1
|
Abdullatif HA, Abdelkawy M, Kamal M, Fahmy NM. Utilizing two different sustainable and green spectrophotometric approaches using derivative ratio spectra for the determination of a ternary severely overlapped mixture: application to veterinary formulation. BMC Chem 2024; 18:118. [PMID: 38926795 PMCID: PMC11209959 DOI: 10.1186/s13065-024-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Mathematical manipulation technique has proven to be a very powerful tool for efficient processing and handling of highly overlapped spectra. This work introduced two green and sustainable approaches for the successful recovery of the ternary mixture, Tylosin tartarate (TYL), Sulfadimdine (SLD), and Trimethoprim (TRI). The approaches were constructed using three different methods, derivative ratio spectrum zero-crossing method (DRSZ), double divisor ratio spectra derivative method (DDRD), and factorized derivative ratio method coupled with spectrum subtraction (FDRM-SS). The two approaches succeeded in recovering the three drugs (Linearity range achieved were 0.5-5 µg/mL for TYL, 0.3-1.3 µg/mL for SLD, and 0.3-5 µg/mL for TRI), giving convenient standard deviations and satisfactory recovery percentages. The recommended methods have been verified in accordance with (ICH) guidelines. When the results were statistically compared to the official methods, no significant difference was found. Both AGREE-Analytical GREEnness Metric Approach and Software, and White Analytical Chemistry (WAC) RGB model gave scores of 0.93 and 97.2%, respectively, which proved that the approaches were eco-friendly and abiding by the sustainability principles.
Collapse
Affiliation(s)
- Hind A Abdullatif
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt.
| | - Mohammed Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Maha Kamal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Nesma M Fahmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
2
|
Patyra E, Kwiatek K. Simultaneous determination of sulfonamides, trimethoprim, amoxicillin and tylosin in medicated feed by high performance liquid chromatography with mass spectrometry. J Vet Res 2024; 68:129-136. [PMID: 38525232 PMCID: PMC10960254 DOI: 10.2478/jvetres-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The article presents a rapid and simple analytical procedure for determination of four sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine and sulfamethoxazole), trimethoprim, tylosin and amoxicillin in animal medicated feed. Material and Methods Eighteen medicated feed samples were analysed for active substances. The analytical protocol used a mixture of acetonitrile and 0.05 M phosphoric buffer, pH 4.5 for the extraction of seven antibacterial substances. After extraction, the samples were diluted in Milli-Q water and analysed by liquid chromatography with mass spectrometry. The developed procedure was subjected to validation in terms of linearity, selectivity, limits of quantification and determination, repeatability, reproducibility and uncertainty. Results The validation of the method was carried out in accordance with the criteria set out in Commission Implementing Regulation (EU) 2021/808 and ICH guidelines. This method provided average recoveries of 90.8 to 104.5% with coefficients of variation for repeatability and reproducibility in the ranges of 3.2-6.9% and 5.2-8.3%, respectively for all analysed antibacterial substances. The limit of detection and limit of quantification for all seven analytes ranged from 5.4 mg/kg to 48.3 mg/kg and from 10.4 mg/kg to 119.3 mg/kg, respectively. The uncertainty of the method depending on the compound varied from 14.0% to 24.0%. The validated method was successfully applied to the 18 medicated feeds. Conclusion The developed method can be successfully used to routinely control the content and homogeneity of seven antibacterial substances in medicated feed.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene and Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene and Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
3
|
Yang Q, Zhang X, Wang Q, Zhong Y, Liu W. UPLC-MS/MS Method for Simultaneous Determination of Valnemulin and Its Metabolites in Crucian Carp: In Vivo Metabolism and Tissue Distribution Analyses. Molecules 2023; 28:5430. [PMID: 37513305 PMCID: PMC10383100 DOI: 10.3390/molecules28145430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Valnemulin (VML) is a semi-synthetic pleuromutilin derivative widely used to treat animal bacterial diseases. However, no study has comprehensively evaluated VML metabolism in aquatic animals, including crucian carp. This study aimed to investigate VML metabolism in crucian carp. VML metabolites in crucian carp were quantified via intraperitoneal injection and analyzed via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Three VML metabolites were detected in crucian carp via ultra-performance liquid chromatography-tandem quadrupole and time-of-flight mass spectrometry (UPLC-Q-TOF/MS) structural analysis. The enrichment and metabolism rules of the metabolites were summarized based on tissue distribution and concentration changes of the three metabolites. The metabolites were mainly found in the liver at 0.1 h after VML injection. The levels of the metabolites were abundant in the bile from 4 h to 12 h and in the skin after 72 h. The levels of the metabolites in the bile first increased, then decreased. The metabolism in the liver was completed at 72 h. The metabolites were detected in the skin following a 72 h period, which increased with time.
