1
|
Rodríguez-García C, Osuna-Prieto FJ, Kohler I, Sanchez-Gomez J, Ruiz-Campos S, Castillo MJ, Amaro-Gahete FJ, Martínez-Tellez B, Jurado-Fasoli L. Higher plasma levels of endocannabinoids and analogues are correlated with a worse cardiometabolic profile in middle-aged adults. J Physiol Biochem 2024:10.1007/s13105-024-01063-6. [PMID: 39636365 DOI: 10.1007/s13105-024-01063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The increase in age-related comorbidities, such as cardiometabolic diseases, has become a global health priority. There is a growing need to find new parameters capable of improving the detection of cardiometabolic risk factors, and circulating endocannabinoids (eCBs) are a promising tool in this context. Here, we aimed to investigate the relationship between plasma levels of eCBs and their analogues with body composition and cardiometabolic risk factors in middle-aged adults. Seventy-two individuals (54% women; 53.6 ± 5.1 years old) were included in this study. Plasma levels of eCBs and analogues were determined using liquid chromatography-tandem mass spectrometry. Body composition was measured by dual-energy X-ray absorptiometry. Cardiometabolic risk factors (i.e., glucose and lipid profile, blood pressure, liver and renal parameters, and gonadal hormones) were also assessed. The plasma levels of 1- and 2-arachidonylglycerol (1-AG&2-AG) were positively correlated with adiposity (all r ≥ 0.23, P < 0.05). Interestingly, the plasma levels of 1-AG&2-AG, arachidonoylethanolamide, and palmitoyl-ethanolamide were positively correlated with the homeostatic model assessment index - Insulin Resistance (HOMA-IR) (all r ≥ 0.32, P < 0.01). Our results also showed that high levels of 1-AG&2-AG, arachidonoylethanolamide, linoleoyl ethanolamide, and palmitoleoyl ethanolamide were correlated with poorer liver (all r ≥ 0.27, P < 0.05), kidney (all r ≥ 0.24, P < 0.05), and gonadal function parameters (testosterone: all r > 0.26, P < 0.05, SHBG: 1-AG&2-AG r=-0.33, P < 0.01). The plasma levels of some eCBs and analogues are correlated with a worse cardiometabolic profile in middle-aged adults.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Francisco J Osuna-Prieto
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain, Tarragona, 43005, Spain
- Department of Physical Education and Sports, PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, 18071, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, 1098 HX, The Netherlands
| | - Joaquin Sanchez-Gomez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - Samuel Ruiz-Campos
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Borja Martínez-Tellez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, 18071, Spain.
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands.
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| |
Collapse
|
2
|
Khedpande N, Barve K. Role of gut dysbiosis in drug-resistant epilepsy: Pathogenesis and available therapeutic strategies. Brain Res 2024; 1850:149385. [PMID: 39643107 DOI: 10.1016/j.brainres.2024.149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Over 70 million people worldwide suffer from epilepsy, a persistent brain disorder. Although there are more than 20 antiseizure drugs available for the symptomatic treatment of epilepsy, about one-third of patients with epilepsy experience seizures that show resistance to pharmacotherapy. Since patients with drug-resistant epilepsy are more prone to physical injuries, psychosocial dysfunction, early death, and deteriorated life quality, the development of safer and more effective treatments is a crucial clinical need. The gut-brain axis and microbiome research advances have provided new insights into the pathophysiology of epilepsy, the resistance to anti-seizure medicine, and potential treatment targets. Inflammation, disturbance of the blood-brain barrier, and altered neurotransmitters are key pathways linked to gut dysbiosis. The characterization of microbial species and functional pathways has advanced thanks to metagenomic sequencing and high-throughput analysis. In this review, we elaborate on the gut-mediated molecular pathways involved in drug-resistant epilepsy, the gut- modulatory therapeutic options, and their combination with antiseizure medications for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Nidhi Khedpande
- Department of Pharmacology, Shobhabne Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India
| | - Kalyani Barve
- Department of Pharmacology, Shobhabne Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India.
