1
|
Bowles EF, Burleigh M, Mira A, Van Breda SGJ, Weitzberg E, Rosier BT. Nitrate: "the source makes the poison". Crit Rev Food Sci Nutr 2024:1-27. [PMID: 39213282 DOI: 10.1080/10408398.2024.2395488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in the role of dietary nitrate in human health and disease has grown exponentially in recent years. However, consensus is yet to be reached as to whether consuming nitrate from various food sources is beneficial or harmful to health. Global authorities continue to recommend an acceptable daily intake (ADI) of nitrate of 3.7 mg/kg-bw/day due to concerns over its carcinogenicity. This is despite evidence showing that nitrate consumption from vegetable sources, exceeding the ADI, is associated with decreased cancer prevalence and improvements in cardiovascular, oral, metabolic and neurocognitive health. This review examines the paradox between dietary nitrate and health and disease and highlights the key role of the dietary source and food matrix in moderating this interaction. We present mechanistic and epidemiological evidence to support the notion that consuming vegetable-derived nitrate promotes a beneficial increase in nitric oxide generation and limits toxic N-nitroso compound formation seen with high intakes of nitrate added during food processing or present in contaminated water. We demonstrate the need for a more pragmatic approach to nitrate-related nutritional research and guidelines. Ultimately, we provide an overview of our knowledge in this field to facilitate the various therapeutic applications of dietary nitrate, whilst maintaining population safety.
Collapse
Affiliation(s)
- E F Bowles
- Department of Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - M Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - A Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - S G J Van Breda
- Department of Toxicogenomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
2
|
Fan Q, Xia C, Zeng X, Wu Z, Guo Y, Du Q, Tu M, Liu X, Pan D. Effect and potential mechanism of nitrite reductase B on nitrite degradation by Limosilactobacillus fermentum RC4. Curr Res Food Sci 2024; 8:100749. [PMID: 38694558 PMCID: PMC11061237 DOI: 10.1016/j.crfs.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
Nitrite has the potential risk of hypoxic poisoning or cancer in pickled food. In our previous study, Limosilactobacillus fermentum (L. fermentum) RC4 is effective in nitrite degradation by producing nitrite reductase B (NirB). To investigate the detailed mechanism from the genome, response, and regulation of NirB, the whole-genome sequence of L. fermentum RC4 was analyzed, the L. fermentum-EGFP-nirB with enhanced green fluorescent protein (EGFP) labeled the nitrite reductase large subunit nirB, and the recombined L. fermentum-NirB with overexpression NirB strain was conducted. The key genes within the dominant metabolism pathways may be involved in stress tolerance to regulate the degrading process. The green fluorescence density of EGFP indicated that NirB activity has a threshold and peaked under 300 mg/L nitrite concentration. NirB overexpressed in L. fermentum RC4 boosted the enzyme activity by 39.6% and the degradation rate by 10.5%, when fermented in 300 mg/L for 40 h, compared to the control group. RNA-seq detected 248 differential genes mainly enriched in carbohydrate, amino acid, and energy metabolism. The ackA gene for pyruvate metabolism and the mtnN gene for cysteine metabolism were up-regulated. NirB regulates these genes to produce acid and improve stress resistance for L. fermentum RC4 to accelerate nitrite degradation.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xinanbei Liu
- College of Resources and Environment, Baoshan University, Baoshan, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Czech-Załubska K, Klich D, Jackowska-Tracz A, Didkowska A, Zarzyńska J, Anusz K. Assessment of dietary exposure to food additives used in Polish processed meat products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1389-1411. [PMID: 37733006 DOI: 10.1080/19440049.2023.2258994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Dietary exposure assessments have been performed for nitrites, phosphates, erythorbic acid, and sodium erythorbate in processed meat in Poland. The exposure has been estimated based on the maximum level of use of additives contained in Regulation - tier 2 and the concentration of additives in processed meat - tier 3, additionally for nitrites. Daily intake was estimated using 24-h recall, repeated three times. Exposure analyses were correlated with the frequency of occurrence of food additives based on label analysis (tiers 2a and 3a). The mean nitrite intake from processed meat at tier 2 was 0.1 mg/kg bw (143% ADI), 0.08 mg/kg bw (118% - ADI) at tier 2a, 0.03 mg/kg bw (43% - ADI) at tier 3, and 0.026 mg/kg bw (37% - ADI) at tier 3a. The mean intakes of phosphate and erythorbic acid/sodium erythorbate from processed meat were 3.26 and 0.54 mg/kg bw (8.2% and 9% - ADI), respectively at tier 2. None of the respondents exceeded the ADIs for phosphates or erythorbic acid/sodium erythorbate. In contrast, nitrite consumption is of great concern because of significant ADI exceedances, particularly among young children.