Collapse
Affiliation(s)
- Qiyu Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaojun Zhang
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Qianfeng Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yaqian Zhong
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Wenjing Liu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
4
|
Gebreyohannes BE, Dube S, Nindi MM. Simultaneous Determination of Multiple Contaminants in Chicken Liver Using Dispersive Liquid-Liquid Microextraction (DLLME) Detected by LC-HRMS/MS. Foods 2023; 12:2594. [PMID: 37444332 DOI: 10.3390/foods12132594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Simultaneous determination of a mixture of food contaminants, including pesticides, sulphonamides, fluoroquinolones, anthelmintics, and aflatoxin B1, in solid biological samples (chicken liver) by dispersive liquid-liquid microextraction/liquid chromatography-high resolution mass spectrometry (DLLME/LC-HRMS) is presented. Previous work focused on the application of DLLME to single-class contaminants. In this work, the DLLME extraction method has been extended to complex multiresidues in the biological matrix. The first part of this study was the selection of an appropriate solvent that enabled the dissolution of analytes from the chicken livers. The matrix-matched calibration curves showed good linearity in the range 0.5-50.0 µg kg-1 for aflatoxin B1 and 50-500 µg kg-1 for pesticides, fluoroquinolones, sulphonamides, and anthelmintics, with a coefficient of determination (R2) values of 0.9916-0.9967. The mean recoveries were in the range of 80.4-96.3%, and the relative standard deviation (RSD) values were in the range of 1.53-8.98%. The limit of detection (LOD) and the limit of quantification (LOQ) values were 0.03 µg kg-1 and 0.09 µg kg-1, respectively, for aflatoxin B1, and for pesticides, fluoroquinolones, sulphonamides, and anthelmintics, they were in the range of 0.011-1.197 µg kg-1 and 0.150-2.579 µg kg-1, respectively. The developed method was compared with the standard solid phase extraction (SPE) method, and there was no significant difference between the two methods.
Collapse
Affiliation(s)
- Belete Eshetu Gebreyohannes
- Department of Chemistry, The Science Campus, College of Science Engineering and Technology, University of South Africa, Corner of Christiaan de Wet Road & Pioneer Avenue, Florida 1709, South Africa
| | - Simiso Dube
- Department of Chemistry, The Science Campus, College of Science Engineering and Technology, University of South Africa, Corner of Christiaan de Wet Road & Pioneer Avenue, Florida 1709, South Africa
| | - Mathew Muzi Nindi
- Institute for Nanotechnology and Water Sustainability, The Science Campus, College of Science Engineering and Technology, University of South Africa, Corner of Christiaan de Wet Road & Pioneer Avenue, Florida 1709, South Africa
| |
Collapse
|
5
|
Lee EB, Sayem SAJ, Lee GY, Kim TW, Hossain MA, Park SC. Assessment of Plasma Tylosin Concentrations: A Comparative Study of Immunoassay, Microbiological Assay, and Liquid Chromatography/Mass Spectrometry. Antibiotics (Basel) 2023; 12:1023. [PMID: 37370342 DOI: 10.3390/antibiotics12061023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Employing affordable and uncomplicated sample preparation techniques to recommend the most efficient antibacterial therapy could help reduce antibiotic-resistant bacteria. This study evaluated the suitability of immunoassays and microbiological assays as alternatives for liquid chromatography/mass spectrometry (LC/MS) in determining plasma tylosin concentrations after intramuscular administration at a dose of 20 mg/kg to both healthy and diseased pigs in clinical veterinary practice. The diseased pigs were confirmed using the target genes Actinobacillus pleuropneumoniae (apxIVA) and Pasteurella multocida (kmt1). The methods showed good linearity, precision, and accuracy. In both healthy and diseased pigs, a significant correlation was observed between LC/MS and the microbiological assay (Pearson correlation coefficient: 0.930, p < 0.001 vs. Pearson correlation coefficient: 0.950, p < 0.001) and between LC/MS and the enzyme-linked immunosorbent assay (ELISA) (Pearson correlation coefficient: 0.933; p < 0.001 vs. Pearson correlation coefficient: 0.976, p < 0.001). A strong correlation was observed between the microbiological assay and the ELISA in both healthy and diseased pigs (Pearson correlation coefficient: 0.911; p < 0.001 vs. Pearson correlation coefficient: 0.908, p < 0.001). A Bland-Altman analysis revealed good agreement between the methods, i.e., 95% of the differences were within the limits of agreement. Therefore, the microbiological assay and the ELISA, which demonstrated sufficient precision and accuracy, can be viable alternatives to LC/MS when it is unavailable.