| |
Collapse
|
3
|
Vasudevan G, Ramachandran K, Tangavel C, Nayagam SM, Gopalakrishnan C, Muthurajan R, Sri Vijay Anand KS, Rajasekaran S. "Elucidating the immunomodulatory role of endocannabinoids in intervertebral disc degeneration". EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08550-w. [PMID: 39542877 DOI: 10.1007/s00586-024-08550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/23/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE The endocannabinoid system (ECS) has been well-established to play a crucial role in the regulation of several physiological processes as well as many inflammatory disease conditions. However, its role in intervertebral disc degeneration has been least explored. We aim to investigate the immunomodulatory role of endocannabinoids in regulating IVD health. METHODS The study population included 20 healthy volunteers (controls) and 40 patients with disc degeneration (disease group) (20 Modic and 20 Non Modic). 16S metagenome sequencing of the V3-V4 region was performed for the DNA extracted from NP tissue samples of both control and disease groups. Sequencing was carried out using the Novaseq 6000 platform using 250 bp paired-end chemistry. A global metabolic profile was obtained using the uHPLC system coupled with Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer. RESULTS Our study revealed a higher prevalence of gram-negative bacteria, particularly opportunistic pathogens like Pseudomonas, in diseased discs (71-81%) compared to healthy controls (54%). Further investigation using metabolomics identified significant changes in the lipid profiles of diseased discs. We found that the signalling molecules of the ECS, 2-arachidonylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), were significantly lower in diseased discs compared to controls (Log2FC -2.62 for 2-AG and -3.15 for AEA). Conversely, pro-inflammatory metabolites like LTA4, HPETE, HETE, and Prostaglandin G2 were elevated in diseased discs, with a Log2 fold increase greater than 2.5. CONCLUSION The study reveals that the endocannabinoid metabolites (2-AG and AEA) of the ECS could be a significant molecule influencing susceptibility to infection and inflammation within the intervertebral discs, which could be a potential target for improving disc health. LEVEL OF EVIDENCE Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding.
Collapse
Affiliation(s)
- Gowdaman Vasudevan
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Chitraa Tangavel
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Sharon Miracle Nayagam
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Chellappa Gopalakrishnan
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, India
| | - K S Sri Vijay Anand
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | | |
Collapse
|
4
|
Mauney EE, Wibowo MC, Tseng YH, Kostic AD. Adipose tissue-gut microbiome crosstalk in inflammation and thermogenesis. Trends Endocrinol Metab 2024:S1043-2760(24)00272-8. [PMID: 39516113 DOI: 10.1016/j.tem.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Previously characterized as inert fat depots, adipocytes are now recognized as dynamic mediators of inflammatory tone, metabolic health, and nutrient homeostasis. As endocrine organs, specialized depots of adipose tissue engage in crosstalk between the gut, liver, pancreas, and brain to coordinate appetite, thermogenesis, and ultimately body weight. These functions are tightly linked to the inflammatory status of adipose tissue, which is in turn influenced by the health of the gut microbiome. Here, we review recent findings linking specific gut microbes and their secreted factors, including recently identified elements such as bacterial extracellular vesicles, to the functional status of adipocytes. We conclude that further study may generate novel approaches for treating obesity and metabolic disease.
Collapse
Affiliation(s)
- Erin E Mauney
- Joslin Diabetes Center, Boston, MA 02215, USA; Massachusetts General Hospital for Children, Pediatric Gastroenterology and Nutrition Program, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
5
|
Compare D, Sgamato C, Rocco A, Coccoli P, Ambrosio C, Nardone G. The Leaky Gut and Human Diseases: "Can't Fill the Cup if You Don't Plug the Holes First". Dig Dis 2024; 42:548-566. [PMID: 39047703 DOI: 10.1159/000540379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The gut barrier is a sophisticated and dynamic system that forms the frontline defense between the external environment and the body's internal milieu and includes various structural and functional components engaged not only in digestion and nutrient absorption but also in immune regulation and overall health maintenance. SUMMARY When one or more components of the intestinal barrier lose their structure and escape their function, this may result in a leaky gut. Mounting evidence emphasizes the crucial role of the gut microbiome in preserving the integrity of the gut barrier and provides insights into the pathophysiological implications of conditions related to leaky gut in humans. Assessment of intestinal permeability has evolved from invasive techniques to noninvasive biomarkers, but challenges remain in achieving consensus about the best testing methods and their accuracy. Research on the modulation of gut permeability is just starting, and although no medical guidelines for the treatment of leaky gut syndrome are available, several treatment strategies are under investigation with promising results. KEY MESSAGES This review discusses the composition of the intestinal barrier, the pathophysiology of the leaky gut and its implications on human health, the measurement of intestinal permeability, and the therapeutic strategies to restore gut barrier integrity.
