1
|
Gold A, Kaye S, Gao J, Zhu J. Propionate Decreases Microglial Activation but Impairs Phagocytic Capacity in Response to Aggregated Fibrillar Amyloid Beta Protein. ACS Chem Neurosci 2024; 15:4010-4020. [PMID: 39394077 DOI: 10.1021/acschemneuro.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Microglia, the innate immune cell of the brain, are a principal player in Alzheimer's disease (AD) pathogenesis. Their surveillance of the brain leads to interaction with the protein aggregates that drive AD pathogenesis, most notably Amyloid Beta (Aβ). Microglia attempt to clear and degrade Aβ using phagocytic machinery, spurring damaging neuroinflammation in the process. Thus, modulation of the microglial response to Aβ is crucial in mitigating AD pathophysiology. SCFAs, microbial byproducts of dietary fiber fermentation, are blood-brain barrier permeable molecules that have recently been shown to modulate microglial function. It is unclear whether propionate, one representative SCFA, has beneficial or detrimental effects on microglia in AD. Thus, we investigated its impact on microglial Aβ response in vitro. Using a multiomics approach, we characterized the transcriptomic, metabolomic, and lipidomic responses of immortalized murine microglia following 1 h of Aβ stimulation, as well as characterizing Aβ phagocytosis and secretion of reactive nitrogen species. Propionate blunted the early inflammatory response driven by Aβ, downregulating the expression of many Aβ-stimulated immune genes, including those regulating inflammation, the immune complement system, and chemotaxis. Further, it reduced the expression of Apoe and inflammation-promoting Aβ-binding scavenger receptors such as Cd36 and Msr1 in favor of inflammation-dampening Lpl, although this led to impaired phagocytosis. Finally, propionate shifted microglial metabolism, altering phospholipid composition and diverting arginine metabolism, resulting in decreased nitric oxide production. Altogether, our data demonstrate a modulatory role of propionate on microglia that may dampen immune activation in response to Aβ, although at the expense of phagocytic capacity.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sarah Kaye
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jie Gao
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiangjiang Zhu
- Human Nutrition Program and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
3
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
4
|
Ma H, Zhu M, Chen M, Li X, Feng X. The role of macrophage plasticity in neurodegenerative diseases. Biomark Res 2024; 12:81. [PMID: 39135084 PMCID: PMC11321226 DOI: 10.1186/s40364-024-00624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Tissue-resident macrophages and recruited macrophages play pivotal roles in innate immunity and the maintenance of brain homeostasis. Investigating the involvement of these macrophage populations in eliciting pathological changes associated with neurodegenerative diseases has been a focal point of research. Dysregulated states of macrophages can compromise clearance mechanisms for pathological proteins such as amyloid-β (Aβ) in Alzheimer's disease (AD) and TDP-43 in Amyotrophic lateral sclerosis (ALS). Additionally, recent evidence suggests that abnormalities in the peripheral clearance of pathological proteins are implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, numerous genome-wide association studies have linked genetic risk factors, which alter the functionality of various immune cells, to the accumulation of pathological proteins. This review aims to unravel the intricacies of macrophage biology in both homeostatic conditions and neurodegenerative disorders. To this end, we initially provide an overview of the modifications in receptor and gene expression observed in diverse macrophage subsets throughout development. Subsequently, we outlined the roles of resident macrophages and recruited macrophages in neurodegenerative diseases and the progress of targeted therapy. Finally, we describe the latest advances in macrophage imaging methods and measurement of inflammation, which may provide information and related treatment strategies that hold promise for informing the design of future investigations and therapeutic interventions.
