1
|
Wang Z, Gu Y, Wang H, Chen Y, Chen H, Wang X, Yuan W. FOXG1 interaction with SATB2 promotes autophagy to alleviate neuroinflammation and mechanical abnormal pain in rats with lumbar disc herniation. Ann Med 2024; 56:2399967. [PMID: 39624968 PMCID: PMC11616759 DOI: 10.1080/07853890.2024.2399967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Most patients with lumbar disc herniation can be relieved or cured by surgical or non-surgical treatment; however, postoperative persistent radiculopathy is common. This study demonstrates the regulation of autophagy by the FOXG1/SATB2 axis in lumbar disc herniation (LDH). METHODS Rat dorsal root neurons were induced with TNF-α in vitro. Sprague Dawley (SD) rats were used to construct the LDH rat model, which was treated with L. paracasei S16 or oe-FOXG1. Paw withdrawal threshold or latency assay (PWT/L) was performed. Peripheral blood samples were collected and analysed using ELISA and miRNAseq. RT-qPCR was used to analyse the expression of FOXG1, LC3B, Beclin1, p62, and SATB2. TUNEL staining and flow cytometry were used to analyse apoptosis. The expression of Cyclin D1, PCNA, Ki67, FOXG1, SATB2, and autophagy proteins was measured using western blotting. RESULTS TNF-α induced low expression of FOXG1 and SATB2 in dorsal root ganglion (DRG) neurons of rats. TNF-α induced an increase in p62 protein and a decrease in LC3II/I and Beclin-1 proteins in neurons, which were blocked by oe-FOXG1. oe-FOXG1 suppressed inflammation and apoptosis in TNF-α-induced DRG neurons and LDH rats and promoted the expression of Cyclin D1, PCNA, and Ki67. Many miRNAs were increased in the peripheral blood of LDH rats, but decreased after L. paracasei S16 intervention. L. paracasei S16 affects miR-31a-5p and SATB2 expression. Dual luciferase reporter gene assay confirmed that miR-31a-5p bound to SATB2. Co-IP analysis confirmed the interaction between FOXG1 and SATB2. Silencing of SATB2 inhibited the beneficial effects of oe-FOXG1 in TNF-α-induced dorsal root ganglion neurons. Animal experiments further demonstrated that oe-FOXG1 improved LDH disease characteristics by downregulating PWT, PWL, inflammation, and apoptosis levels and upregulating SATB2-autophagy levels. CONCLUSIONS MiR-31a-5p/SATB2 is involved in the treatment of L. paracasei S16 in LDH rats. Overexpression of FOXG1 promotes autophagy through SATB2 to improve LDH levels This provides a new approach for the treatment of LDH.
Collapse
Affiliation(s)
- Zhanchao Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifei Gu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huajiang Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinwei Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen Yuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Santos AA, Duarte R, Duarte M, Arella F, Marques V, Roos S, Rodrigues CMP. Impact of Lactobacillaceae supplementation on the multi-organ axis during MASLD. Life Sci 2024; 354:122948. [PMID: 39117140 DOI: 10.1016/j.lfs.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The gut-liver axis plays a pivotal role in maintaining body homeostasis. Disruption of the gut-liver axis is linked to a multitude of diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Probiotic strains from the Lactobacillaceae family are commonly used to mitigate experimental MASLD. Over the years, numerous studies have demonstrated the efficacy of these probiotics, often focusing on the outcome of liver disease. This review aims to further understand MASLD as a systemic metabolic dysfunction and to highlight the effects of probiotics on multi-organ axis, including organs such as the gastrointestinal tract, pancreas, muscle, adipose tissue, and the immune system. We specifically discuss evidence on how supplementation with Lactobacillaceae strains may alleviate MASLD by not only restoring liver health but also by modulating the physiology of other organ systems.