Collapse
Affiliation(s)
- Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Costantino Sgamato
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Pietro Coccoli
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Carmen Ambrosio
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| |
Collapse
|
6
|
Lopez-Cortes OD, Trujillo-Sánchez F, Sierra-Ruelas E, Martinez-Lopez E, Di Marzo V, Vizmanos B. Association between the FAAH C385A variant (rs324420) and obesity-related traits: a systematic review. Int J Obes (Lond) 2024; 48:188-201. [PMID: 38114812 DOI: 10.1038/s41366-023-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Overweight and obesity are the consequence of a sustained positive energy balance. Twin studies show high heritability rates pointing to genetics as one of the principal risk factors. By 2022, genomic studies led to the identification of almost 300 obesity-associated variants that could help to fill the gap of the high heritability rates. The endocannabinoid system is a critical regulator of metabolism for its effects on the central nervous system and peripheral tissues. Fatty acid amide hydrolase (FAAH) is a key enzyme in the inactivation of one of the two endocannabinoids, anandamide, and of its congeners. The rs324420 variant within the FAAH gene is a nucleotide missense change at position 385 from cytosine to adenine, resulting in a non-synonymous amino acid substitution from proline to threonine in the FAAH enzyme. This change increases sensitivity to proteolytic degradation, leading to reduced FAAH levels and increased levels of anandamide, associated with obesity-related traits. However, association studies of this variant with metabolic parameters have found conflicting results. This work aims to perform a systematic review of the existing literature on the association of the rs324420 variant in the FAAH gene with obesity and its related traits. METHODS A literature search was conducted in PubMed, Web of Science, and Scopus. A total of 645 eligible studies were identified for the review. RESULTS/CONCLUSIONS After the identification, duplicate elimination, title and abstract screening, and full-text evaluation, 28 studies were included, involving 28 183 individuals. We show some evidence of associations between the presence of the variant allele and higher body mass index, waist circumference, fat mass, and waist-to-hip ratio levels and alterations in glucose and lipid homeostasis. However, this evidence should be taken with caution, as many included studies did not report a significant difference between genotypes. These discordant results could be explained mainly by the pleiotropy of the endocannabinoid system, the increase of other anandamide-like mediators metabolized by FAAH, and the influence of gene-environment interactions. More research is necessary to study the endocannabinoidomic profiles and their association with metabolic diseases.
Collapse
Affiliation(s)
- Oscar David Lopez-Cortes
- Licenciatura en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
- Canada Excellence Research Chair in Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec, QC, G1V 4G5, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC, G1V 4G5, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Québec, QC, G1V 4G5, Canada
| | - Francisco Trujillo-Sánchez
- Licenciatura en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
| | - Erika Sierra-Ruelas
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
| | - Erika Martinez-Lopez
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico
| | - Vincenzo Di Marzo
- Canada Excellence Research Chair in Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec, QC, G1V 4G5, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC, G1V 4G5, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Québec, QC, G1V 4G5, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy
| | - Barbara Vizmanos
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico.
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico.
- Departamento de Clínicas de Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico.
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44320, Mexico.
| |
Collapse
|
7
|
Ellermann M. Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11359. [PMID: 38389811 PMCID: PMC10880783 DOI: 10.3389/adar.2023.11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
Bioactive lipids such as endocannabinoids serve as important modulators of host health and disease through their effects on various host functions including central metabolism, gut physiology, and immunity. Furthermore, changes to the gut microbiome caused by external factors such as diet or by disease development have been associated with altered endocannabinoid tone and disease outcomes. These observations suggest the existence of reciprocal relationships between host lipid signaling networks and bacterial populations that reside within the gut. Indeed, endocannabinoids and their congeners such as N-acylethanolamides have been recently shown to alter bacterial growth, functions, physiology, and behaviors, therefore introducing putative mechanisms by which these bioactive lipids directly modulate the gut microbiome. Moreover, these potential interactions add another layer of complexity to the regulation of host health and disease pathogenesis that may be mediated by endocannabinoids and their derivatives. This mini review will summarize recent literature that exemplifies how N-acylethanolamides and monoacylglycerols including endocannabinoids can impact bacterial populations in vitro and within the gut microbiome. We also highlight exciting preclinical studies that have engineered gut bacteria to synthesize host N-acylethanolamides or their precursors as potential strategies to treat diseases that are in part driven by aberrant lipid signaling, including obesity and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