Collapse
Affiliation(s)
- Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ga-Yeong Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Md Akil Hossain
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S., Chicago, IL 60612, USA
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Zheng X, Yang L, Sun Q, Zhang L, Le T. Development and Validation of Aptasensor Based on MnO 2 for the Detection of Sulfadiazine Residues. BIOSENSORS 2023; 13:613. [PMID: 37366978 DOI: 10.3390/bios13060613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
The monitoring of sulfadiazine (SDZ) is of great significance for food safety, environmental protection, and human health. In this study, a fluorescent aptasensor based on MnO2 and FAM-labeled SDZ aptamer (FAM-SDZ30-1) was developed for the sensitive and selective detection of SDZ in food and environmental samples. MnO2 nanosheets adsorbed rapidly to the aptamer through its electrostatic interaction with the base, providing the basis for an ultrasensitive SDZ detection. Molecular dynamics was used to explain the combination of SMZ1S and SMZ. This fluorescent aptasensor exhibited high sensitivity and selectivity with a limit of detection of 3.25 ng/mL and a linear range of 5-40 ng/mL. The recoveries ranged from 87.19% to 109.26% and the coefficients of variation ranged from 3.13% to 13.14%. In addition, the results of the aptasensor showed an excellent correlation with high-performance liquid chromatography (HPLC). Therefore, this aptasensor based on MnO2 is a potentially useful methodology for highly sensitive and selective detection of SDZ in foods and environments.
Collapse
Affiliation(s)
- Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lulan Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lei Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
7
|
Analysis of Transfer of Tiamulin to Animal Tissue after Oral Administration: An Important Factor for Ensuring Food Safety and Environmental Protection. Pharmaceuticals (Basel) 2023; 16:ph16030387. [PMID: 36986486 PMCID: PMC10059203 DOI: 10.3390/ph16030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The administration of veterinary medicinal products containing tiamulin hydrogen fumarate (THF) leads to the appearance of the following residues in animal tissues: THF and metabolites that can be hydrolyzed to 8-α-hydroxymutilin. The marker residue for tiamulin, according to Regulation EEC 2377/90, is the sum of the metabolites that can be hydrolyzed to 8-α-hydroxymutilin. The main aim of this study was to analyze the depletion of tiamulin residues and metabolites that can be hydrolyzed to 8-α-hydroxymulinin by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in pig, rabbit and bird tissues after tiamulin administration and to determine minimum withdrawal times for products of animal origin intended for human consumption. Tiamulin was administered orally as follows: 12,000 µg/kg body weight/day for 7 days to pigs and rabbits and 20,000 µg tiamulin/kg body weight/day for 7 days to broiler chickens and turkeys. The values found for tiamulin marker residues were 3 times higher in liver than in muscle in pigs, 6 times in rabbits and 8–10 times in birds. The content of tiamulin residues in eggs from laying hens was below 1000 µg/kg at all times of analysis. The minimum withdrawal times for animal products intended for human consumption, resulting from this study, are 5 days for pigs, rabbits and turkeys, 3 days for broiler chickens and 0 days for eggs.