Collapse
Affiliation(s)
- André A Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - Raquel Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Madalena Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Fabiola Arella
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Sweden
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
3
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
5
|
Xue X, Li Y, Yao Y, Zhang S, Peng C, Li Y. A comprehensive review of miR-21 in liver disease: Big impact of little things. Int Immunopharmacol 2024; 134:112116. [PMID: 38696909 DOI: 10.1016/j.intimp.2024.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
microRNAs (miRNAs), a class of non-coding RNA with 20-24 nucleotides, are defined as the powerful regulators for gene expression. miR-21 is a multifunctional miRNA enriched in the circulatory system and multiple organs, which not only serves as a non-invasive biomarker in disease diagnosis, but also participates in many cellular activities. In various chronic liver diseases, the increase of miR-21 affects glycolipid metabolism, viral infection, inflammatory and immune cell activation, hepatic stellate cells activation and tissue fibrosis, and autophagy. Moreover, miR-21 is also a liaison in the deterioration of chronic liver disease to hepatocellular carcinoma (HCC), and it impacts on cell proliferation, apoptosis, migration, invasion, angiogenesis, immune escape, and epithelial-mesenchymal transformation by regulating target genes expression in different signaling pathways. In current research on miRNA therapy, some natural products can exert the hepatoprotective effects depending on the inhibition of miR-21 expression. In addition, miR-21-based therapeutic also play a role in regulating intracellular miR-21 levels and enhancing the efficacy of chemotherapy drugs. Herein, we systemically summarized the recent progress of miR-21 on biosynthesis, biomarker function, molecular mechanism and miRNA therapy in chronic liver disease and HCC, and looked forward to outputting some information to enable it from bench to bedside.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Li Y, Liu Y, Cui J, Zhu M, Wang W, Chen K, Huang L, Liu Y. Oral-gut microbial transmission promotes diabetic coronary heart disease. Cardiovasc Diabetol 2024; 23:123. [PMID: 38581039 PMCID: PMC10998415 DOI: 10.1186/s12933-024-02217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
8
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Zhu J, Fan Y, Yang S, Qin M, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Oral delivery of miR-146a-5p overexpression plasmid-loaded Pickering double emulsion modulates intestinal inflammation and the gut microbe. Int J Biol Macromol 2024; 261:129733. [PMID: 38307433 DOI: 10.1016/j.ijbiomac.2024.129733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.
Collapse
Affiliation(s)
- Jiahao Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yaotian Fan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Songfeng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Mengran Qin
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Xingping Chen
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Jiajie Sun
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yongliang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Qianyun Xi
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
10
|
Abdel-Wahab BA, El-Shoura EAM, Habeeb MS, Zaafar D. Dapagliflozin alleviates arsenic trioxide-induced hepatic injury in rats via modulating PI3K/AkT/mTOR, STAT3/SOCS3/p53/MDM2 signaling pathways and miRNA-21, miRNA-122 expression. Int Immunopharmacol 2024; 127:111325. [PMID: 38070468 DOI: 10.1016/j.intimp.2023.111325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Dapagliflozin (DPG) is a sodium-glucose co-transporter 2 inhibitor that is commonly used in the treatment of type 2 diabetes. However, studies have shown that DPG has a protective effect under a variety of experimental conditions through its antioxidative and anti-inflammatory properties. DPG's effect on experimental hepatotoxicity caused by arsenic trioxide (ATO) has yet to be investigated. The purpose of this study was to investigate the protective effect of DPG in preventing hepatic damage caused by ATO and discover the underlying mechanisms. The effect of DPG (1 mg/kg, orally) on ATO (5 mg/kg, i.p.)-induced hepatic injury was evaluated in rats. Serum liver function parameters, as well as oxidative stress biomarkers and inflammatory cytokine levels were assessed. Histopathological changes in the liver were detected using H&E staining. Using Western blotting and PCR techniques, the molecular mechanisms of DPG in ameliorating hepatic injury were investigated. DPG improved liver function by inhibiting histopathological changes, decreasing levels of hepatic function and toxicity parameters measured in both serum and tissues, and exhibiting antioxidant and anti-inflammatory effects, according to the findings. Consistent with the PCR results, DPG also decreased the expression of LC3-II, micro-RNA-122, and micro-RNA-21 while increased the expression of SOCS3. Furthermore, according to western blotting results, DPG was able to reduce the protein expression of AKT, mTOR, PI3K, and STAT3. Although further clinical research is necessary, this study highlights the potential of DPG in preventing liver damage in a rat model of hepatotoxicity induced by ATO.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mohammed S Habeeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology, and Information, Cairo, Egypt.
| |
Collapse
|
11
|
Yu J, Zhu P, Shi L, Gao N, Li Y, Shu C, Xu Y, Yu Y, He J, Guo D, Zhang X, Wang X, Shao S, Dong W, Wang Y, Zhang W, Zhang W, Chen WH, Chen X, Liu Z, Yang X, Zhang B. Bifidobacterium longum promotes postoperative liver function recovery in patients with hepatocellular carcinoma. Cell Host Microbe 2024; 32:131-144.e6. [PMID: 38091982 DOI: 10.1016/j.chom.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/02/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024]
Abstract
Timely liver function recovery (LFR) is crucial for postoperative hepatocellular carcinoma (HCC) patients. Here, we established the significance of LFR on patient long-term survival through retrospective and prospective cohorts and identified a key gut microbe, Bifidobacterium longum, depleted in patients with delayed recovery. Fecal microbiota transfer from HCC patients with delayed recovery to mice similarly impacted recovery time post hepatectomy. However, oral gavage of B. longum improved liver function and repair in these mice. In a clinical trial of HCC patients, orally administering a probiotic bacteria cocktail containing B. longum reduced the rates of delayed recovery, shortened hospital stays, and improved overall 1-year survival. These benefits, attributed to diminished liver inflammation, reduced liver fibrosis, and hepatocyte proliferation, were associated with changes in key metabolic pathways, including 5-hydroxytryptamine, secondary bile acids, and short-chain fatty acids. Our findings propose that gut microbiota modulation can enhance LFR, thereby improving postoperative outcomes for HCC patients.