8
|
Deng F, Chen Y, Sun QS, Lin ZB, Min Y, Zhao BC, Huang ZB, Liu WF, Li C, Hu JJ, Liu KX. Gut microbiota dysbiosis is associated with sepsis-induced cardiomyopathy in patients: A case-control study. J Med Virol 2023; 95:e28267. [PMID: 36319439 DOI: 10.1002/jmv.28267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Myocardial injury is a major complication of sepsis and a key factor affecting prognosis. Therefore, early and accurate diagnosis and timely management of sepsis-induced cardiomyopathy (SICM) are of great significance for the prevention and treatment of sepsis. The gut microbiota has been shown to be closely associated with sepsis or myocardial injury, but the association between the gut microbiota and SICM is not fully understood. This study aimed to explore the link between gut microbiota composition and SICM. METHODS A case-control and single-center study of clinical features and gut microbiota profiles by Metagenome and Virome was conducted in SICM patients (n = 15) and sepsis-uninduced cardiomyopathy patients (SNICM, n = 16). RESULTS Compared with SNICM patients, SICM patients showed significant myocardial injury and higher 28-day mortality, SOFA scores, lactate levels, and infection levels on admission. Meanwhile, differences in the composition of gut bacteria, archaea, fungi, and viruses were analyzed between the two groups. Differential gut bacteria or viruses were found to have a good predictive effect on SICM. Furthermore, gut bacteria and viruses that differed between the two groups were strongly related. The abundance of Cronobacter and Cronobacter phage was higher in the SICM group than in the SNICM group, and the receiver operating characteristic curve showed that Cronobacter and Cronobacter phage both had a good predictive effect on SICM. CONCLUSIONS SICM patients may have specific gut microbiota signatures, and Cronobacter and Cronobacter phages have a good ability to identify and diagnose SICM.
Collapse
Affiliation(s)
- Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Yu Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China.,Department of Anesthesiology, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, South Branch of Fujian Provincial Hospital, Fuzhou, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Yue Min
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Zhi-Bin Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou , China
| |
Collapse
|
9
|
Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022; 10:2492. [PMID: 36289755 PMCID: PMC9599275 DOI: 10.3390/biomedicines10102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.
Collapse
Affiliation(s)
- Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Gabriela Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Alina Săcărescu
- Department of Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității, 700115 Iași, Romania
- Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, 700661 Iași, Romania
| | - Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Elena Rezuș
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| |
Collapse
|
10
|
Varsha KK, Nagarkatti M, Nagarkatti P. Role of Gut Microbiota in Cannabinoid-Mediated Suppression of Inflammation. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10550. [PMID: 36776218 PMCID: PMC9910956 DOI: 10.3389/adar.2022.10550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022]
Abstract
Cannabinoids and the endocannabinoid system have been well established to play a crucial role in the regulation of the immune response. Also, emerging data from numerous investigations unravel the imperative role of gut microbiota and their metabolites in the maintenance of immune homeostasis and gut barrier integrity. In this review, we concisely report the immunosuppressive mechanisms triggered by cannabinoids, and how they are closely associated with the alterations in the gut microbiome and metabolome following exposure to endogenous or exogenous cannabinoids. We discuss how cannabinoid-mediated induction of microbial secondary bile acids, short chain fatty acids, and indole metabolites, produced in the gut, can suppress inflammation even in distal organs. While clearly, more clinical studies are necessary to establish the cross talk between exo- or endocannabinoid system with the gut microbiome and the immune system, the current evidence opens a new avenue of cannabinoid-gut-microbiota-based therapeutics to regulate immunological disorders.