Collapse
Affiliation(s)
- Katarzyna Czech-Załubska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Daniel Klich
- Institute of Animal Sciences, University of Life Sciences - SGGW, Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Joanna Zarzyńska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|
4
|
Kao CC, Lin JY. Culture condition optimization of naturally lacto-fermented cucumbers based on changes in detrimental and functional ingredients. Food Chem X 2023; 19:100839. [PMID: 37780341 PMCID: PMC10534157 DOI: 10.1016/j.fochx.2023.100839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 08/12/2023] [Indexed: 10/03/2023] Open
Abstract
A two-step trial was used to optimize the culture condition of naturally lacto-fermented cucumbers. In the first trial, changes in pH values and total biogenic amines were measured to optimize the pickling juice formula. A 15% crystal sugar solution with low-salt brine at 4 °C was proved to be the best formula. In the second trial, pH values, organic acids, total phenolics, flavonoids, saponins and free amino acids, as well as biogenic amines and nitrites under the optimal pickling formula were measured. The optimal fermentation day was suggested at around 8 days. During the cucumber's fermentation process, the pH value was quickly lowered to <4.6. Meanwhile, the functional ingredients increased significantly. In contrast, total biogenic amines and nitrites did not exceed the risk limit, evidencing the safety and functional characteristics for the naturally lacto-fermented cucumbers. The two-step trial has evidenced the possibility to develop desirable lacto-fermented cucumbers.
Collapse
Affiliation(s)
- Chien-Chia Kao
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung City 40227, Taiwan
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung City 40227, Taiwan
| |
Collapse
|
5
|
Homem RV, Arisseto-Bragotto AP, Rodrigues E, Cladera-Olivera F. Theoretical estimation of nitrates and nitrites intake from food additives by the Brazilian population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1147-1163. [PMID: 37549245 DOI: 10.1080/19440049.2023.2240439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
Sodium and potassium nitrates and nitrites are preservatives widely used in meat products and some cheese. They are important toxicologically but there is a lack of data on the exposure of the Brazilian population to these additives. This study aimed to verify the frequency of the use of nitrates and nitrites in processed foods in Brazil and to estimate their theoretical intake by the Brazilian population. A database was built of supermarket products containing nitrates, nitrites, and antioxidants. The Theoretical Maximum Daily Intake (TMDI) and TMDI balanced by the prevalence of food consumption (TMDI BPFC) were determined using consumption data from the Household Budget Surveys (2008/2009 and 2017/2018). The TMDI for nitrates and nitrites was lower than the Acceptable Daily Intake (ADI) for all population groups. Considering the prevalence of food consumption (consumers only), the TMDI BPFC values were lower than the ADI for nitrates (between 0.4 and 0.9 times the ADI) but very high values were obtained for nitrites (between 10 and 24 times the ADI). Our results suggest that the Brazilian population, especially some population groups, may be consuming unsafe amounts of nitrite. As a consequence, their health may be at risk.