Collapse
Affiliation(s)
- Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linlin Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yani Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Shu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Yu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Junqing He
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dingming Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoman Zhang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiangfeng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sirui Shao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuwei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhi Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Yeruva L, Mulakala BK, Rajasundaram D, Gonzalez S, Cabrera-Rubio R, Martínez-Costa C, Collado MC. Human milk miRNAs associate to maternal dietary nutrients, milk microbiota, infant gut microbiota and growth. Clin Nutr 2023; 42:2528-2539. [PMID: 37931372 DOI: 10.1016/j.clnu.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Maternal diet influences the milk composition, yet little information is available on the impact of maternal diet on milk miRNAs expression. Further, the association of human milk miRNAs to maternal diet and milk microbiota is not explored. In addition, the role of milk miRNAs on the infant gut microbiota, infant growth and development has not been investigated. METHODS Milk samples were collected from 60 healthy lactating women at ≤15d post-partum, HTG transcriptome assay was performed to examine milk miRNA profile. Maternal clinical and dietary clusters information were available and infant anthropometric measures were followed up to one year of age. Milk and infant microbiota were analyzed by 16S rRNA gene sequencing and integrative multi-omics data analysis was performed to identify potential association between microRNA, maternal dietary nutrients and microbiota. RESULTS Discriminant analysis revealed that the milk miRNAs were clustered into groups according to the maternal protein source. Interestingly, 31 miRNAs were differentially expressed (P adj < 0.05) between maternal dietary clusters (Cluster 1: enriched in plant protein and fibers and Cluster 2: enriched in animal protein), with 30 miRNAs downregulated in the plant protein group relative to animal protein group. Pathway analysis revealed that the top enriched pathways (P adj < 0.01) were involved in cell growth and proliferation processes. Furthermore, significant features contributing to the clustering were associated with maternal dietary nutrients and milk microbiota (r > 0.70). Further, miR-378 and 320 family miRNAs involved in adipogenesis were positively correlated to the infant BMI-z-scores, weight, and weight for length-z-scores at 6 months of age. CONCLUSIONS Maternal dietary source impacts the milk miRNA expression profile. Further, miRNAs were associated with maternal dietary nutrients, milk microbiota and to the infant gut microbiota and infant growth and development. CLINICAL TRIAL The study is registered in ClinicalTrials.gov. The identification number is NCT03552939.
Collapse
Affiliation(s)
- Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA.
| | - Bharat Kumar Mulakala
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA; Texas A&M AgriLife Institute for Advancing Health Through Agriculture, TX, USA
| | | | - Sonia Gonzalez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA, ISPA), Oviedo, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
13
|
Hasani M, Alinia SP, Khazdouz M, Sobhani S, Mardi P, Ejtahed HS, Qorbani M. Oxidative balance score and risk of cancer: a systematic review and meta-analysis of observational studies. BMC Cancer 2023; 23:1143. [PMID: 38001409 PMCID: PMC10675899 DOI: 10.1186/s12885-023-11657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The oxidative balance score (OBS) has been utilized to assess the overall pro- and antioxidant exposure status in various chronic diseases. The current meta-analysis was carried out to pool the association between OBS and the risk of cancer. METHODS We systematically searched the Web of Science, PubMed, Scopus, Embase, and Google Scholar up to August 2023. All observational studies which evaluated the association of OBS with the risk of cancers were included. There was no time of publication or language restrictions. Heterogeneity between studies was assessed using the Chi-square-based Q-test and the I2. A random-effects model meta-analysis was conducted to estimate the pooled effect sizes. Possible sources of heterogeneity were explored by subgroup and meta-regression analysis. RESULTS Totally, 15 studies (9 case-control and 6 cohorts) were eligible for meta-analysis. Random effect model meta-analysis of case-control studies showed that higher OBS significantly decreases the odds of cancers (pooled OR: 0.64, 95% CI: 0.54, 0.74). In the cohort studies, the association of OBS with the risk of cancers was not significant (pooled HR: 0.97, 95% CI: 0.80,1.18). The subgroup analysis showed that cancer type and gender were the potential sources of heterogeneity. CONCLUSION Our results show an inverse and significant association between higher OBS and odds of colorectal cancers in case-control and cohort studies. In the case of prostate cancer in cohort studies, our results did not align with the hypothesis. Considering the importance of diet and antioxidant balance in the conditions of malignancy, it is suggested to conduct more comprehensive studies with standard measurement methods to obtain conclusive results.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Maryam Khazdouz
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Sobhani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Mardi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
15
|
Liu M, Cho WC, Flynn RJ, Jin X, Song H, Zheng Y. microRNAs in parasite-induced liver fibrosis: from mechanisms to diagnostics and therapeutics. Trends Parasitol 2023; 39:859-872. [PMID: 37516634 DOI: 10.1016/j.pt.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023]
Abstract
Chronic parasite infections in the liver pose a global threat to human and animal health, often occurring with liver fibrosis that leads to cirrhosis, liver failure, and even cancer. Hepatic fibrogenesis is a complex yet reversible process of tissue repair and is associated with various factors, including immune cells, microenvironment, gut microbiome, and interactions of the different liver cells. As a profibrogenic or antifibrogenic driver, microRNAs (miRNAs) are closely involved in parasite-induced hepatic fibrosis. This article updates the current understanding of the roles of miRNAs in hepatic fibrogenesis by parasite infections and discusses the strategies using miRNAs as candidates for diagnostics and therapeutics.