Collapse
|
8
|
A review of green solvent extraction techniques and their use in antibiotic residue analysis. J Pharm Biomed Anal 2021; 209:114487. [PMID: 34864593 DOI: 10.1016/j.jpba.2021.114487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Antibiotic residues are being continuously recognized in the aquatic environment and in food. Though the concentration of antibiotic residues is typically low, adverse effects on the environment and human health have been observed. Hence, an efficient method to determine numerous antibiotic residues should be simple, inexpensive, selective, with high throughput and with low detection limits. Liquid-based extractions have been exceedingly used for clean-up and preconcentration of antibiotics prior to chromatographic analysis. In order to make methods more green and environmentally sustainable, conventional hazardous organic solvents can be replaced with green solvents. This review presents sampling strategies as well as comprehensive and up-to-date methods for chemical analysis of antibiotic residues in different sample matrices. Particularly, solvent-based sample preparation techniques using green solvents are discussed along with applications in antibiotic residue analysis.
Collapse
|
9
|
Saito-Shida S, Kashiwabara N, Nemoto S, Akiyama H. Determination of 8α-hydroxymutilin as a Marker Residue for Tiamulin in Swine Tissue by Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01950-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Swain O'Fallon E, McCue P, Rao S, Gustafson DL. Pharmacokinetics of a sulfadiazine and trimethoprim suspension in neonatal foals. J Vet Pharmacol Ther 2020; 44:552-559. [PMID: 33289123 DOI: 10.1111/jvp.12930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Abstract
There is limited investigation of neonatal foal pharmacokinetic parameters for the antimicrobial combination of sulfadiazine (SDZ) and trimethoprim (TMP). Neonatal pharmacokinetic investigation of the sulfadiazine-trimethoprim combination is required to ensure safe and effective utilization in this population. The purpose of this study was to determine the pharmacokinetics of sulfadiazine-trimethoprim in five healthy neonatal foals with oral administration at 24 mg/kg every 12 hr (hrs) for 10 days. Blood samples were collected at serial time points at approximately 72 hr of age (steady-state) and at days 5 and 10 to monitor the influence of age within the neonatal period. Pharmacokinetic parameters were determined using a one-compartment model analysis, and mean ± SD was calculated. Cmax was 37.8 ± 13.4 μg/ml (SDZ) and 1.92 ± 0.25 μg/ml (TMP). Tmax was 1.4 ± 0.6 hr (SDZ) and 1.4 ± 0.4 hr (TMP). Cmin for SDZ and TMP was 16.84 ± 8.46 μg/ml and 0.46 ± 0.24 μg/ml, respectively. Elimination half-life was 10.8 ± 6.1 hr (SDZ) and 6.5 ± 2 hr (TMP). AUC0 → ∞ was 667 ± 424 μg × hr/ml (SDZ) and 21.1 ± 5.3 μg × hr/ml (TMP). Foals remained healthy, and the plasma concentration of sulfadiazine-trimethoprim reached levels above MIC(90) for Streptococcus equi ssp. (SDZ/TMP): 9.5/0.5 μg/ml).
Collapse
Affiliation(s)
- Elsbeth Swain O'Fallon
- Department of Clinical Sciences, James L. Voss Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
| | - Patrick McCue
- Department of Clinical Sciences, James L. Voss Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
| | - Sangeeta Rao
- Department of Clinical Sciences, James L. Voss Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
| | - Daniel L Gustafson
- Department of Clinical Sciences, James L. Voss Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Lai X, Lv X, Zhang G, Xiong Z, Lai W, Peng J. Highly Specific Anti-tylosin Monoclonal Antibody and Its Application in the Quantum Dot Bead-Based Immunochromatographic Assay. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01846-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Na G, Hu X, Sun Y, Kwee S, Xing G, Xing Y, Zhang G. A highly sensitive monoclonal antibody-based paper sensor for simultaneously detecting valnemulin and tiamulin in porcine liver. J Food Sci 2020; 85:1681-1688. [PMID: 32418205 DOI: 10.1111/1750-3841.15136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
Valnemulin (VAL) and tiamulin (TIA) are pleuromutilin antibiotics used primarily for treating bacterial infections in swine or other food animals. Furthermore, VAL and TIA are also employed as feed additives to promote animal growth. However, the illegal use of VAL and TIA could cause a series of hazards to consumers. Here, VAL was designed to be conjugated with bovine serum protein to prepare immunogen. A highly sensitive monoclonal antibody that recognized both VAL and TIA has been successfully produced. Moreover, an immunochromatographic strip assay for rapidly screening VAL and TIA in porcine liver was established with visual detection limits (cutoff values) of 50 and 25 ng/g, respectively. The IC50 values calculated from the equation of the standard curve were 6.06 and 3.45 ng/g and the limits of detection were 0.96 and 0.29 ng/g for VAL and TIA. According to the recovery experiment results, the test strip exhibited acceptable accuracy and precision. Generally, the proposed strip provided a practical tool for the detection of VAL and TIA. PRACTICAL APPLICATION: We produced a highly sensitive monoclonal antibody and developed an immunoassay strip for simultaneously monitoring TIA and VAL. Additionally it was preliminarily confirmed that the rapid detection tool was suitable for screening TIA and VAL in porcine liver.