Collapse
Affiliation(s)
- Hongyue Ma
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mingxia Zhu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mengjie Chen
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiuli Li
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. Neurodevelopmental Disorders Associated with Gut Microbiome Dysbiosis in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:796. [PMID: 39062245 PMCID: PMC11275248 DOI: 10.3390/children11070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The formation of the human gut microbiome initiates in utero, and its maturation is established during the first 2-3 years of life. Numerous factors alter the composition of the gut microbiome and its functions, including mode of delivery, early onset of breastfeeding, exposure to antibiotics and chemicals, and maternal stress, among others. The gut microbiome-brain axis refers to the interconnection of biological networks that allow bidirectional communication between the gut microbiome and the brain, involving the nervous, endocrine, and immune systems. Evidence suggests that the gut microbiome and its metabolic byproducts are actively implicated in the regulation of the early brain development. Any disturbance during this stage may adversely affect brain functions, resulting in a variety of neurodevelopmental disorders (NDDs). In the present study, we reviewed recent evidence regarding the impact of the gut microbiome on early brain development, alongside its correlation with significant NDDs, such as autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, cerebral palsy, fetal alcohol spectrum disorders, and genetic NDDs (Rett, Down, Angelman, and Turner syndromes). Understanding changes in the gut microbiome in NDDs may provide new chances for their treatment in the future.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, 29010 Málaga, Spain
| |
Collapse
|
6
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
7
|
Srinivasan S, Kancheva D, De Ren S, Saito T, Jans M, Boone F, Vandendriessche C, Paesmans I, Maurin H, Vandenbroucke RE, Hoste E, Voet S, Scheyltjens I, Pavie B, Lippens S, Schwabenland M, Prinz M, Saido T, Bottelbergs A, Movahedi K, Lamkanfi M, van Loo G. Inflammasome signaling is dispensable for ß-amyloid-induced neuropathology in preclinical models of Alzheimer's disease. Front Immunol 2024; 15:1323409. [PMID: 38352874 PMCID: PMC10863058 DOI: 10.3389/fimmu.2024.1323409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting memory and cognition. The disease is accompanied by an abnormal deposition of ß-amyloid plaques in the brain that contributes to neurodegeneration and is known to induce glial inflammation. Studies in the APP/PS1 mouse model of ß-amyloid-induced neuropathology have suggested a role for inflammasome activation in ß-amyloid-induced neuroinflammation and neuropathology. Methods Here, we evaluated the in vivo role of microglia-selective and full body inflammasome signalling in several mouse models of ß-amyloid-induced AD neuropathology. Results Microglia-specific deletion of the inflammasome regulator A20 and inflammasome effector protease caspase-1 in the AppNL-G-F and APP/PS1 models failed to identify a prominent role for microglial inflammasome signalling in ß-amyloid-induced neuropathology. Moreover, global inflammasome inactivation through respectively full body deletion of caspases 1 and 11 in AppNL-G-F mice and Nlrp3 deletion in APP/PS1 mice also failed to modulate amyloid pathology and disease progression. In agreement, single-cell RNA sequencing did not reveal an important role for Nlrp3 signalling in driving microglial activation and the transition into disease-associated states, both during homeostasis and upon amyloid pathology. Conclusion Collectively, these results question a generalizable role for inflammasome activation in preclinical amyloid-only models of neuroinflammation.
Collapse
Affiliation(s)
- Sahana Srinivasan
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Daliya Kancheva
- Brain and Systems Immunology Lab, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie De Ren
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fleur Boone
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ine Paesmans
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Hervé Maurin
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Voet
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Isabelle Scheyltjens
- Brain and Systems Immunology Lab, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benjamin Pavie
- VIB Center for Inflammation Research, Ghent, Belgium
- VIB Bioimaging Core, Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Ghent, Belgium
- VIB Bioimaging Core, Ghent, Belgium
| | - Marius Schwabenland
- Institute of Neuropathology Medical Center, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Astrid Bottelbergs
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Kiavash Movahedi
- Brain and Systems Immunology Lab, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Koller EJ, Wood CA, Lai Z, Borgenheimer E, Hoffman KL, Jankowsky JL. Doxycycline for transgene control disrupts gut microbiome diversity without compromising acute neuroinflammatory response. J Neuroinflammation 2024; 21:11. [PMID: 38178148 PMCID: PMC10765643 DOI: 10.1186/s12974-023-03004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Zoe Lai
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ella Borgenheimer
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Huffington Center On Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Kim CS. Roles of Diet-Associated Gut Microbial Metabolites on Brain Health: Cell-to-Cell Interactions between Gut Bacteria and the Central Nervous System. Adv Nutr 2024; 15:100136. [PMID: 38436218 PMCID: PMC10694655 DOI: 10.1016/j.advnut.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/21/2023] [Accepted: 10/26/2023] [Indexed: 03/05/2024] Open
Abstract
Gut microbiota have crucial effects on brain function via the gut-brain axis. Growing evidence suggests that this interaction is mediated by signaling molecules derived from dietary components metabolized by the intestinal microbiota. Although recent studies have provided a substantial understanding of the cell-specific effects of gut microbial molecules in gut microbiome-brain research, further validation is needed. This review presents recent findings on gut microbiota-derived dietary metabolites that enter the systemic circulation and influence the cell-to-cell interactions between gut microbes and cells in the central nervous system (CNS), particularly microglia, astrocytes, and neuronal cells, ultimately affecting cognitive function, mood, and behavior. Specifically, this review highlights the roles of metabolites produced by the gut microbiota via dietary component transformation, including short-chain fatty acids, tryptophan metabolites, and bile acid metabolites, in promoting the function and maturation of brain cells and suppressing inflammatory signals in the CNS. We also discuss future directions for gut microbiome-brain research, focusing on diet-induced microbial metabolite-based therapies as possible novel approaches to mental health treatment.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, College of Natural Information Sciences, Dongduk Women's University, Seoul 02748, Republic of Korea.
