1
|
Chen J, Du W, Li Y, Zhou H, Ouyang D, Yao Z, Fu J, Ye X. Genome-based model for differentiating between infection and carriage Staphylococcus aureus. Microbiol Spectr 2024; 12:e0049324. [PMID: 39248515 PMCID: PMC11448440 DOI: 10.1128/spectrum.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a clinically significant opportunistic pathogen, which can colonize multiple body sites in healthy individuals and cause various life-threatening diseases in both children and adults worldwide. The genetic backgrounds of S. aureus that cause infection versus asymptomatic carriage vary widely, but the potential genetic elements (k-mers) associated with S. aureus infection remain unknown, which leads to difficulties in differentiating infection isolates from harmless colonizers. Here, we address the disease-associated k-mers by using a comprehensive genome-wide association study (GWAS) to compare the genetic variation of S. aureus isolates from clinical infection sites (272 isolates) with nasal carriage (240 isolates). This study uncovers consensus evidence that certain k-mers are overrepresented in infection isolates compared with carriage isolates, indicating the presence of specific genetic elements associated with S. aureus infection. Moreover, the random forest (RF) model achieved a classification accuracy of 77% for predicting disease status (infection vs carriage), with 68% accuracy for a single highest-ranked k-mer, providing a simple target for identifying high-risk genotypes. Our findings suggest that the disease-causing S. aureus is a pathogenic subpopulation harboring unique genomic variation that promotes invasion and infection, providing novel targets for clinical interventions. IMPORTANCE Defining the disease-causing isolates is the first step toward disease control. However, the disease-associated genetic elements of Staphylococcus aureus remain unknown, which leads to difficulties in differentiating infection isolates from harmless carriage isolates. Our comprehensive genome-wide association study (GWAS) found consensus evidence that certain genetic elements are overrepresented among infection isolates than carriage isolates, suggesting that the enrichment of disease-associated elements may promote infection. Notably, a single k-mer predictor achieved a high classification accuracy, which forms the basis for early diagnostics and interventions.
Collapse
Affiliation(s)
- Jianyu Chen
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenyin Du
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuehe Li
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiliu Zhou
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dejia Ouyang
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenjiang Yao
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinjian Fu
- Department of Laboratory Science, Maoming Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, China
| | - Xiaohua Ye
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
3
|
Paul B, Siddaramappa S. Comparative analysis of the diversity of trinucleotide repeats in bacterial genomes. Genome 2024; 67:281-291. [PMID: 38593473 DOI: 10.1139/gen-2023-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The human gut is the most favorable niche for microbial populations, and few studies have explored the possibilities of horizontal gene transfer between host and pathogen. Trinucleotide repeat (TNR) expansion in humans can cause more than 40 neurodegenerative diseases. Further, TNRs are a type of microsatellite that resides on coding regions can contribute to the synthesis of homopolymeric amino acids. Hence, the present study aims to estimate the occurrence and diversity of TNRs in bacterial genomes available in the NCBI Genome database. Genome-wide analyses revealed that several bacterial genomes contain different types of uninterrupted TNRs. It was found that TNRs are abundant in the genomes of Alcaligenes faecalis, Mycoplasma gallisepticum, Mycoplasma genitalium, Sorangium cellulosum, and Thermus thermophilus. Interestingly, the genome of Bacillus thuringiensis strain YBT-1518 contained 169 uninterrupted ATT repeats. The genome of Leclercia adecarboxylata had 46 uninterrupted CAG repeats, which potentially translate into polyglutamine. In some instances, the TNRs were present in genes that potentially encode essential functions. Similar occurrences in human genes are known to cause genetic disorders. Further analysis of the occurrence of TNRs in bacterial genomes is likely to provide a better understanding of mismatch repair, genetic disorders, host-pathogen interaction, and homopolymeric amino acids.
Collapse
Affiliation(s)
- Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivakumara Siddaramappa
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru 560100, Karnataka, India
| |
Collapse
|
4
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Cinar MS, Niyas A, Avci FY. Serine-rich repeat proteins: well-known yet little-understood bacterial adhesins. J Bacteriol 2024; 206:e0024123. [PMID: 37975670 PMCID: PMC10810200 DOI: 10.1128/jb.00241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.