Collapse
Affiliation(s)
- Guanqiong Na
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Sharon Kwee
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, U.S.A
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
13
|
Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Mikrochim Acta 2020; 187:274. [DOI: 10.1007/s00604-020-04244-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
|
14
|
Lorenzetti AS, Lista AG, Domini CE. Reverse ultrasound-assisted emulsification-microextraction of macrolides from chicken fat followed by electrophoretic determination. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Shi T, Tan L, Fu H, Wang J. Application of molecular imprinting polymer anchored on CdTe quantum dots for the detection of sulfadiazine in seawater. MARINE POLLUTION BULLETIN 2019; 146:591-597. [PMID: 31426197 DOI: 10.1016/j.marpolbul.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
A molecularly imprinted polymer (MIP) anchored on the surface of CdTe quantum dots (QDs) was fabricated and used as a fluorescent probe for sulfadiazine (SDZ) detection in seawater. CdTe QDs was used as photoluminescent material, SDZ as the template, 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethyl orthosilicate (TEOS) as the cross-linking agent. Characterizations of MIP-QDs were analyzed by Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM) and Scanning electron microscope (SEM). The conditions were optimized for the detection of MIP-QDs to SDZ. The mechanism of fluorescence quenching was studied by UV-Vis absorption spectroscopy and fluorescence spectroscopy. Under optimal conditions, the fluorescence intensity of MIP-QDs decreased linearly between 4- and 20 μM SDZ with a good correlation coefficient of 0.995. The limit of detection is 0.67 μM and the recovery is between 91.8 and 109.4% with RSD lower than 3.9%. These results indicated that MIP-QDs for SDZ detection in seawater was developed successfully.
Collapse
Affiliation(s)
- Tian Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hailu Fu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
16
|
Cortés-Herrera C, Artavia G, Leiva A, Granados-Chinchilla F. Liquid Chromatography Analysis of Common Nutritional Components, in Feed and Food. Foods 2018; 8:E1. [PMID: 30577557 PMCID: PMC6352167 DOI: 10.3390/foods8010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Food and feed laboratories share several similarities when facing the implementation of liquid-chromatographic analysis. Using the experience acquired over the years, through application chemistry in food and feed research, selected analytes of relevance for both areas were discussed. This review focused on the common obstacles and peculiarities that each analyte offers (during the sample treatment or the chromatographic separation) throughout the implementation of said methods. A brief description of the techniques which we considered to be more pertinent, commonly used to assay such analytes is provided, including approaches using commonly available detectors (especially in starter labs) as well as mass detection. This manuscript consists of three sections: feed analysis (as the start of the food chain); food destined for human consumption determinations (the end of the food chain); and finally, assays shared by either matrices or laboratories. Analytes discussed consist of both those considered undesirable substances, contaminants, additives, and those related to nutritional quality. Our review is comprised of the examination of polyphenols, capsaicinoids, theobromine and caffeine, cholesterol, mycotoxins, antibiotics, amino acids, triphenylmethane dyes, nitrates/nitrites, ethanol soluble carbohydrates/sugars, organic acids, carotenoids, hydro and liposoluble vitamins. All analytes are currently assayed in our laboratories.
Collapse
Affiliation(s)
- Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Astrid Leiva
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| |
Collapse
|