSION The inactivated yeast cells could effectively remove AOH and AME. This was best fitted by the pseudo-second-order model. The release assay suggested that the adsorption of Alternaria mycotoxins was partially reversible. The results of this study provide a theoretical basis for the removal of Alternaria mycotoxins from food systems and are useful for the investigation of the mechanisms involved in mycotoxin adsorption by inactivated yeast cells. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Yike Han
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
| | - Lihua Zhang
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Zhenzhen Ge
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Mengpei Liu
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Guangyuan Zhao
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Wei Zong
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| |
Collapse
|
8
|
The antimycotic effect of ellagitannins from raspberry (Rubus idaeus L.) on Alternaria alternata ŁOCK 0409. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractAlternaria spp. fungi, characterized by a high tolerance to unfavorable environmental conditions, are one of the threats for foods of plant origin. The increasing incidence of diseases caused by a demanding lifestyle, and a higher social awareness of the role of a diet in maintaining health and good condition, results in the dynamically growing demand for natural protective measures that would be safe for consumers. Ellagitannins, i.e. a group of bio-active polyphenols, may constitute an alternative for chemical preservatives. Studies demonstrated that the raspberry (Rubus idaeus L.) ellagitannin formula limited the growth of Alternaria alternata 0409. The minimal inhibitory concentration (MIC) was determined (0.156 mg/ml), along with the minimal fungicidal concentration (MFC) (0.312 mg/ml). The fungistatic (FA) activity and the ratio of linear growth (T) were also determined for the ellagitannin formula. A strong antimycotic activity of ellagitannins was demonstrated at the formula level of 0.1 mg/ml. Unfortunately, the activity was not maintained over time and after 9 days it was only 16.0%. For the ellagitannin formula, concentrations of 0.312 mg/ml (MFC) and 0.5 mg/ml (below the MFC value), a complete arrest of growth of Alternaria alternata 0409 was observed, and it was maintained for 9 days. The antimycotic activity of the ellagitannin formula was also confirmed in food environment, with cottage cheese and cherry tomatoes used as the matrix. Results confirmed that ellagitannins from raspberry (Rubus idaeus L.) could be successfully used as a natural food preservative.
Collapse
|
9
|
Hussein MA, El-Said AHM, Yassein AS. Mycobiota associated with strawberry fruits, their mycotoxin potential and pectinase activity. Mycology 2020; 11:158-166. [PMID: 32923023 PMCID: PMC7448860 DOI: 10.1080/21501203.2020.1759719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Forty-three species and variety belonging to 15 genera were collected from 30 strawberry fruit samples on Glucose-Czapek’s agar medium. Among them, Aspergillus flavus, Aspergillus niger and Penicillium citrinum were the most frequent species recovered from 53.3%, 70.0% and 50.0% of the samples, respectively. According to the ITS rDNA sequence, we confirmed the morphological identification result. Moreover, aflatoxin biosynthesis gene omt-A was detected in A. flavus, while Aopks gene was found in A. niger. Interestingly, we could not detect any aflatoxin or ochratoxin biosynthesis genes in the P. citrinum strain. The concentration of detected aflatoxin was 3.5 ppb produced by A. flavus, while A. niger gave 4.1 ppb as ochratoxin. A. flavus was the most pectinase producer among the selected strains, and the highest amount was obtained at 30°C after 6 days of incubation with initial medium pH 8.
Collapse
Affiliation(s)
- Mohamed A Hussein
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Ahmed H M El-Said
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Asmaa S Yassein
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
10
|
Mycotoxin Dietary Exposure Assessment through Fruit Juices Consumption in Children and Adult Population. Toxins (Basel) 2019; 11:toxins11120684. [PMID: 31766649 PMCID: PMC6950291 DOI: 10.3390/toxins11120684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/31/2023] Open
Abstract
Consumption of fruit juice is becoming trendy for consumers seeking freshness and high vitamin and low caloric intake. Mycotoxigenic moulds may infect fruits during crop growth, harvest, and storage leading to mycotoxin production. Many mycotoxins are resistant to food processing, which make their presence in the final juice product very likely expected. In this way, the presence of 30 mycotoxins including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), alternariol (AOH), alternariol monomethyl ether (AME), Ochratoxin A (OTA), fumonisin B1 (FB1), fumonisin B2 (FB2), enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1), beauvericin (BEA), sterigmatocystin (STG), zearalenone (ZEA), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL), α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), diacetoxyscirpenol (DAS), nivalenol (NIV), fusarenon-X (FUS-X), neosolaniol (NEO), patulin (PAT), T-2 toxin and HT-2 toxin was evaluated in 80 juice samples collected from Valencia retail Market. An efficient Dispersive Liquid-Liquid Microextraction method (DLLME) was carried out before their trace level determination by chromatographic techniques coupled to tandem mass spectrometry. The results obtained revealed the presence of nine mycotoxins namely AOH, AME, PAT, OTA, AFB1, AFB2, AFG2, β-ZAL, and HT2 in the analyzed samples, with incidences ranging from 3 to 29% and mean contents between 0.14 and 59.52 µg/L. Considerable percentages of TDIs were reached by children when 200 mL was considered as daily fruit juice intake.