Collapse
Affiliation(s)
- Raísa Vieira Homem
- Department of Food Science, Federal University of Rio Grande do Sul - Institute of Food Science and Technology, Porto Alegre, RS, Brazil
| | - Adriana Pavesi Arisseto-Bragotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, FEA UNICAMP Rua Monteiro Lobato, State University of Campinas, Campinas, SP, Brazil
| | - Eliseu Rodrigues
- Department of Food Science, Federal University of Rio Grande do Sul - Institute of Food Science and Technology, Porto Alegre, RS, Brazil
| | - Florencia Cladera-Olivera
- Department of Food Science, Federal University of Rio Grande do Sul - Institute of Food Science and Technology, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Kaur R, Kaur L, Gupta TB, Bronlund J. Mānuka Oil vs. Rosemary Oil: Antimicrobial Efficacies in Wagyu and Commercial Beef against Selected Pathogenic Microbes. Foods 2023; 12:foods12061333. [PMID: 36981259 PMCID: PMC10048739 DOI: 10.3390/foods12061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Essential oils possessing antimicrobial characteristics have acquired considerable interest as an alternative to chemical preservatives in food products. This research hypothesizes that mānuka (MO) and kānuka (KO) oils may possess antimicrobial characteristics and have the potential to be used as natural preservatives for food applications. Initial experimentation was conducted to characterize MOs (with 5, 25, and 40% triketone contents), rosemary oil (RO) along with kanuka oil (KO) for their antibacterial efficacy against selected Gram-negative (Salmonella spp. and Escherichia coli), and Gram-positive (Listeria monocytogenes and Staphylococcus aureus) bacteria through disc diffusion and broth dilution assays. All MOs showed a higher antimicrobial effect against L. monocytogenes and S. aureus with a minimum inhibitory concentration below 0.04%, compared with KO (0.63%) and RO (2.5%). In chemical composition, α-pinene in KO, 1, 8 cineole in RO, calamenene, and leptospermone in MO were the major compounds, confirmed through Gas-chromatography-mass spectrometry analysis. Further, the antimicrobial effect of MO and RO in vacuum-packed beef pastes prepared from New Zealand commercial breed (3% fat) and wagyu (12% fat) beef tenderloins during 16 days of refrigerated storage was compared with sodium nitrate (SN) and control (without added oil). In both meat types, compared with the SN-treated and control samples, lower growth of L. monocytogenes and S. aureus in MO- and RO- treated samples was observed. However, for Salmonella and E. coli, RO treatment inhibited microbial growth most effectively. The results suggest the potential use of MO as a partial replacement for synthetic preservatives like sodium nitrate in meats, especially against L. monocytogenes and S. aureus.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Tanushree B Gupta
- Food System Integrity Team, Hopkirk Research Institute, AgResearch Ltd., Palmerston North 4472, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Jia J, Peng H, Qian Q, Pan Z, Liu D. Nitrite and nitrate in meat processing: Functions and alternatives. Curr Res Food Sci 2023; 6:100470. [PMID: 36891544 PMCID: PMC9986499 DOI: 10.1016/j.crfs.2023.100470] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Meat and meat products are important foods in the human diet, but there are concerns about their quality and safety. The discovery of carcinogenic and genotoxic N-nitroso compounds (NOCs) in processed meat products has had serious negative impacts on the meat industry. In order to clarify the relationship between the use of nitrite or nitrate and the safety of meat or meat products, we reviewed NOCs in meat and meat products, the origin and safety implications of NOCs, effects of nitrite and nitrate on meat quality, national regulations, recent publications concerning the using of nitrite and nitrate in meat or meat products, and reduction methods. By comparing and analyzing references, (1) we found antioxidant, flavor improvement and shelf-life extension effects were recently proposed functions of nitrite and nitrate on meat quality, (2) the multiple functions of nitrite and nitrate in meat and meat products couldn't be fully replaced by other food additives at present, (3) we observed that the residual nitrite in raw meat and fried meat products was not well monitored, (4) alternative additives seem to be the most successful methods of replacing nitrite in meat processing, currently. The health risks of consuming processed meat products should be further evaluated, and more effective methods or additives for replacing nitrite or nitrate are needed.