Collapse
Affiliation(s)
- Mengqi Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Robin J Flynn
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Graduate Studies Office, Department of Research, Innovation and Graduate Studies, Waterford Institute of Technology, X91 K0EK, Ireland
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
16
|
Yang YL, Huang YH, Wang FS, Tsai MC, Chen CH, Lian WS. MicroRNA-29a Compromises Hepatic Adiposis and Gut Dysbiosis in High Fat Diet-Fed Mice via Downregulating Inflammation. Mol Nutr Food Res 2023; 67:e2200348. [PMID: 37118999 DOI: 10.1002/mnfr.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/19/2023] [Indexed: 04/30/2023]
Abstract
SCOPE miR-29a expression patterns influence numerous physiological phenomena. Of note, upregulation of miR-29a ameliorates high-fat diet (HFD)-induced liver dysfunctions in mice. However, the miR-29a effect on gut microbiome composition and HFD-induced gut microbiota changes during metabolic disturbances remains unclear. The study provides compelling evidence for the protective role of miR-29a in gut barrier dysfunction and steatohepatitis. METHODS AND RESULTS miR-29a overexpressed mice (miR-29aTg) are bred to characterize intestinal, serum biochemical, and fecal microbiota profiling features compared to wild-type mice (WT). Mice are fed an HFD for 8 months to induce steatohepatitis, and intestinal dysfunction is determined via histopathological analysis. miR-29aTg has better lipid metabolism capability that decreases total cholesterol and triglyceride levels in serum than WT of the same age. The study further demonstrates that miR-29aTg contributes to intestinal integrity by maintaining periodic acid Schiff positive cell numbers and diversity of fecal microorganisms. HFD-induced bacterial community disturbance and steatohepatitis result in more severe WT than miR-29aTg. Gut microorganism profiling reveals Lactobacillus, Ruminiclostridium_9, and Lachnoclostridium enrichment in miR-29aTg and significantly decreases interleukin-6 expression in the liver and intestinal tract. CONCLUSION This study provides new evidence that sheds light on the host genetic background of miR-29a, which protects against steatohepatitis and other intestinal disorders.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Ying-Hsien Huang
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Chang, Kaohsiung, 833, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Ming-Chao Tsai
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chien-Hung Chen
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| |
Collapse
|
17
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, Nagy B, Szemes T. Cross-Kingdom Interaction of miRNAs and Gut Microbiota with Non-Invasive Diagnostic and Therapeutic Implications in Colorectal Cancer. Int J Mol Sci 2023; 24:10520. [PMID: 37445698 DOI: 10.3390/ijms241310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.
Collapse
Affiliation(s)
- Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Michal Zeman
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - Lydia Lukyova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Kamila Bernatova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Slovgen Ltd., 841 04 Bratislava, Slovakia
| | - Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
18
|
Fardi F, Bahari Khasraghi L, Shahbakhti N, Salami Naseriyan A, Najafi S, Sanaaee S, Alipourfard I, Zamany M, Karamipour S, Jahani M, Majidpoor J, Kalhor K, Talebi M, Mohsen Aghaei-Zarch S. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Res Clin Pract 2023:110739. [PMID: 37270071 DOI: 10.1016/j.diabres.2023.110739] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Humans have a complicated symbiotic relationship with their gut microbiome, which is postulated to impact host health and disease broadly. Epigenetic alterations allow host cells to regulate gene expression without altering the DNA sequence. The gut microbiome, offering environmental hints, can influence responses to stimuli by host cells with modifications on their epigenome and gene expression. Recent increasing data suggest that regulatory non-coding RNAs (miRNAs, circular RNAs, and long lncRNA) may affect host-microbe interactions. These RNAs have been suggested as potential host response biomarkers in microbiome-associated disorders, including diabetes and cancer. This article reviews the current understanding of the interplay between gut microbiota and non-coding RNA, including lncRNA, miRNA, and circular RNA. This can lead to a profound understanding of human disease and influence therapy. Furthermore, microbiome engineering as a mainstream strategy for improving human health has been discussed and confirms the hypothesis about a direct cross-talk between microbiome composition and non-coding RNA.
