1
|
Ye Y, Tang L, Wang JS, Tang L, Ning X, Sun J, Sheng L, Sun X. Unexpected antagonism of deoxynivalenol and enniatins in intestinal toxicity through the Ras/PI3K/AKT signaling pathway. Toxicology 2024; 508:153928. [PMID: 39153657 DOI: 10.1016/j.tox.2024.153928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Luyao Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xiao Ning
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Sulyok M, Suman M, Krska R. Quantification of 700 mycotoxins and other secondary metabolites of fungi and plants in grain products. NPJ Sci Food 2024; 8:49. [PMID: 39097644 PMCID: PMC11297916 DOI: 10.1038/s41538-024-00294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
This work reports on the validation of a liquid chromatography-tandem mass spectrometric method for the simultaneous quantification of more than 700 mycotoxins and other secondary fungal metabolites and plant toxins in pasta, biscuits, crackers and musli. The "dilute and shoot" approach was found to be fully applicable to these complex matrices, as only 7-14% of the analytes exhibited significant matrix effects while recoveries of the extraction were outside the target range of 70-120% for only 26 compounds. Data on repeatability (based on 7 brands per matrix) and on intermediate precision was compliant to the related < 20% criterion for 95-98% and 99% of all analytes, respectively. The limits of quantification were much lower than the related regulatory limits set for mycotoxins in cereal products. Application of the method to 157 samples from the European market revealed the presence of enniatins and deoxynivalenol in the majority of the samples. No regulatory limits were exceeded except the sum of ergot alkaloids being higher in a few samples than the 50-150 µg/kg to be implemented as of July 2024.
Collapse
Affiliation(s)
- Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
- FFoQSI GmbH, Technopark 1D, 3430, Tulln, Austria.
| | - Michele Suman
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122, Parma, Italy
- Department for Sustainable Food Process, Catholic University Sacred Heart, via Emilia Parmense, 84, 29122, Piacenza, Italy
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
- FFoQSI GmbH, Technopark 1D, 3430, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Kos J, Radić B, Lešić T, Anić M, Jovanov P, Šarić B, Pleadin J. Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review. Foods 2024; 13:1391. [PMID: 38731762 PMCID: PMC11083470 DOI: 10.3390/foods13091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from Serbia focus primarily on maize and milk and show a strong dependence of contamination on weather conditions. However, there is limited data on mycotoxins in cereals other than maize, as well as in other food categories. Conversely, Croatia has a broader spectrum of studies, with significant attention given to milk and maize, along with more research on other cereals, meat, and meat products compared to Serbia. Over the investigated 15-year period, both Serbia and Croatia have experienced notable shifts in climate, including fluctuations in temperature, precipitation, and humidity levels. These changes have significantly influenced agriculture, consequently affecting the occurrence of mycotoxins in various food products. The results summarized in this 15-year review indicate the urgent need for further research and action to address mycotoxins contamination in Serbian and Croatian food supply chains. This urgency is further emphasized by the changing climatic conditions and their potential to exacerbate public health and food safety risks associated with mycotoxins.
Collapse
Affiliation(s)
- Jovana Kos
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Radić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Tina Lešić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| | - Mislav Anić
- Croatian Meteorological and Hydrological Service, Ravnice 48, 10000 Zagreb, Croatia;
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Šarić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Jelka Pleadin
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| |
Collapse
|
4
|
Pochivalov A, Pavlova K, Garmonov S, Bulatov A. Behaviour of deep eutectic solvent based on terpenoid and long-chain alcohol during dispersive liquid-liquid microextraction: Determination of zearalenone in cereal samples. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Ji X, Xiao Y, Wang W, Lyu W, Wang X, Li Y, Deng T, Yang H. Mycotoxins in cereal-based infant foods marketed in China: Occurrence and risk assessment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
7
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
8
|
Biscuit Contaminants, Their Sources and Mitigation Strategies: A Review. Foods 2021; 10:foods10112751. [PMID: 34829032 PMCID: PMC8621915 DOI: 10.3390/foods10112751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
The scientific literature is rich in investigations on the presence of various contaminants in biscuits, and of articles aimed at proposing innovative solutions for their control and prevention. However, the relevant information remains fragmented. Therefore, the objective of this work was to review the current state of the scientific literature on the possible contaminants of biscuits, considering physical, chemical, and biological hazards, and making a critical analysis of the solutions to reduce such contaminations. The raw materials are primary contributors of a wide series of contaminants. The successive processing steps and machinery must be monitored as well, because if they cannot improve the initial safety condition, they could worsen it. The most effective mitigation strategies involve product reformulation, and the use of alternative baking technologies to minimize the thermal load. Low oxygen permeable packaging materials (avoiding direct contact with recycled ones), and reformulation are effective for limiting the increase of contaminations during biscuit storage. Continuous monitoring of raw materials, intermediates, finished products, and processing conditions are therefore essential not only to meet current regulatory restrictions but also to achieve the aim of banning dietary contaminants and coping with related diseases.