| |
Collapse
|
11
|
Wu JJ, Wei Z. Advances in the study of the effects of gut microflora on microglia in Alzheimer's disease. Front Mol Neurosci 2023; 16:1295916. [PMID: 38098943 PMCID: PMC10720669 DOI: 10.3389/fnmol.2023.1295916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer's disease (AD) is a central nervous system (CNS) degenerative disorder, is caused by various factors including β-amyloid toxicity, hyperphosphorylation of tau protein, oxidative stress, and others. The dysfunction of microglia has been associated with the onset and advancement of different neurodevelopmental and neurodegenerative disorders, such as AD. The gut of mammals harbors a vast and complex population of microorganisms, commonly referred to as the microbiota. There's a growing recognition that these gut microbes are intrinsically intertwined with mammalian physiology. Through the circulation of metabolites, they establish metabolic symbiosis, enhance immune function, and establish communication with different remote cells, including those in the brain. The gut microbiome plays a crucial part in influencing the development and performance of microglia, as indicated by recent preclinical studies. Dysbiosis of the intestinal flora leads to alterations in the microglia transcriptome that regulate the interconversion of microglia subtypes. This conversation explores recent research that clarifies how gut bacteria, their byproducts, and harmful elements affect the activation and characteristics of microglia. This understanding opens doors to innovative microbial-based therapeutic strategies for early identification and treatment goals in AD.
Collapse
Affiliation(s)
- Jin-Jing Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, Zhejiang, China
- Institute of Breast Oncology, Lishui University Medical College, Lishui, Zhejiang, China
| |
Collapse
|
12
|
You J, Youssef MMM, Santos JR, Lee J, Park J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. BIOLOGY 2023; 12:1307. [PMID: 37887017 PMCID: PMC10603852 DOI: 10.3390/biology12101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Mohieldin M. M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
13
|
Tang H, Wu L. MAMPs: A devil tamed becomes an angel. Cell Host Microbe 2023; 31:1422-1425. [PMID: 37708848 DOI: 10.1016/j.chom.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Symbiotic microorganisms modulate systemic immunity with unclear mechanisms. In this issue of Cell Host & Microbe, Clarke and colleagues uncover a coherent mechanism where the systemic spread of Firmicutes cell wall glycoconjugates enhances global immune fitness while simultaneously being delicately controlled to prevent systemic inflammation.
Collapse
Affiliation(s)
- Huayuan Tang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, P.R. China
| | - Lin Wu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, P.R. China.