Collapse
Affiliation(s)
- Fatemeh Fardi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, Kish international, Kish, Iran
| | - Leila Bahari Khasraghi
- 15 Khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Negin Shahbakhti
- Department of biology, Faculty of Zoology, University of Razi, Kermanshah, Iran
| | - Amir Salami Naseriyan
- Department of Microbial Biotechnology, Islamic Azad University, Varamin-Pishva Branch, Tabriz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saameh Sanaaee
- Department of New Science, Faculty of Cellular and Molecular biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Marzieh Zamany
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of medical Science, Tehran, Iran
| | - Saman Karamipour
- Department of Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical science, Tehran, Iran
| | - Mehdi Jahani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA.
| | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical science, Tehran, Iran.
| |
Collapse
|
19
|
SONOYAMA K, OHSAKA F. Role of microRNAs in the crosstalk between the gut microbiota and intestinal immune system. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:222-228. [PMID: 37791343 PMCID: PMC10542430 DOI: 10.12938/bmfh.2023-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 10/05/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA species involved in diverse physiological processes, including immunity. Accumulating evidence suggests that miRNA-induced gene silencing plays a significant role in the regulation of the intestinal immune system by the gut commensal microbiota. This review aims to provide an overview of the intestinal miRNA-mediated crosstalk between the gut microbiota and the host intestinal immune system. First, we describe the role of miRNAs in regulating the intestinal immune system. Then we describe the effect of the gut microbiota on intestinal miRNA expression. Subsequently, we describe the role of miRNAs in the modulation of the intestinal immune system by the gut microbiota. Finally, we describe the effect of host miRNAs on the gut microbiota. Although the entire picture of this complex crosstalk remains unclear, efforts to unravel it will contribute significantly to developing new strategies for preventing and treating intestinal immune disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Kei SONOYAMA
- Research Faculty of Agriculture, Hokkaido University, Kita-9,
Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Fumina OHSAKA
- Research Faculty of Agriculture, Hokkaido University, Kita-9,
Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
20
|
Liu S, Chen P, Mohammed SAD, Li Z, Jiang X, Wu J, Liu S. Exploration of the potential mechanism of Baicalin for hepatic fibrosis based on network pharmacology, gut microbiota, and experimental validation. Front Microbiol 2023; 13:1051100. [PMID: 36687648 PMCID: PMC9846333 DOI: 10.3389/fmicb.2022.1051100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Baicalin (BA) is among the most effective and abundant flavonoids extracted from Scutellaria baicalensis that may be utilized to treat diseases associated with hepatic fibrosis (HF). Through network pharmacology, gut microbiota, and experimental validation, this research intends to elucidate the multi-target mechanism of BA on HF. BA targets were screened using databases and literature. As a result, In the anti-HF mechanism, the BA and 191 HF-associated targets interact, with 9 specific targets indicating that the BA's anti-HF mechanism is closely linked to gut microbiota. Consequently, rat intestinal content samples were obtained and examined using 16S rRNA sequencing. In the BA-treated group, the gut microbiota was positively regulated at the phylum,and genus levels, with Lactobacillus performing significantly. The study concluded that BA has a multi-targeted anti-HF effect and has changed the gut microbial ecosystem.
Collapse
Affiliation(s)
- Sujie Liu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shadi A. D. Mohammed
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China,School of Pharmacy, Lebanese International University, Sana’a, Yemen
| | - Zihui Li
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China,College of Life and Health, Dalian University, Dalian, China
| | - Xin Jiang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Juan Wu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China,*Correspondence: Shumin Liu,
| |
Collapse
|
21
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Xia Y, Ren M, Yang J, Cai C, Cheng W, Zhou X, Lu D, Ji F. Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: Correlation and causality. Front Microbiol 2022; 13:1003755. [PMID: 36204626 PMCID: PMC9531827 DOI: 10.3389/fmicb.2022.1003755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently related to a heavy socioeconomic burden and increased incidence. Since obesity is the most prevalent risk factor for NAFLD, weight loss is an effective therapeutic solution. Bariatric surgery (BS), which can achieve long-term weight loss, improves the overall health of patients with NAFLD. The two most common surgeries are the Roux-en-Y gastric bypass and sleeve gastrectomy. The gut-liver axis is the complex network of cross-talking between the gut, its microbiome, and the liver. The gut microbiome, involved in the homeostasis of the gut-liver axis, is believed to play a significant role in the pathogenesis of NAFLD and the metabolic improvement after BS. Alterations in the gut microbiome in NAFLD have been confirmed compared to that in healthy individuals. The mechanisms linking the gut microbiome to NAFLD have been proposed, including increased intestinal permeability, higher energy intake, and other pathophysiological alterations. Interestingly, several correlation studies suggested that the gut microbial signatures after BS become more similar to those of lean, healthy controls than that of patients with NAFLD. The resolution of NAFLD after BS is related to changes in the gut microbiome and its metabolites. However, confirming a causal link remains challenging. This review summarizes characteristics of the gut microbiome in patients with NAFLD before and after BS and accumulates existing evidence about the underlying mechanisms of the gut microbiome.