Collapse
|
9
|
|
10
|
Kowalska G, Kowalski R. Occurrence of mycotoxins in selected agricultural and commercial products available in eastern Poland. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The objective of this study was the estimation of the content of 13 mycotoxins (diacetoxyscirpenol, T-2 toxin, HT-2 toxin, nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, fusarenone X, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, ochratoxin A, and zearalenone) in various products from the eastern part of Poland. The content of mycotoxins in the analysed samples was assayed using the extraction method combined with HPLC-MS/MS analysis. We found mycotoxins in 25 of the 92 samples tested (27%). Contamination with mycotoxins was noted most frequently in samples of cereals – 56% – and also in samples of flour and cocoa, in which a content of mycotoxins was noted in 24 and 16% of the samples, respectively. The most frequently identified were the following – deoxynivalenol detected in 18 samples (72%), zearalenone detected in eight samples (32%), toxin HT-2 detected in four samples (16%), ochratoxin A identified in three samples (12%), and toxin T-2 detected in one sample (4%). In one analysed sample of mixed flour and in one analysed sample of wheat and rye flour, the maximum allowable concentration was exceeded in the case of two identified mycotoxins – deoxynivalenol (2,250 μg/kg) and ochratoxin A (15.6 and 17.1 μg/kg).
Collapse
Affiliation(s)
- Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin , 15 Akademicka Street , 20-950 Lublin , Poland
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin , 8 Skromna Street , 20-704 Lublin , Poland
| |
Collapse
|
11
|
Oueslati S, Berrada H, Juan-García A, Mañes J, Juan C. Multiple Mycotoxin Determination on Tunisian Cereals-Based Food and Evaluation of the Population Exposure. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01737-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
13
|
Guerrini A, Altafini A, Roncada P. Assessment of Ochratoxin A Exposure in Ornamental and Self-Consumption Backyard Chickens. Vet Sci 2020; 7:vetsci7010018. [PMID: 32046067 PMCID: PMC7157540 DOI: 10.3390/vetsci7010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that may be present in various food and feed of plant and animal origin, including chicken meat. In Italy, backyard poultry farming is rather widespread. Animals are raised for meat, eggs and for ornamental purpose, and they are often fed with home-made diets not subject to official controls. The purpose of this study was to evaluate exposure of ornamental and backyard chickens to OTA using biliary ochratoxin A as a biomarker. Therefore, bile samples, in addition to kidney, liver and muscle, were collected from 102 chickens reared in 16 farms located in 6 Italian regions. High-performance liquid chromatography method and fluorimetric detection (HPLC-FLD) analysis were carried out firstly on bile from all animals, and OTA was detected in 12 chickens (concentration range 3.83-170.42 µg/L). Subsequently, the kidneys of these chickens were also analysed, and the mycotoxin was not detected. The analytical detection limits (LODs) of OTA in bile and kidney were 2.1 µg/L and 0.1 µg/kg, respectively. In conclusion, these animals were exposed to OTA but their meat can be considered safe, given that this mycotoxin, if present, concentrates highest in kidneys. Biliary ochratoxin A confirms its use as a valid biomarker to assess exposure of poultry to OTA.
