1
|
Infante-Neta AA, de Carvalho ÁAO, D'Almeida AP, Gonçalves LRB, de Albuquerque TL. Xylitol production from passion fruit peel hydrolysate: Optimization of hydrolysis and fermentation processes. BIORESOURCE TECHNOLOGY 2024; 414:131628. [PMID: 39396579 DOI: 10.1016/j.biortech.2024.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The passion fruit peel (PFP) has a high cellulose and hemicellulose content, which can be used to produce fermentable sugars. In this context, this study aims to optimize the release of xylose and the production of xylitol from PFP. The optimized conditions were 0.71 M dilute sulfuric acid and a 21.84-minute treatment, yielding 19.03 g/L of xylose (PFP-1). Different PFP hydrolysates were evaluated to improve xylitol production by the yeast Kluyveromyces marxianus ATCC 36907: PFP-2 (PFP1 treated with Ca(OH)2), PFP-3 (PFP-1 treated with Ca(OH)2 and activated carbon), PFP-4 (PFP-3 with biological elimination of glucose with S. cerevisiae, and concentrated at different xylose concentrations). The applied methods resulted in higher xylitol production (14.97 g/L), when PFP hydrolysate was detoxified with Ca(OH)2, treated with activated charcoal for 1 h, biotreated for glucose removal, and concentrated to 40 g/L of xylose.
Collapse
Affiliation(s)
- Aida Aguilera Infante-Neta
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil
| | | | - Alan Portal D'Almeida
- Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil
| | | | - Tiago Lima de Albuquerque
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil.
| |
Collapse
|
2
|
Gavril Rațu RN, Stoica F, Lipșa FD, Constantin OE, Stănciuc N, Aprodu I, Râpeanu G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 2024; 13:2694. [PMID: 39272458 PMCID: PMC11395535 DOI: 10.3390/foods13172694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various parts, such as seeds, peels, and pulp residues, with their bioactive composition and many potential benefits poorly explored by the food industry. Pumpkin and their by-products contain a wide range of phytochemicals, including carotenoids, polyphenols, tocopherols, vitamins, minerals, and dietary fibers. These compounds in pumpkin by-products exhibit antioxidant, anticancer, anti-inflammatory, anti-diabetic, and antimicrobial properties and could reduce the risk of chronic diseases. This comprehensive review aims to provide a detailed overview of the phytochemicals found in pumpkin and its by-products, along with their extraction methods, health benefits, and diverse food and industrial applications. This information can offer valuable insights for food scientists seeking to reevaluate pumpkin's potential as a functional ingredient. Reusing these by-products would support integrating a circular economy approach by boosting the market presence of valuable and sustainable products that improve health while lowering food waste.
Collapse
Affiliation(s)
- Roxana Nicoleta Gavril Rațu
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Florin Daniel Lipșa
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Oana Emilia Constantin
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Iuliana Aprodu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Gabriela Râpeanu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| |
Collapse
|
3
|
Rico X, Gullón B, Alonso JL, Yáñez R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res Int 2020; 132:109086. [DOI: 10.1016/j.foodres.2020.109086] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 01/13/2023]
|
4
|
Pérez-Armada L, Rivas S, González B, Moure A. Extraction of phenolic compounds from hazelnut shells by green processes. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Lucas N, Athawale AA, Rode CV. Valorization of Oceanic Waste Biomass: A Catalytic Perspective. CHEM REC 2019; 19:1995-2021. [DOI: 10.1002/tcr.201800195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/11/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Nishita Lucas
- Department of ChemistryS.P. Pune University Pune, Maharashtra India
| | | | - Chandrashekhar V. Rode
- Chemical Engineering and Process Development DivisionNational Chemical Laboratory Pune, Maharashtra India
| |
Collapse
|
6
|
