1
|
Loera-Muro A, Silva-Jara J, Hernández V, León-Montoya H, Angulo C. A perspective on nanomaterials against Campylobacter jejuni biofilm - New control strategies. Microb Pathog 2024; 197:107031. [PMID: 39427717 DOI: 10.1016/j.micpath.2024.107031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Campylobacter jejuni - a Gram-negative bacterium - is considered the fourth cause of diarrheic diseases that can form biofilms (mono and multi-species) or colonize pre-existing biofilms adhering to both, inert or biotic surfaces; its biofilms contribute to transmission through the food chain and survival under harsh environmental conditions. Thus, developing alternatives against this pathogen is compulsory. Nanomaterials have revolutionized the way of fighting infections related to biofilms due to their unique properties compared to traditional antibiotics. Nanomaterials have also been used against C. jejuni based on zinc, titanium, silver, molybdenum, magnesium, cobalt, erbium, lithium, nickel, hydroxide, polyethylene, graphene, lipids, chitosan, and poly(lactic-co-glycolic acid) (PLGA). Those organic and inorganic materials have synthesized nanoparticles, nanofillers, nanowires, nanoferrites, double layers, nanocomposites, and films that have encapsulated, entrapped, coated or doped molecules. Additionally, bare metal nanoparticles have been tested by their antimicrobial activity on planktonic and sessile forms. Therefore, the present review aimed to describe general biology, virulence factors, host-pathogen relationships and biofilm formation, as well as nanomaterials and nanoparticles fighting against C. jejuni biofilms. Considerations are presented and placed in perspective.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONAHCYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Jorge Silva-Jara
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara, Jalisco, 44430, Mexico
| | - Víctor Hernández
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Hassian León-Montoya
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico.
| |
Collapse
|
2
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
Wang Y, Cheng S, Zhang H, Zhang Y, Ding C, Peng T, Chen W, Yang K, Zhang J, Tan Y, Wang X, Liu Z, Wei P, Jiang M, Hua Q. Adverse Effects of Gefitinib on Skin and Colon in a Lung Cancer Mouse Model. Recent Pat Anticancer Drug Discov 2024; 19:308-315. [PMID: 37723963 DOI: 10.2174/1574892818666230727143750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/26/2023] [Accepted: 05/03/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Gefitinib, an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI), frequently causes side effects when used to treat non-small cell lung cancer. OBJECTIVE The purpose of this experiment was to investigate the side effect of gefitinib on the skin and colon of mice. METHODS Male Balb/c nu-nu nude mice aged 4-5 weeks were used as xenograft tumor models, and gefitinib at 150 mg/kg and 225 mg/kg was started at 9 days after the xenograft tumor grew out. The mice's weights and tumor volumes were tracked concurrently, and the mouse skin adverse reactions and diarrhea were observed during the treatment. The animal tissues were subjected to biochemical and pathological evaluations after 14 days. RESULTS Gefitinib effectively decreased the size and weight of transplanted tumors in nude mice, while also lowering body weight and raising indexes of the liver and spleen. Gefitinib could cause skin adverse reactions and diarrhea in mice. Further pathological investigation revealed tight junction- related markers in the mice's skin and colon to be reduced and macrophages and neutrophils to be increased after gefitinib treatment. CONCLUSION The findings imply that gefitinib has negative effects on the skin and colon. Gefitinib- induced skin and colon adverse reactions in mice have been successfully modeled in this study.
Collapse
Affiliation(s)
- Yalei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Shuo Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Huawei Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Yali Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Chengcheng Ding
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Tiantian Peng
- School of Acupuncture and Massage, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Weihang Chen
- School of Acupuncture and Massage, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Jiani Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Zhaoheng Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Miao Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| |
Collapse
|
4
|
Li J, Huang X, Xie K, Zhang J, Yang J, Yan Z, Gun S. Decreased S100A9 expression alleviates Clostridium perfringens beta2 toxin-induced inflammatory injury in IPEC-J2 cells. PeerJ 2023; 11:e14722. [PMID: 36718447 PMCID: PMC9884034 DOI: 10.7717/peerj.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Background S100 calcium-binding protein A9 (S100A9) is a commonly known pro-inflammatory factor involved in various inflammatory responses. Clostridium perfringens (C. perfringens ) type C is known to cause diarrhea in piglets. However, the role of S100A9 in C. perfringens type C-induced infectious diarrhea is unclear. Methods Here, the S100A9 gene was overexpressed and knocked down in the IPEC-J2 cells, which were treated with C. perfringens beta2 (CPB2) toxin. The role of S100A9 in CPB2 toxin-induced injury in IPEC-J2 cells was assessed by measuring the levels of inflammatory cytokines, reactive oxygen species (ROS), lactate dehydrogenase (LDH), cell proliferation, and tight junction-related proteins. Results The results showed elevated expression of S100A9 in diarrhea-affected piglet tissues, and the elevation of S100A9 expression after CPB2 toxin treatment of IPEC-J2 was time-dependent. In CPB2 toxin-induced IPEC-J2 cells, overexpression of S100A9 had the following effects: the relative expression of inflammatory factors IL-6, IL8, TNF-α, and IL-1β was increased; the ROS levels and LDH viability were significantly increased; cell viability and proliferation were inhibited; the G0/G1 phase cell ratio was significantly increased. Furthermore, overexpression of S100A9 reduced the expression of tight junction proteins in CPB2-induced IPEC-J2 cells. The knockdown of S100A9 had an inverse effect. In conclusion, our results confirmed that S100A9 exacerbated inflammatory injury in CPB2 toxin-induced IPEC-J2 cells, inhibited cell viability and cell proliferation, and disrupted the tight junctions between cells. Thus, decreased S100A9 expression alleviates CPB2 toxin-induced inflammatory injury in IPEC-J2 cells.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Juanli Zhang