Collapse
Affiliation(s)
- Yi Xia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengting Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhou Cai
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixin Cheng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Lu
- Department of Endoscopy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Ji,
| |
Collapse
|
24
|
Yan XY, Yao JP, Li YQ, Zhang W, Xi MH, Chen M, Li Y. Global trends in research on miRNA-microbiome interaction from 2011 to 2021: A bibliometric analysis. Front Pharmacol 2022; 13:974741. [PMID: 36110534 PMCID: PMC9468484 DOI: 10.3389/fphar.2022.974741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
An increasing number of research suggests that the microRNA (miRNA)-microbiome interaction plays an essential role in host health and diseases. This bibliometric analysis aimed to identify the status of global scientific output, research hotspots, and frontiers regarding the study of miRNA-microbiome interaction over the past decade. We retrieved miRNA-microbiome-related studies published from 2011 to 2021 from the Web of Science Core Collection database; the R package bibliometrix was used to analyze bibliometric indicators, and VOSviewer was used to visualize the field status, hotspots, and research trends of miRNA-microbiome interplay. In total, 590 articles and reviews were collected. A visual analysis of the results showed that significant increase in the number of publications over time. China produced the most papers, and the United States contributed the highest number of citations. Shanghai Jiaotong University and the University of California Davis were the most active institutions in the field. Most publications were published in the areas of biochemistry and molecular biology. Yu Aiming was the most prolific writer, as indicated by the h-index and m-index, and Liu Shirong was the most commonly co-cited author. A paper published in the International Journal of Molecular Sciences in 2017 had the highest number of citations. The keywords "expression" and "gut microbiota" appeared most frequently, and the top three groups of diseases that appeared among keywords were cancer (colorectal, et al.), inflammatory bowel disease (Crohn's disease and ulcerative colitis), and neurological disorders (anxiety, Parkinson's disease, et al.). This bibliometric study revealed that most studies have focused on miRNAs (e.g., miR-21, miR-155, and miR-146a), gut microbes (e.g., Escherichia coli, Bifidobacterium, and Fusobacterium nucleatum), and gut bacteria metabolites (e.g., butyric acid), which have the potential to improve the diagnosis, treatment, and prognosis of diseases. We found that therapeutic strategies targeting the miRNA-microbiome axis focus on miRNA drugs produced in vitro; however, some studies suggest that in vivo fermentation can greatly increase the stability and reduce the degradation of miRNA. Therefore, this method is worthy of further research.
Collapse
Affiliation(s)
- Xiang-Yun Yan
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Peng Yao
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Qiu Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Han Xi
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Chen
- Clinical Medicine School, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Zhuo R, Xu M, Wang X, Zhou B, Wu X, Leone V, Chang EB, Zhong X. The regulatory role of N 6 -methyladenosine modification in the interaction between host and microbes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1725. [PMID: 35301791 DOI: 10.1002/wrna.1725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
N6 -methyladenosine (m6 A) is the most prevalent posttranscriptional modification in eukaryotic mRNAs. Dynamic and reversible m6 A modification regulates gene expression to control cellular processes and diverse biological functions. Growing evidence indicated that m6 A modification is involved in the homeostasis of host and microbes (mostly viruses and bacteria). Disturbance of m6 A modification affects the life cycles of viruses and bacteria, however, these microbes could in turn change host m6 A modification leading to human disease including autoimmune diseases and cancer. Thus, we raise the concept that m6 A could be a "messenger" molecule to participate in the interactions between host and microbes. In this review, we summarize the regulatory mechanisms of m6 A modification on viruses and commensal microbiota, highlight the roles of m6 A methylation in the interaction of host and microbes, and finally discuss drugs development targeting m6 A modification. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ruhao Zhuo
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Menghui Xu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Zhou
- Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Cabana-Puig X, Bond JM, Wang Z, Dai R, Lu R, Lin A, Oakes V, Rizzo A, Swartwout B, Abdelhamid L, Mao J, Prakash M, Sangmeister C, Cheung N, Cowan C, Reilly CM, Sun S, Ahmed SA, Luo XM. Phenotypic Drift in Lupus-Prone MRL/lpr Mice: Potential Roles of MicroRNAs and Gut Microbiota. Immunohorizons 2022; 6:36-46. [PMID: 35039434 PMCID: PMC10984647 DOI: 10.4049/immunohorizons.2100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