Collapse
|
14
|
Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr 2019; 60:1346-1374. [DOI: 10.1080/10408398.2019.1571479] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Kalagatur NK, Kamasani JR, Mudili V. Assessment of Detoxification Efficacy of Irradiation on Zearalenone Mycotoxin in Various Fruit Juices by Response Surface Methodology and Elucidation of Its in-vitro Toxicity. Front Microbiol 2018; 9:2937. [PMID: 30555450 PMCID: PMC6284055 DOI: 10.3389/fmicb.2018.02937] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/15/2018] [Indexed: 01/04/2023] Open
Abstract
Fruits are vital portion of healthy diet owed to rich source of vitamins, minerals, and dietary fibers, which are highly favorable in keeping individual fit. Unfortunately, these days, one-third of fruits were infested with fungi and their toxic metabolites called mycotoxins, which is most annoying and pose significant health risk. Therefore, there is a need to suggest appropriate mitigation strategies to overcome the mycotoxins contamination in fruits. In the present study, detoxification efficiency of irradiation on zearalenone (ZEA) mycotoxin was investigated in distilled water and fruit juices (orange, pineapple, and tomato) applying statistical program response surface methodology (RSM). The independent factors were distinct doses of irradiation and ZEA, and response factor was a percentage of ZEA reduction in content. A central composite design (CCD) consists of 13 experiments were planned applying software program Design expert with distinct doses of irradiation (up to 10 kGy) and ZEA (1-5 μg). The results revealed that independent factors had a positive significant effect on the response factor. The analysis of variance (ANOVA) was followed to fit a proper statistical model and suggested that quadratic model was appropriate. The optimized model concluded that doses of irradiation and ZEA were the determinant factors for detoxification of ZEA in fruit juices. Further, toxicological safety of irradiation mediated detoxified ZEA was assessed in the cell line model by determining the cell viability (MTT and live/dead cell assays), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), nuclear damage, and caspase-3 activity. The higher level of live cells and MMP, lower extent of intracellular ROS molecules and caspase-3, and intact nuclear material were noticed in cells treated with irradiation mediated detoxified ZEA related to non-detoxified ZEA. The results confirmed that toxicity of ZEA was decreased with irradiation treatment and detoxification of ZEA by irradiation is safe. The study concluded that irradiation could be a potential post-harvest food processing technique for detoxification of ZEA mycotoxin in fruit juices. However, irradiation of fruit juices with high dose of 10 kGy has minimally altered the quality of fruit juices.
Collapse
Affiliation(s)
- Naveen Kumar Kalagatur
- Toxicology and Immunology Division, DRDO-BU-Centre for Life Sciences, Bharathiar University, Coimbatore, India
| | - Jalarama Reddy Kamasani
- Freeze Drying and Processing Technology Division, Defence Food Research Laboratory, Mysore, India
| | - Venkataramana Mudili
- Toxicology and Immunology Division, DRDO-BU-Centre for Life Sciences, Bharathiar University, Coimbatore, India
| |
Collapse
|
16
|
Škrbić BD, Ji Y, Živančev JR, Jovanović GG, Jie Z. Mycotoxins, trace elements, and phthalates in marketed rice of different origin and exposure assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2017; 10:256-267. [PMID: 28618849 DOI: 10.1080/19393210.2017.1342701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to determine levels of 11 mycotoxins, 10 trace elements, and 6 phthalates in rice samples from Serbian and Chinese market. Mycotoxins were not detected in any of the analysed rice samples. Results revealed similar median levels for following elements: Mn, 17.5 and 15.7 mg kg-1; Fe, 2.47 and 2.12 mg kg-1; Cu, 1.95 and 1.59 mg kg-1 in marketed samples from Serbia and China, respectively. Median concentration of Ni in Serbian marketed samples was 1.9 times higher than in Chinese ones. The median levels (µg kg-1) of phthalates ranged from 1.2 (benzylbutyl phthalate [BBP]) - 566 (di(2-ethyl-hexyl) phthalate [DEHP]) and 1.7 (BBP) - 348 (DEHP) in Serbian and Chinese marketed samples, respectively. The results were used to assess daily exposure of Serbian and Chinese adult consumers. The calculated target hazard quotients indicated that the potential risk attributable to the analysed contaminants in rice samples should not be of concern neither for the Serbian nor the Chinese consumers.
Collapse
Affiliation(s)
- Biljana D Škrbić
- a Faculty of Technology, Centre of Excellence in Food Safety and Emerging Risks , University of Novi Sad , Novi Sad , Republic of Serbia
| | - Yaqin Ji
- b College of Environmental Science and Engineering , Nankai University , Tianjin , China
| | - Jelena R Živančev
- a Faculty of Technology, Centre of Excellence in Food Safety and Emerging Risks , University of Novi Sad , Novi Sad , Republic of Serbia
| | | | - Zhao Jie
- b College of Environmental Science and Engineering , Nankai University , Tianjin , China
| |
Collapse
|