| |
Collapse
|
14
|
Magni G, Riboldi B, Ceruti S. Modulation of Glial Cell Functions by the Gut-Brain Axis: A Role in Neurodegenerative Disorders and Pain Transmission. Cells 2023; 12:1612. [PMID: 37371082 DOI: 10.3390/cells12121612] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Studies on host microbiota and their interactions with the central nervous system (CNS) have grown considerably in the last decade. Indeed, it has been widely demonstrated that dysregulations of the bidirectional gut-brain crosstalk are involved in the development of several pathological conditions, including chronic pain. In addition, the activation of central and peripheral glial cells is also implicated in the pathogenesis and progression of pain and other neurodegenerative disorders. Recent preclinical findings suggest that the gut microbiota plays a pivotal role in regulating glial maturation, morphology and function, possibly through the action of different microbial metabolites, including the most studied short-chain fatty acids (SCFAs). Moreover, altered microbiota composition has been reported in CNS disorders characterized by glial cell activation. In this review, we discuss recent studies showing the role of the gut microbiota and the effects of its depletion in modulating the morphology and function of glial cells (microglia and astrocytes), and we hypothesize a possible role for glia-microbiota interactions in the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Giulia Magni
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| | - Benedetta Riboldi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| |
Collapse
|
15
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
16
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Pezzino S, Sofia M, Greco LP, Litrico G, Filippello G, Sarvà I, La Greca G, Latteri S. Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. Int J Mol Sci 2023; 24:ijms24021166. [PMID: 36674680 PMCID: PMC9862076 DOI: 10.3390/ijms24021166] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The rate at which obesity is becoming an epidemic in many countries is alarming. Obese individuals have a high risk of developing elevated intraocular pressure and glaucoma. Additionally, glaucoma is a disease of epidemic proportions. It is characterized by neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome dysbiosis could play a critical role in the onset and progression of several neurodegenerative diseases, as well as in the development and progression of several ocular disorders. In obese individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut could perturb the resident brain-ocular microbiome ecosystem which, in turn, could exacerbate the local inflammation. All these processes, finally, could lead to the death of RGC and neurodegeneration. The purpose of this literature review is to explore the recent evidence on the role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying obesity and glaucoma.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giulia Filippello
- Complex Operative Unit of Ophtalmology, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Iacopo Sarvà
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-0957263584
| |
Collapse
|
18
|
Impact of broad-spectrum antibiotics on the gut-microbiota-spleen-brain axis. Brain Behav Immun Health 2022; 27:100573. [PMID: 36583066 PMCID: PMC9793168 DOI: 10.1016/j.bbih.2022.100573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The spleen is a key immune-related organ that plays a role in communication between the brain and the immune system through the brain-spleen axis and brain-gut-microbiota axis. However, how the gut microbiota affects spleen and brain function remains unclear. Here, we investigated whether microbiome depletion induced by administration of an antibiotic cocktail (ABX) affects spleen and brain function. Treatment with ABX for 14 days resulted in a significant decrease in spleen weight and significant alterations in splenic functions, including the percentage of neutrophils, NK cells, macrophages, and CD8+ T cells. Furthermore, ABX treatment resulted in the depletion of a large portion of the gut microbiota. Untargeted metabolomics analysis showed that ABX treatment caused alterations in the levels of certain compounds in the plasma, spleen, and brain. Moreover, ABX treatment decreased the expression of microglia marker Iba1 in the cerebral cortex. Interestingly, correlations were found between the abundance of different microbiome components and metabolites in various tissues, as well as splenic cell populations and spleen weight. These findings suggest that ABX-induced microbiome depletion and altered metabolite levels may affect spleen and brain function through the gut-microbiota-spleen-brain axis.
Collapse
|
19
|
Characterization of the Composition Variation of Healthy Human Gut Microbiome in Correlation with Antibiotic Usage and Yogurt Consumption. Antibiotics (Basel) 2022; 11:antibiotics11121827. [PMID: 36551483 PMCID: PMC9774478 DOI: 10.3390/antibiotics11121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic usage and yogurt consumption are the major interventions for gut microbiota, yet their shared characteristics and disparities in healthy human gut microbiome remain unclear. This study aimed to decipher the composition changes among healthy humans, comparing antibiotic usage and yogurt consumption. The relative bacterial abundances of 1113 fecal samples were collected from an ongoing, population-based longitudinal cohort study in China that covered lifestyle, diet, disease status and physical measurements, and biological indicators of participants were obtained by the sequencing of 16S rRNA. The samples were divided into three groups, which were antibiotic users (122), yogurt consumers (497) and controls (494), where data visualization, alpha diversity, beta diversity and LEfSe analysis were conducted. At the family level, the relative abundances of Streptococcaceae, Enterobacteriaceae and Enterococcaceae families in antibiotic users increased almost 50%, 70% and 200%, respectively, while yogurt consumption also increased relative abundances of Streptococcaceae and Enterococcaceae, but not Enterobacteriaceae. Alpha diversity analyses suggested that the microbiome of the antibiotic usage and yogurt consumption groups exhibited an alpha diversity lower than that of the control. LEfSe analysis showed that, at the family level, the number of biomarkers in the yogurt consumption and antibiotic usage group were respectively 5 and 7, lower than that of the control (13). This study demonstrated the importance in considering the potential assistance of yogurt consumption on ARG gene transfer from commensal bacteria to pathogens in the human gut, which may pose a risk for human health. Antibiotic usage and yogurt consumption share more identical changes on healthy human gut flora than disparities. Therefore, in order to understand the potential risks of antibiotic usage and yogurt consumption on antibiotic resistance transmission in human gut microbiota, further research needs to be undertaken.
Collapse
|