Collapse
Affiliation(s)
| | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
11
|
Chen J, Wang Y, Shi Y, Liu Y, Wu C, Luo Y. Association of Gut Microbiota With Intestinal Ischemia/Reperfusion Injury. Front Cell Infect Microbiol 2022; 12:962782. [PMID: 35903197 PMCID: PMC9314564 DOI: 10.3389/fcimb.2022.962782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (II/R) is a common acute and critical condition in clinical practice with a high mortality rate. However, there is still a lack of effective prevention and treatment measures for II/R injury. The role of the gut microbiota in II/R has attracted widespread attention. Recent evidence has demonstrated that the gut microbiota plays a pivotal role in the occurrence, development, and prognosis of II/R. Therefore, maintaining the homeostasis of gut microbiota and its metabolites may be a potential strategy for the treatment of II/R. This review focuses on the importance of crosstalk between the gastrointestinal ecosystem and II/R to highlight II/R-induced gut microbiota signatures and potential applications of microbial-based therapies in II/R. This will also provide potentially effective biomarkers for the prediction, diagnosis and treatment of II/R.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongxia Shi
- Department of Surgical Nursing, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongpan Liu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengyi Wu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| | - Yanrong Luo
- Physical Examination Center, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| |
Collapse
|
12
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
13
|
Vijay A, Kouraki A, Gohir S, Turnbull J, Kelly A, Chapman V, Barrett DA, Bulsiewicz WJ, Valdes AM. The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes 2022; 13:1997559. [PMID: 34787065 PMCID: PMC8604388 DOI: 10.1080/19490976.2021.1997559] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid (EC) system has pleiotropic functions in the body. It plays a key role in energy homeostasis and the development of metabolic disorders being a mediator in the relationship between the gut microbiota and host metabolism. In the current study we explore the functional interactions between the endocannabinoid system and the gut microbiome in modulating inflammatory markers. Using data from a 6 week exercise intervention (treatment n = 38 control n = 40) and a cross sectional validation cohort (n = 35), we measured the associations of 2-arachidonoylglycerol (2-AG), anandamide (AEA), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) with gut microbiome composition, gut derived metabolites (SCFAs) and inflammatory markers both cross-sectionally and longitudinally. At baseline AEA and OEA were positively associated with alpha diversity (β(SE) = .32 (.06), P = .002; .44 (.04), P < .001) and with SCFA producing bacteria such as Bifidobacterium (2-AG β(SE) = .21 (.10), P < .01; PEA β(SE) = .23 (.08), P < .01), Coprococcus 3 and Faecalibacterium (PEA β(SE) = .29 (.11), P = .01; .25 (.09), P < .01) and negatively associated with Collinsella (AEA β(SE) = -.31 (.12), P = .004). Additionally, we found AEA to be positively associated with SCFA Butyrate (β(SE) = .34 (.15), P = .01). AEA, OEA and PEA all increased significantly with the exercise intervention but remained constant in the control group. Changes in AEA correlated with SCFA butyrate and increases in AEA and PEA correlated with decreases in TNF-ɑ and IL-6 statistically mediating one third of the effect of SCFAs on these cytokines. Our data show that the anti-inflammatory effects of SCFAs are partly mediated by the EC system suggesting that there may be other pathways involved in the modulation of the immune system via the gut microbiome.
Collapse
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,CONTACT Amrita Vijay Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Afroditi Kouraki
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - Anthony Kelly
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Vicky Chapman
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - David A Barrett
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,DAB-Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Ana M Valdes
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Martínez-Aguirre C, Cinar R, Rocha L. Targeting Endocannabinoid System in Epilepsy: For Good or for Bad. Neuroscience 2021; 482:172-185. [PMID: 34923038 DOI: 10.1016/j.neuroscience.2021.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a neurological disorder with a high prevalence worldwide. Several studies carried out during the last decades indicate that the administration of cannabinoids as well as the activation of the endocannabinoid system (ECS) represent a therapeutic strategy to control epilepsy. However, there are controversial studies indicating that activation of ECS results in cell damage, inflammation and neurotoxicity, conditions that facilitate the seizure activity. The present review is focused to present findings supporting this issue. According to the current discrepancies, it is relevant to elucidate the different effects induced by the activation of ECS and determine the conditions under which it facilitates the seizure activity.
Collapse
Affiliation(s)
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, USA
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
15
|
Zwartjes MSZ, Gerdes VEA, Nieuwdorp M. The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions. Metabolites 2021; 11:531. [PMID: 34436472 PMCID: PMC8398981 DOI: 10.3390/metabo11080531] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is becoming an increasing problem worldwide and is often, but not invariably, associated with dyslipidemia. The gut microbiota is increasingly linked to cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes mellitus. However, relatively little focus has been attributed to the role of gut-microbiota-derived metabolites in the development of dyslipidemia and alterations in lipid metabolism. In this review, we discuss current data involved in these processes and point out the therapeutic potentials. We cover the ability of gut microbiota metabolites to alter lipoprotein lipase action, VLDL secretion, and plasma triglyceride levels, and its effects on reverse cholesterol transport, adipocyte dysfunction, and adipose tissue inflammation. Finally, the current intervention strategies for treatment of obesity and dyslipidemia is addressed with emphasis on the role of gut microbiota metabolites and its ability to predict treatment efficacies.
Collapse
Affiliation(s)
- Max S. Z. Zwartjes
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
| | - Victor E. A. Gerdes
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|