Collapse
Affiliation(s)
- Mukaddes S. Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afaq Niyas
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Aminov R, Aminova L. The role of the glycome in symbiotic host-microbe interactions. Glycobiology 2023; 33:1106-1116. [PMID: 37741057 PMCID: PMC10876039 DOI: 10.1093/glycob/cwad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.
Collapse
Affiliation(s)
- Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Leila Aminova
- Midwest Bioprocessing Center, 801 W Main St, Peoria, IL, 61606-1877, United States
| |
Collapse
|
7
|
Kobierecka P, Wyszyńska A, Aleksandrzak-Piekarczyk T, Sałańska A, Gawor J, Bardowski J, Jagusztyn Krynicka KE. Genomic and transcriptomic analysis of Ligilactobacillus salivarius IBB3154-in search of new promoters for vaccine construction. Microbiol Spectr 2023; 11:e0284423. [PMID: 37982628 PMCID: PMC10715006 DOI: 10.1128/spectrum.02844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE The genome of the strain Ligilactobacillus salivarius IBB3154 was sequenced, and transcriptome analysis was carried out at two different temperatures, allowing the determination of gene expression levels in response to environmental changes (temperature). Genes with higher expression at 42°C were identified. The use of a reporter gene (β- glucuronidase) did not confirm the transcriptomic results; it was found that the promoters of the genes sasA1 and sasA2 were active in the presence of bile salts. This opens up new opportunities for the overexpression of genes of other bacterial species in Ligilactobacillus cells in the intestinal environment.
Collapse
Affiliation(s)
- Patrycja Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Agnieszka Sałańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
8
|
Lee BH, Chen YZ, Shen TL, Pan TM, Hsu WH. Proteomic characterization of extracellular vesicles derived from lactic acid bacteria. Food Chem 2023; 427:136685. [PMID: 37356267 DOI: 10.1016/j.foodchem.2023.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/08/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Lactobacillus species confer health benefits by their metabolites, secreted molecules, and population numbers. Extracellular vesicles (EVs) are nano-sized particles released from cells and mediate intercellular communications. EVs-encapsulated cargos are a crucial key to decide involved biological function. However, little is known about the composition of EVs, leaving mechanisms by which Lactobacillus-derived EVs affect recipient cells remaining unresolved. This study examined the composition of EV proteins from Lactobacillus species by using liquid chromatography coupled with tandem mass spectrometry, including L. plantarum, L. fermentum, and L. gasseri. The major proteins of EVs are associated with biological processes such as catalytic activity, gluco-neogenesis, cell wall organization, and glycolytic processes. Motif enrichment analysis revealed that EVs from L. plantarum and L. fermentum contained proteins with serine-rich motif. This is the first study to report the composition and comparison of EV proteins from Lactobacillus species, providing important information of EVs in functional food products development.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan
| | - You-Zuo Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 106319, Taiwan
| | - Tzu-Ming Pan
- Department of Research and Development Division, SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan.
| |
Collapse
|
9
|
Comparative Genome Analysis of Enterococcus cecorum Reveals Intercontinental Spread of a Lineage of Clinical Poultry Isolates. mSphere 2023; 8:e0049522. [PMID: 36794931 PMCID: PMC10117131 DOI: 10.1128/msphere.00495-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.