Hydrothermal treatments enhance the solubility and antioxidant characteristics of dietary fiber from asparagus by-products. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2018.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Cooper-Bribiesca B, Navarro-Ocaña A, Díaz-Ruiz G, Aguilar-Osorio G, Rodríguez-Sanoja R, Wacher C. Lactic Acid Fermentation of Arabinoxylan From Nejayote by Streptococcus infantarius ssp. infantarius 25124 Isolated From Pozol. Front Microbiol 2018; 9:3061. [PMID: 30619147 PMCID: PMC6305286 DOI: 10.3389/fmicb.2018.03061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023] Open
Abstract
Streptococcus infantarius ssp. infantarius 25124 (Sii-25124) is a lactic acid bacterium (LAB) isolated from pozol, a refreshing beverage prepared by suspending fermented nixtamal (a thermal and alkali-treated maize dough) in water. Although Lactobacillus are the predominant strains in fermented doughs, such as sourdoughs, and non-nixtamalized fermented maize foods, the pozol microbiota is markedly different. This may be the result of the nixtamalization process, which could act as a selective force of some strains. Sii-25124 has been reported as the main amylolytic LAB in pozol; starch is the primary carbon source on nixtamal since monosaccharides and disaccharides are lost during nixtamalization; however, non-amylolytic LAB counts are higher than amylolytic LAB in pozol after 24-h fermentation suggesting that another carbon source is being used by the former bacteria. Hemicellulose (arabinoxylan in maize) becomes available via nixtamalization and is subsequently metabolized by LAB. The aim of this work was to determine whether this bacterium is able to use arabinoxylan as the only carbon source in a defined medium containing arabinoxylan extracted from either nejayote (wash water produced during nixtamal preparation), or beechwood xylan. Xylanase activity in the presence of nejayote arabinoxylan (135.8 ± 48.7 IU/mg protein) was higher than that of beechwood (62.5 ± 19.8 IU/mg protein). Other enzymatic activities, such as arabinofuranosidase and acetyl esterase, were also detected, suggesting the adaptation of the bacterium studied to nixtamal dough. It was concluded that Streptococcus infantarius 25124 isolated from pozol was able to use arabinoxylans, which are present in nixtamal dough, so fermentation does not depend exclusively on free sugars and starch.
Collapse
Affiliation(s)
- Barbara Cooper-Bribiesca
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Navarro-Ocaña
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo Aguilar-Osorio
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Väisänen T, Haapala A, Lappalainen R, Tomppo L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 54:62-73. [PMID: 27184447 DOI: 10.1016/j.wasman.2016.04.037] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/11/2016] [Accepted: 04/27/2016] [Indexed: 05/24/2023]
Abstract
Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field.
Collapse
Affiliation(s)
- Taneli Väisänen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Antti Haapala
- School of Forestry, Wood Materials Science, University of Eastern Finland, 80101 Joensuu, Finland
| | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Laura Tomppo
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
9
|
Ares-Peón IA, Garrote G, Domínguez H, Parajó JC. Phenolics production from alkaline hydrolysis of autohydrolysis liquors. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1094516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Microorganisms for the Production of Lactic Acid and Organic Lactates. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Koch TJ, Venus J, Bruhns M. Sugar beet syrups in lactic acid fermentation – Part I. SUGAR INDUSTRY-ZUCKERINDUSTRIE 2014. [DOI: 10.36961/si15784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biotechnological production of lactic acid has been studied in various ways, e.g. microorganisms, fermentation processes, down-stream processes, fermentation substrates, and fermentation nutrients. The problems for all processes still are high costs for feedstock and fermentation nutrients. The objective of this study is a general evaluation of sugar beet thick juice from Pfeifer & Langen GmbH & Co. KG, Germany as a substrate for lactic acid production.
In a series of fermentation experiments the results based on thick juice were comparable to those obtained using cane raw sugar and even better than using conventional corn starch as a fermentation subtrate. The most important findings for a later technical application are the high volumetric productivity (up to 5.5g·L–1·h–1), and the optical purity of the lactic acid (>99% ee l-LA).
Collapse
|