Collapse
Affiliation(s)
- Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Yingjie Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Jianlin Jia
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Haichuan Peng
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Qin Qian
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
8
|
Kotopoulou S, Zampelas A, Magriplis E. Risk Assessment of Nitrite and Nitrate Intake from Processed Meat Products: Results from the Hellenic National Nutrition and Health Survey (HNNHS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12800. [PMID: 36232098 PMCID: PMC9565037 DOI: 10.3390/ijerph191912800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 05/31/2023]
Abstract
Long-term exposure to a high nitrite and nitrate intake through processed meat is of concern, as it has been related to adverse health effects. Individual consumption data from 2152 participants (46.7% males) in the Hellenic National Nutrition and Health Survey (HNNHS) were linked with current Maximum Permitted Levels (MPLs) to calculate exposure to nitrite and nitrate from processed meat products (assessed as nitrite equivalent), evaluate potential risk and identify the major contributors. Processed meat intakes were determined by combining data from 24 h recalls and frequency of consumption reported in Food Propensity Questionnaires (FPQs). Median exposure was estimated to be within safe levels for all population groups. However, 6.6% (n = 143) of the consumers exceeded the Acceptable Daily Intake (ADI) of nitrite (0.07 mg/kg bw/day), of which 20.3% were children aged 0-9 years (N = 29) (15.3% of all children participants in the study, N = 190). In total, pork meat was the major contributor (41.5%), followed by turkey meat (32.7%) and sausages (23.8%), although contribution variations were found among age groups. The outcomes are of public health concern, especially exposure among children, and future research is warranted to evaluate possible associations with health effects, by using more refined occurrence data if available.
Collapse
Affiliation(s)
- Sotiria Kotopoulou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Hellenic Food Authority, Leoforos Kifissias 124 & Iatridou 2, 11526 Athens, Greece
| | - Antonis Zampelas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Hellenic Food Authority, Leoforos Kifissias 124 & Iatridou 2, 11526 Athens, Greece
| | - Emmanuella Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
9
|
Basaran B, Oral ZFY, Anlar P, Kaban G. Comparison and risk assessment of nitrate and nitrite levels in infant formula and biscuits for small children in Turkey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Milešević J, Vranić D, Gurinović M, Korićanac V, Borović B, Zeković M, Šarac I, Milićević DR, Glibetić M. The Intake of Phosphorus and Nitrites through Meat Products: A Health Risk Assessment of Children Aged 1 to 9 Years Old in Serbia. Nutrients 2022; 14:242. [PMID: 35057423 PMCID: PMC8781619 DOI: 10.3390/nu14020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/02/2023] Open
Abstract
This study provides the data on dietary exposure of Serbian children to nitrites and phosphorus from meat products by combining individual consumption data with available analytical data of meat products. A total of 2603 and 1900 commercially available meat products were categorized into seven groups and analysed for nitrite and phosphorous content. The highest mean levels of nitrite content, expressed as NaNO2, were found in finely minced cooked sausages (40.25 ± 20.37 mg/kg), followed by canned meat (34.95 ± 22.12 mg/kg) and coarsely minced cooked sausages (32.85 ± 23.25 mg/kg). The EDI (estimated daily intake) of nitrites from meat products, calculated from a National Food Consumption Survey in 576 children aged 1-9 years, indicated that the Serbian children population exceeded the nitrite ADI (acceptable daily intake) proposed by EFSA (European Food Safety Authority) in 6.4% of children, with a higher proportion in 1-3-year-old participants. The mean phosphorus concentration varied from 2.71 ± 1.05 g/kg to 6.12 ± 1.33 g/kg in liver sausage and pate and smoked meat products, respectively. The EDI of phosphorus from meat products was far below the ADI proposed by EFSA, indicating that the use of phosphorus additives in Serbian meat products is generally in line with legislation.