MRL/lpr mice have been extensively used as a murine model of lupus. Disease progression in MRL/lpr mice can differ among animal facilities, suggesting a role for environmental factors. We noted a phenotypic drift of our in-house colony, which was the progeny of mice obtained from The Jackson Laboratory (JAX; stocking number 000485), that involved attenuated glomerulonephritis, increased splenomegaly, and reduced lymphadenopathy. To validate our in-house mice as a model of lupus, we compared these mice with those newly obtained from JAX, which were confirmed to be genetically identical to our in-house mice. Surprisingly, the new JAX mice exhibited a similar phenotypic drift, most notably the attenuation of glomerulonephritis. Interestingly, our in-house colony differed from JAX mice in body weight and kidney size (both sexes), as well as in splenic size, germinal center formation, and level of anti-dsDNA auto-IgG in the circulation (male only). In addition, we noted differential expression of microRNA (miR)-21 and miR-183 that might explain the splenic differences in males. Furthermore, the composition of gut microbiota was different between in-house and new JAX mice at early time points, which might explain some of the renal differences (e.g., kidney size). However, we could not identify the reason for attenuated glomerulonephritis, a shared phenotypic drift between the two colonies. It is likely that this was due to certain changes of environmental factors present in both JAX and our facilities. Taken together, these results suggest a significant phenotypic drift in MRL/lpr mice in both colonies that may require strain recovery from cryopreservation.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jacob M Bond
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Amy Lin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Vanessa Oakes
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Amy Rizzo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Brianna Swartwout
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jiangdi Mao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Meeta Prakash
- Carilion School of Medicine, Virginia Tech, Roanoke, VA
| | - Constanza Sangmeister
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Nathaniel Cheung
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Catharine Cowan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, CA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA;
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA;
| |
Collapse
|
27
|
Xue X, Wu J, Ding M, Gao F, Zhou F, Xu B, Lu M, Li J, Li X. Si-Wu-Tang ameliorates fibrotic liver injury via modulating intestinal microbiota and bile acid homeostasis. Chin Med 2021; 16:112. [PMID: 34736501 PMCID: PMC8570021 DOI: 10.1186/s13020-021-00524-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background Fibrotic liver injury is a progressive scarring event, which may permanently affect liver function and progress into devastating end-stage liver diseases due to the absence of effective therapies. Si-Wu-Tang (SWT), a traditional Chinese medicine formula used in clinic to treat gynecological disorders for centuries, has been investigated in recent preliminary findings for its role in alleviating chronic liver diseases. Here we aim to elucidate the therapeutic effects and possible mechanisms of SWT against fibrotic liver injury. Methods UHPLC-MS/MS was performed to investigate the chemical characterization of SWT. After intragastrically administered with carbon tetrachloride (CCl4) every 3 days for 1-week, C57BL/6 mice were orally administered with SWT (5.2, 10.4 and 20.8 g/kg) once daily for 3 weeks along with CCl4 challenge. Liver function was determined by the measurement of serum biomarkers, hematoxylin and eosin (H&E) and Masson’s trichrome staining. Intestinal inflammatory infiltration and the disruption of intestinal barrier were examined by H&E and E-cadherin immunohistochemical staining. The microbial composition of intestinal content was determined by 16S rRNA sequencing. Serum bile acids (BAs) profiling was analyzed by LC–MS/MS. Simultaneously, the expression of genes of interest was determined by qPCR and western blot. Results SWT exhibited remarkable therapeutic effects on CCl4-induced liver fibrosis, as indicated by improved collagen accumulation in livers, intestinal barrier injury and hepatic and intestinal inflammatory response. Results of 16S rRNA sequencing revealed that SWT treatment strikingly restructured intestinal microbiota in fibrotic mice by increasing the relative abundances of Bacteroides and Lachnoclostridium and decreasing the relative abundances of Alistipes and Rikenellaceae. UHPLC-MS/MS data suggested that SWT altered the composition of BAs in circulation as evidenced by increased unconjugated BAs like cholic acid and chenodeoxycholic acid but decreased conjugated BAs including taurocholic acid and taurodeoxycholic acid, compared to that in CCl4 mice. Notably, SWT efficiently improved the imbalance of BA homeostasis in livers caused by CCl4 via activating farnesoid X receptor (FXR)-fibroblast growth factor 15 enterohepatic and FXR-small heterodimer partner hepatic pathways. Conclusion SWT decreased inflammatory response, reconstructed gut microbiota-mediated BA homeostasis as well as activated FXR pathways, which eventually protected against CCl4-induced fibrotic liver injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00524-0.