Collapse
|
10
|
Kristensen MF, Sørensen ES, Del Rey YC, Schlafer S. Prevention of Initial Bacterial Attachment by Osteopontin and Other Bioactive Milk Proteins. Biomedicines 2022; 10:biomedicines10081922. [PMID: 36009469 PMCID: PMC9405890 DOI: 10.3390/biomedicines10081922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
A considerable body of work has studied the involvement of osteopontin (OPN) in human physiology and pathology, but comparably little is known about the interaction of OPN with prokaryotic cells. Recently, bovine milk OPN has been proposed as a therapeutic agent to prevent the build-up of dental biofilms, which are responsible for the development of caries lesions. Bioactive milk proteins are among the most exciting resources for caries control, as they hamper bacterial attachment to teeth without affecting microbial homeostasis in the mouth. The present work investigated the ability of OPN to prevent the adhesion of three dental biofilm-forming bacteria to saliva-coated surfaces under shear-controlled flow conditions in comparison with the major milk proteins α-lactalbumin, β-lactoglobulin, αs1-casein, β-casein and κ-casein, as well as crude milk protein. OPN was the most effective single protein to reduce the adhesion of Actinomyces naeslundii, Lactobacillus paracasei subsp. paracasei and Streptococcus mitis. β-casein and crude milk protein also had a pronounced effect on all three species, which suggests binding to different microbial surface structures rather than the blocking of a specific bacterial adhesin. Bioactive milk proteins show potential to delay harmful biofilm formation on teeth and hence the onset of biofilm-related oral disease.
Collapse
Affiliation(s)
- Mathilde Frost Kristensen
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
| | | | - Yumi Chokyu Del Rey
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
| | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
11
|
Wen ZT, Huang X, Ellepola K, Liao S, Li Y. Lactobacilli and human dental caries: more than mechanical retention. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35671222 DOI: 10.1099/mic.0.001196] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacilli have been considered as major contributors to human dental caries for over a century. Recent in vitro model studies have shown that when compared to Streptococcus mutans, a keystone pathogen of human dental caries, the ability of lactobacilli to form biofilms is poor, although differences exist between the different major species. Further studies using molecular and bioinformatics approaches provide evidence that multiple mechanisms, including adhesin-receptor mediated physical contact with S. mutans, facilitate the adherence and establishment of lactobacilli on the tooth surface. There is also evidence that under conditions like continuous sugar consumption, weak acids and other antimicrobials such as bacteriocins from lactobacilli can become detrimental to the microbial community, especially those in the proximity. Details on the underlying mechanisms of how different Lactobacillus sp. establish and persist in the highly complex microbiota on the tooth surface await further investigation.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Xiaochang Huang
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Present address: Analysis and Testing Center, Nanchang University, 235 Nanjing East Load, Qingshan Lake District, Nanchang, PR China
| | - Kassapa Ellepola
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Present address: Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Sumei Liao
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornel University, Ithaca, NY, USA
| |
Collapse
|
12
|
Arend P. Why blood group A individuals are at risk whereas blood group O individuals are protected from SARS-CoV-2 (COVID-19) infection: A hypothesis regarding how the virus invades the human body via ABO(H) blood group-determining carbohydrates. Immunobiology 2021; 226:152027. [PMID: 33706067 PMCID: PMC7609233 DOI: 10.1016/j.imbio.2020.152027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/16/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
While the angiotensin converting enzyme 2 (ACE2) protein is defined as the primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor, the viral serine molecule might be mobilized by the host's transmembrane protease serine subtype 2 (TMPRSS2) enzyme from the viral spike (S) protein and hijack the host's N-acetyl-D-galactosamine (GalNAc) metabolism. The resulting hybrid, serologically A-like/Tn (T nouvelle) structure potentially acts as a host-pathogen functional molecular bridge. In humans, this intermediate structure will hypothetically be replaced by ABO(H) blood group-specific, mucin-type structures, in the case of infection hybrid epitopes, implicating the phenotypically glycosidic accommodation of plasma proteins. The virus may, by mimicking the synthetic pathways of the ABO(H) blood groups, bind to the cell surfaces of the blood group O(H) by formation of a hybrid H-type antigen as the potential precursor of hybrid non-O blood groups, which does not affect the highly anti-glycan aggressive anti-A and anti-B isoagglutinin activities, exerted by the germline-encoded nonimmune immunoglobulin M (IgM). In the non-O blood groups, which have developed from the H-type antigen, these IgM activities are downregulated by phenotypic glycosylation, while adaptive immunoglobulins might arise in response to the hybrid A and B blood group structures, bonds between autologous carbohydrates and foreign peptides, suggesting the exertion of autoreactivity. The non-O blood groups thus become a preferred target for the virus, whereas blood group O(H) individuals, lacking the A/B phenotype-determining enzymes and binding the virus alone by hybrid H-type antigen formation, have the least molecular contact with the virus and maintain the critical anti-A and anti-B isoagglutinin activities, exerted by the ancestral IgM, which is considered the humoral spearhead of innate immunity.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University Marburg, Department of Medicine, D-355 Marburg, Lahn, Germany(2); Gastroenterology Research Laboratory, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA(2); Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany(2).