Collapse
Affiliation(s)
- Jelena Milešević
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Danijela Vranić
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Mirjana Gurinović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Vladimir Korićanac
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Branka Borović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Dragan R. Milićević
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Maria Glibetić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| |
Collapse
|
11
|
Kotopoulou S, Zampelas A, Magriplis E. Dietary nitrate and nitrite and human health: a narrative review by intake source. Nutr Rev 2021; 80:762-773. [PMID: 34919725 DOI: 10.1093/nutrit/nuab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitrate and nitrite are plant nutrients that, although ubiquitous in plant foods, are highly controversial substances in human nutrition because they are also used as additives in processed foods and may be found as contaminants in drinking water. The aim for this narrative review is to provide a thorough insight into the current literature on the relationship between dietary nitrate and nitrite and the health risks and benefits by source of intake. The results highlight beneficial effects of nitrate and nitrite consumption from plant origin on cardiovascular disease and, to date, no positive correlation has been reported with cancer. On the contrary, high intake of these compounds from processed animal-based foods is related to an increased risk of gastro-intestinal cancer. Nitrate in drinking water also raises some concern, because it appears to be related to adverse health effects. The up-to-date debate on the role of nitrate and nitrite in human nutrition seems to be justified and more research is required to verify safe consumption.
Collapse
Affiliation(s)
- Sotiria Kotopoulou
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| | - Antonis Zampelas
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| | - Emmanuella Magriplis
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| |
Collapse
|
12
|
Hwang IM, Ha JH. Human health risk assessment of toxic elements in South Korean cabbage, Kimchi, using Monte Carlo simulations. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Mielech A, Puścion-Jakubik A, Socha K. Assessment of the Risk of Contamination of Food for Infants and Toddlers. Nutrients 2021; 13:2358. [PMID: 34371868 PMCID: PMC8308760 DOI: 10.3390/nu13072358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Infants and toddlers are highly sensitive to contaminants in food. Chronic exposure can lead to developmental delays, disorders of the nervous, urinary and immune systems, and to cardiovascular disease. A literature review was conducted mainly in PubMed, Google Scholar and Scopus databases, and took into consideration papers published from October 2020 to March 2021. We focused on contaminant content, intake estimates, and exposure to contaminants most commonly found in foods consumed by infants and children aged 0.5-3 years. In the review, we included 83 publications with full access. Contaminants that pose a high health risk are toxic elements, acrylamide, bisphenol, and pesticide residues. Minor pollutants include: dioxins, mycotoxins, nitrates and nitrites, and polycyclic aromatic hydrocarbons. In order to reduce the negative health effects of food contamination, it seems reasonable to educate parents to limit foods that are potentially dangerous for infants and young children. An appropriate varied diet, selected cooking techniques, and proper food preparation can increase the likelihood that the foods children consume are safe for their health. It is necessary to monitor food contamination, adhere to high standards at every stage of production, and improve the quality of food for children.
Collapse
Affiliation(s)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (A.M.); (K.S.)
| | | |
Collapse
|
14
|
Nitrite reduction in fermented meat products and its impact on aroma. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:131-181. [PMID: 33745511 DOI: 10.1016/bs.afnr.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fermented meat products are important not only for their sensory characteristics, nutrient content and cultural heritage, but also for their stability and convenience. The aroma of fermented meat products is unique and its formation mechanisms are not completely understood; however, the presence of nitrite and nitrate is essential for the development of cured aroma. The use of nitrite and nitrate as curing agents in meat products is based on its preservation activity. Even though their presence has been associated with several risks due to the formation of nitrosamines, their use is guarantee due to their antimicrobial action against Clostridium botulinum. Recent trends and recommendations by international associations are directed to use nitrite but at the minimum concentration necessary to provide the antimicrobial activity against Clostridium botulinum. This chapter discuss the actual limits of nitrite and nitrite content and their role as curing agents in meat products with special impact on dry fermented products. Regulatory considerations, antimicrobial mechanisms and actual trends regarding nitrite reduction and its effect on sensory and aroma properties are also considered.
Collapse
|