Collapse
Affiliation(s)
- Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Mingjun Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jun Li
- Gynecology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
28
|
Bruneau A, Hundertmark J, Guillot A, Tacke F. Molecular and Cellular Mediators of the Gut-Liver Axis in the Progression of Liver Diseases. Front Med (Lausanne) 2021; 8:725390. [PMID: 34650994 PMCID: PMC8505679 DOI: 10.3389/fmed.2021.725390] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gut-liver axis covers the bidirectional communication between the gut and the liver, and thus includes signals from liver-to-gut (e.g., bile acids, immunoglobulins) and from gut-to-liver (e.g., nutrients, microbiota-derived products, and recirculating bile acids). In a healthy individual, liver homeostasis is tightly controlled by the mostly tolerogenic liver resident macrophages, the Kupffer cells, capturing the gut-derived antigens from the blood circulation. However, disturbances of the gut-liver axis have been associated to the progression of varying chronic liver diseases, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and primary sclerosing cholangitis. Notably, changes of the gut microbiome, or intestinal dysbiosis, combined with increased intestinal permeability, leads to the translocation of gut-derived bacteria or their metabolites into the portal vein. In the context of concomitant or subsequent liver inflammation, the liver is then infiltrated by responsive immune cells (e.g., monocytes, neutrophils, lymphoid, or dendritic cells), and microbiota-derived products may provoke or exacerbate innate immune responses, hence perpetuating liver inflammation and fibrosis, and potentiating the risks of developing cirrhosis. Similarly, food derived antigens, bile acids, danger-, and pathogen-associated molecular patterns are able to reshape the liver immune microenvironment. Immune cell intracellular signaling components, such as inflammasome activation, toll-like receptor or nucleotide-binding oligomerization domain-like receptors signaling, are potent targets of interest for the modulation of the immune response. This review describes the current understanding of the cellular landscape and molecular pathways involved in the gut-liver axis and implicated in chronic liver disease progression. We also provide an overview of innovative therapeutic approaches and current clinical trials aiming at targeting the gut-liver axis for the treatment of patients with chronic liver and/or intestinal diseases.
Collapse
Affiliation(s)
- Alix Bruneau
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Jana Hundertmark
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
29
|
Zhang H, Ma W, Sun Z, Zhu C, Werid GM, Ibrahim YM, Zhang W, Pan Y, Shi D, Chen H, Wang Y. Abundance of Lactobacillus in porcine gut microbiota is closely related to immune response following PRRSV immunization. Vet Microbiol 2021; 259:109134. [PMID: 34087673 DOI: 10.1016/j.vetmic.2021.109134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence shows that gut microbiota plays a critical role in host immune system development and immune regulation, thus the composition of gut microbiota may affect how individuals respond to immunizations. Currently, little evidence is available on the correlation between porcine gut microbiota and vaccine immune response. Here, we investigated the influence of gut microbiota on immune response in pigs to porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Based on the antibody levels for PRRSV, the immunized pigs were divided into three groups (high, low, and others), and followed by virulent PRRSV challenge. The comprehensive analysis of microbial composition revealed that gut microbiota was similar in the richness and diversity among different groups before immunization. After immunization, the richness and diversity of gut microbial community in the high group were still similar to the low group, although there was a decrease in community diversity overtime. Interestingly, the antibody titer was positively correlated with the abundance of Lactobacillus in gut microbiota in immunized pigs. Further analysis indicated that gut microbial composition might be correlated to the clinical parameters such as body weight and rectal temperature after virus challenge. Taken together, our findings suggest that certain specific members of gut microbiota, such as Lactobacillus may serve as a mechanism for regulating the immune response following immunization in pigs.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Wenjie Ma
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China.
| | - Changkang Zhu
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China.
| | - Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yassein M Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Wenli Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Dongfang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
30
|
Nguyen HT, Kacimi SEO, Nguyen TL, Suman KH, Lemus-Martin R, Saleem H, Do DN. MiR-21 in the Cancers of the Digestive System and Its Potential Role as a Diagnostic, Predictive, and Therapeutic Biomarker. BIOLOGY 2021; 10:biology10050417. [PMID: 34066762 PMCID: PMC8151274 DOI: 10.3390/biology10050417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression of their target genes, and thus, their dysregulation significantly contributes to the development of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated via its different molecular networks. Then, a comprehensive review on the potential targets and the current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the challenges for the use of miR-21 as a therapeutic tool for these cancers is added.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- Faculty of Medicine, Duy Tan University, Danang 550000, Vietnam
| | | | - Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Kamrul Hassan Suman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | | | - Humaira Saleem
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada
- Correspondence: ; Tel.: +1-819-571-5310
| |
Collapse
|