| |
Collapse
|
13
|
Butanol Tolerance of Lactiplantibacillus plantarum: A Transcriptome Study. Genes (Basel) 2021; 12:genes12020181. [PMID: 33514005 PMCID: PMC7911632 DOI: 10.3390/genes12020181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Biobutanol is a promising alternative fuel with impaired microbial production thanks to its toxicity. Lactiplantibacillus plantarum (L. plantarum) is among the few bacterial species that can naturally tolerate 3% (v/v) butanol. This study aims to identify the genetic factors involved in the butanol stress response of L. plantarum by comparing the differential gene expression in two strains with very different butanol tolerance: the highly resistant Ym1, and the relatively sensitive 8-1. During butanol stress, a total of 319 differentially expressed genes (DEGs) were found in Ym1, and 516 in 8-1. Fifty genes were upregulated and 54 were downregulated in both strains, revealing the common species-specific effects of butanol stress: upregulation of multidrug efflux transporters (SMR, MSF), toxin-antitoxin system, transcriptional regulators (TetR/AcrR, Crp/Fnr, and DeoR/GlpR), Hsp20, and genes involved in polysaccharide biosynthesis. Strong inhibition of the pyrimidine biosynthesis occurred in both strains. However, the strains differed greatly in DEGs responsible for the membrane transport, tryptophan synthesis, glycerol metabolism, tRNAs, and some important transcriptional regulators (Spx, LacI). Uniquely upregulated in the butanol-resistant strain Ym1 were the genes encoding GntR, GroEL, GroES, and foldase PrsA. The phosphoenolpyruvate flux and the phosphotransferase system (PTS) also appear to be major factors in butanol tolerance.
Collapse
|
14
|
Seepersaud R, Anderson AC, Bensing BA, Choudhury BP, Clarke AJ, Sullam PM. O-acetylation controls the glycosylation of bacterial serine-rich repeat glycoproteins. J Biol Chem 2021; 296:100249. [PMID: 33384382 PMCID: PMC7948813 DOI: 10.1074/jbc.ra120.016116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
The serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB). Because these GlcNAc residues can also be modified by the glycosyltransferases Nss and Gly, it has been unclear whether the post-translational modification of GspB is coordinated. We now report that acetylation modulates the glycosylation of exported GspB. Loss of O-acetylation due to aps2 mutagenesis led to the export of GspB glycoforms with increased glucosylation of the GlcNAc moieties. Linkage analysis of the GspB glycan revealed that both O-acetylation and glucosylation occurred at the same C6 position on GlcNAc residues and that O-acetylation prevented Glc deposition. Whereas streptococci expressing nonacetylated GspB with increased glucosylation were significantly reduced in their ability to bind human platelets in vitro, deletion of the glycosyltransferases nss and gly in the asp2 mutant restored platelet binding to WT levels. These findings demonstrate that GlcNAc O-acetylation controls GspB glycosylation, such that binding via this adhesin is optimized. Moreover, because O-acetylation has comparable effects on the glycosylation of other SRR adhesins, acetylation may represent a conserved regulatory mechanism for the post-translational modification of the SRR glycoprotein family.
Collapse
Affiliation(s)
- Ravin Seepersaud
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA
| | - Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Barbara A Bensing
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA
| | - Biswa P Choudhury
- GlycoAnalytics Core, University of California, San Diego, San Diego, California, USA
| | - Anthony J Clarke
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Paul M Sullam
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
15
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|