Collapse
|
11
|
Crudo F, Varga E, Aichinger G, Galaverna G, Marko D, Dall'Asta C, Dellafiora L. Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and other Xenobiotics of Food Origin: Current Scenario and Future Perspectives. Toxins (Basel) 2019; 11:E640. [PMID: 31684145 PMCID: PMC6891783 DOI: 10.3390/toxins11110640] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 01/24/2023] Open
Abstract
Mycotoxins are low-molecular weight compounds produced by diverse genera of molds that may contaminate food and feed threatening the health of humans and animals. Recent findings underline the importance of studying the combined occurrence of multiple mycotoxins and the relevance of assessing the toxicity their simultaneous exposure may cause in living organisms. In this context, for the first time, this work has critically reviewed the most relevant data concerning the occurrence and toxicity of mycotoxins produced by Alternaria spp., which are among the most important emerging risks to be assessed in food safety, alone or in combination with other mycotoxins and bioactive food constituents. According to the literature covered, multiple Alternaria mycotoxins may often occur simultaneously in contaminated food, along with several other mycotoxins and food bioactives inherently present in the studied matrices. Although the toxicity of combinations naturally found in food has been rarely assessed experimentally, the data collected so far, clearly point out that chemical mixtures may differ in their toxicity compared to the effect of toxins tested individually. The data presented here may provide a solid foothold to better support the risk assessment of Alternaria mycotoxins highlighting the actual role of chemical mixtures on influencing their toxicity.
Collapse
Affiliation(s)
- Francesco Crudo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Doris Marko
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
12
|
Puntscher H, Marko D, Warth B. The Fate of Altertoxin II During Tomato Processing Steps at a Laboratory Scale. Front Nutr 2019; 6:92. [PMID: 31263702 PMCID: PMC6584911 DOI: 10.3389/fnut.2019.00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Among various agricultural crops, tomatoes are particularly prone to Alternaria infections, which are frequently resulting in economic losses and mycotoxin contamination. To investigate potential health concerns implied for consumers, we simulated the storage and food processing steps of intact and blended tomatoes after addition of the highly genotoxic secondary metabolite altertoxin II. We observed a significant decrease in altertoxin II concentrations in samples stored at room temperature and particularly those undergoing thermal treatment by employing a validated LC-MS/MS method. When kept at room temperature, 87-90% of ATX-II was recovered after 1.5 h in raw tomato purees and purees heated before ATX-II addition, and 47-49% were recovered after 24 h. In intact tomato fruits the recovery was 23% after 1.5 h and <1% after 24 h. In heated purees (100°C for 30 min after ATX-II addition), also only minor concentrations accounting for 2-4% were determined. Moreover, the reduction of the compound's epoxide group to the alcohol, i.e., the formation of altertoxin I was demonstrated in intact tomato fruits (7-12%), suggesting enzymatic biotransformation of the xenobiotic by the plant's metabolism.
Collapse
Affiliation(s)
| | | | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Lafarga T, Colás-Medà P, Abadías M, Aguiló-Aguayo I, Bobo G, Viñas I. Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Development and Application of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Method to Quantitate Multi-Component Alternaria Toxins in Jujube. Toxins (Basel) 2018; 10:toxins10100382. [PMID: 30248926 PMCID: PMC6220753 DOI: 10.3390/toxins10100382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
A simple, rapid and efficient methodology was developed and validated for the analysis of four Alternaria toxins in jujube: Tenuazonic acid, alternariol, alternariol monomethyl ether, and tentoxin. Under the optimized extraction procedure, chromatographic conditions, and instrumental parameters, the four toxins were effectively extracted via a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, and quantified by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Matrix-matched calibrations ranging from 0.01 to 0.5 μg mL−1 were conducted for the quantification due to the matrix effect. A blank jujube sample was spiked at 40, 80 and 160 μg kg−1, obtaining recoveries in the range of 83.5–109.6%. Limits of detection and limits of quantification were in the range of 0.14–0.26 and 0.47–0.87 μg kg−1, respectively. Finally, the developed method was applied for the quantification of the four toxins in 14 jujube samples, including black spot-infected and uninfected samples. Results showed that the predominant toxin detected in all the samples was tenuazonic acid, the content of which was associated with the infection level; alternariol, alternariol monomethyl ether, and tentoxin were detected in all the infected samples and some of the uninfected samples with rather low contents.
Collapse
|
15
|
Development of an Indirect Competitive ELISA for Analysis of Alternariol in Bread and Bran Samples. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1126-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Juan C, Mañes J, Font G, Juan-García A. Determination of mycotoxins in fruit berry by-products using QuEChERS extraction method. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
|
18
|
Abstract
Alternariais one of the major mycotoxigenic fungal genera with more than 70 reported metabolites.Alternariamycotoxins showed notably toxicity, such as mutagenicity, carcinogenicity, induction of DNA strand break, sphingolipid metabolism disruption, or inhibition of enzymes activity and photophosphorylation. This review reports on the toxicity, stability, metabolism, current analytical methods, and prevalence ofAlternariamycotoxins in food and feed through the most recent published research. Half of the publications were focused on fruits, vegetables, and derived products—mainly tomato and apples—while cereals and cereal by-products represented 38%. The most studied compounds were alternariol, alternariol methyl ether, tentoxin, and tenuazonic acid, but altenuene, altertoxins (I, II, and III), and macrosporin have been gaining importance in recent years. Solid-liquid extraction (50%) with acetonitrile or ethyl acetate was the most common extraction methodology, followed by QuEChERS and dilution-direct injection (both 14%). High- and ultraperformance liquid chromatography coupled with tandem mass spectrometry was the predominant determination technique (80%). The highest levels of alternariol and alternariol methyl ether were found in lentils, oilseeds, tomatoes, carrots, juices, wines, and cereals. Tenuazonic acid highest levels were detected in cereals followed by beer, while alternariol, alternariol methyl ether, tenuazonic acid, and tentoxin were found in legumes, nuts, and oilseeds.
Collapse
|
19
|
|