- College of Life Sciences, Longdong University, Qingyang, Gansu, China
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Xie W, Song L, Wang X, Xu Y, Liu Z, Zhao D, Wang S, Fan X, Wang Z, Gao C, Wang X, Wang L, Qiao X, Zhou H, Cui W, Jiang Y, Li Y, Tang L. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge. Gut Microbes 2021; 13:1956281. [PMID: 34369287 PMCID: PMC8354667 DOI: 10.1080/19490976.2021.1956281] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in human and animal. To determine the mechanism of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactobacillus reuteri CO21 (LR-LFCA) to enhance the intestinal mucosal immunity, we used a newborn piglet intestine model to study the intestinal response to ETEC. Pigs were chosen due to the anatomical similarity between the porcine and the human intestine.4-day-old piglets were orally administered with LR-LFCA, LR-con (L. reuteri CO21 transformed with pPG612 plasmid) or phosphate buffered saline (PBS) for three consecutive days, within 21 days after these treatments, we found that LR-LFCA can colonize the intestines of piglets, improve the growth performance, enhance immune response and is beneficial for intestinal health of piglets by improving intestinal barrier function and modulating the composition of gut microbiota. Twenty-one days after, piglets were infected with ETEC K88 for 5 days, we found that oral administration of LR-LFCA to neonatal piglets attenuated ETEC-induced the weight loss of piglets and diarrhea incidence. LR-LFCA decreased the production of inflammatory factors and oxidative stress in intestinal mucosa of ETEC-infected piglets. Additionally, LR-LFCA increased the expression of tight junction proteins in the ileum of ETEC-infected piglets. Using LPS-induced porcine intestinal epithelial cells (IPEC-J2) in vitro, we demonstrated that LR-LFCA-mediated increases in the tight junction proteins might depend on the MLCK pathway; LR-LFCA might increase the anti-inflammatory ability by inhibiting the NF-κB pathway. We also found that LR-LFCA may enhance the antioxidant capacity of piglets by activating the Nrf2/HO-1 pathway. This study demonstrates that LR-LFCA is effective at maintaining intestinal epithelial integrity and host homeostasis as well as at repairing intestinal damage after ETEC infection and is thus a promising alternative therapeutic method for intestinal inflammation.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shubo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhaorui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China,CONTACT Lijie Tang College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
8
|
Cao H, Xu H, Ning C, Xiang L, Ren Q, Zhang T, Zhang Y, Gao R. Multi-Omics Approach Reveals the Potential Core Vaccine Targets for the Emerging Foodborne Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:665858. [PMID: 34248875 PMCID: PMC8265506 DOI: 10.3389/fmicb.2021.665858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in humans around the world. The emergence of bacterial resistance is becoming more serious; therefore, development of new vaccines is considered to be an alternative strategy against drug-resistant pathogen. In this study, we investigated the pangenome of 173 C. jejuni strains and analyzed the phylogenesis and the virulence factor genes. In order to acquire a high-quality pangenome, genomic relatedness was firstly performed with average nucleotide identity (ANI) analyses, and an open pangenome of 8,041 gene families was obtained with the correct taxonomy genomes. Subsequently, the virulence property of the core genome was analyzed and 145 core virulence factor (VF) genes were obtained. Upon functional genomics and immunological analyses, five core VF proteins with high antigenicity were selected as potential core vaccine targets for humans. Furthermore, functional annotations indicated that these proteins are involved in important molecular functions and biological processes, such as adhesion, regulation, and secretion. In addition, transcriptome analysis in human cells and pig intestinal loop proved that these vaccine target genes are important in the virulence of C. jejuni in different hosts. Comprehensive pangenome and relevant animal experiments will facilitate discovering the potential core vaccine targets with improved efficiency in reverse vaccinology. Likewise, this study provided some insights into the genetic polymorphism and phylogeny of C. jejuni and discovered potential vaccine candidates for humans. Prospective development of new vaccines using the targets will be an alternative to the use of antibiotics and prevent the development of multidrug-resistant C. jejuni in humans and even other animals.
Collapse
Affiliation(s)
- Hengchun Cao
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Chunhui Ning
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Li Xiang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Qiufang Ren
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Tiantian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
9
|
Negretti NM, Gourley CR, Talukdar PK, Clair G, Klappenbach CM, Lauritsen CJ, Adkins JN, Konkel ME. The Campylobacter jejuni CiaD effector co-opts the host cell protein IQGAP1 to promote cell entry. Nat Commun 2021; 12:1339. [PMID: 33637714 PMCID: PMC7910587 DOI: 10.1038/s41467-021-21579-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni is a foodborne pathogen that binds to and invades the epithelial cells lining the human intestinal tract. Maximal invasion of host cells by C. jejuni requires cell binding as well as delivery of the Cia proteins (Campylobacter invasion antigens) to the host cell cytosol via the flagellum. Here, we show that CiaD binds to the host cell protein IQGAP1 (a Ras GTPase-activating-like protein), thus displacing RacGAP1 from the IQGAP1 complex. This, in turn, leads to the unconstrained activity of the small GTPase Rac1, which is known to have roles in actin reorganization and internalization of C. jejuni. Our results represent the identification of a host cell protein targeted by a flagellar secreted effector protein and demonstrate that C. jejuni-stimulated Rac signaling is dependent on IQGAP1.
Collapse
Affiliation(s)
- Nicholas M Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Christopher R Gourley
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Prabhat K Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Geremy Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Courtney M Klappenbach
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Cody J Lauritsen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Joshua N Adkins
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|