1
|
Gao K, Chen C, Zheng Z, Fan Q, Wang H, Li Y, Chen S. Lactococcus strains with psychobiotic properties improve cognitive and mood alterations in aged mice. Front Nutr 2024; 11:1439094. [PMID: 39149553 PMCID: PMC11324604 DOI: 10.3389/fnut.2024.1439094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Aging often accompanies cognitive and mood disturbances. Emerging evidence indicates that specific probiotics mitigate cognitive and mood dysfunctions. Strains within Lactococcus, a subgroup of probiotics, including Lactococcus lactis and Lactococcus cremoris are shown beneficial effects on brain functions via the gut microbiota-brain axis (GBA). Our previous study identified two Lactococcus strains (L. lactis WHH2078 and L. cremoris WHH2080) with the ability to promote the secretion of gut 5-hydroxytryptophan (5-HTP), the precursor of the GBA mediator 5-hydroxytryptamine (5-HT). In this study, the modulatory effects of WHH2078 and WHH2080 on cognitive and mood alternations were investigated in aged mice. Oral administration of WHH2078 and WHH2080 (1 × 109 CFU/mL/day) in aged mice (12-month-old) for 12 weeks significantly improved cognitive and depressive-and anxiety-like behaviors. The neuronal loss, the 5-HT metabolism dysfunction, and the neuroinflammation in the hippocampus of aged mice were restored by WHH2078 and WHH2080. the disturbances in the serum tryptophan metabolism in aged mice were unveiled by metabolomics, notably with decreased levels of 5-HT and 5-HTP, and increased levels of kynurenine, 3-hydroxykynurenine, and indolelactic acid, which were reversed by WHH2078 and WHH2080. Regarding the gut microbial community, WHH2078 and WHH2080 restored the increased abundance of Firmicutes, Desulfobacterota, and Deferribacterota and the decreased abundance of Bacteroidota and Actinobacteriota in aged mice. The beneficial effects of the two strains were linked to the modulation of 5-HT metabolism and gut microbiota. Our findings point to the potential role of Lactococcus strains with 5-HTP-promoting abilities as therapeutic approaches for age-related cognitive and mood disorders.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Zhiyao Zheng
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Zhou S, Zhou H, Qian J, Han J, Zhang Y, Li Y, Zhang M, Cong J. Compound prebiotics as prophylactic and adjunctive treatments ameliorate DSS-induced colitis through gut microbiota modulation effects. Int J Biol Macromol 2024; 270:132362. [PMID: 38750864 DOI: 10.1016/j.ijbiomac.2024.132362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The prophylactic and adjunctive impacts of compound prebiotics (CP), comprising galacto-oligosaccharides, fructo-oligosaccharides, and isomalto-oligosaccharides, on colitis remain unclear. This study aimed to elucidate the effects of CP on dextran sodium sulfate (DSS)-induced colitis via modulation of the gut microbiota. Mice received prophylactic CP (PCP) for three weeks and DSS in the second week. In the third week, therapeutic CP, mesalazine, and a combination of CP and mesalazine (CPM) were administered to mice with DSS-induced colitis. The administration of PCP and CPM was found to ameliorate colitis, as evidenced by increases in body weight and colon length, elevation of the anti-inflammatory cytokine IL-10, and reductions in the disease activity index, histological scores, and levels of pro-inflammatory cytokines in mice with DSS-induced colitis on days 14 or 21. Furthermore, an increase in the relative abundance of probiotics (Ligilactobacillus, Bifidobacterium, and Limosilactobacillus), alpha diversity indices, short-chain fatty acids (SCFA) contents, and microbial network complexity was observed following PCP or CPM treatment. Correlation analysis revealed positive associations between these probiotics and both SCFA and IL-10, and negative associations with pro-inflammatory cytokines. This study highlighted the potential of CP as novel prophylactic and adjunctive treatments for alleviating DSS-induced intestinal inflammation and maintaining gut microbiota homeostasis.
Collapse
Affiliation(s)
- Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Hongxia Zhou
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jia Qian
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Jiaqi Han
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Ying Li
- Shanxi Zhendong Wuhe Medical Care Hall Co., Changzhi, Shanxi, China
| | - Meiping Zhang
- Shanxi Zhendong Wuhe Medical Care Hall Co., Changzhi, Shanxi, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
3
|
Luo M, Zhu J, Jia J, Zhang H, Zhao J. Progress on network modeling and analysis of gut microecology: a review. Appl Environ Microbiol 2024; 90:e0009224. [PMID: 38415584 PMCID: PMC11207142 DOI: 10.1128/aem.00092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The gut microecological network is a complex microbial community within the human body that plays a key role in linking dietary nutrition and host physiology. To understand the complex relationships among microbes and their functions within this community, network analysis has emerged as a powerful tool. By representing the interactions between microbes and their associated omics data as a network, we can gain a comprehensive understanding of the ecological mechanisms that drive the human gut microbiota. In addition, the network-based approach provides a more intuitive analysis of the gut microbiota, simplifying the study of its complex dynamics and interdependencies. This review provides a comprehensive overview of the methods used to construct and analyze networks in the context of gut microecological background. We discuss various types of network modeling approaches, including co-occurrence networks, causal networks, dynamic networks, and multi-omics networks, and describe the analytical techniques used to identify important network properties. We also highlight the challenges and limitations of network modeling in this area, such as data scarcity and heterogeneity, and provide future research directions to overcome these limitations. By exploring these network-based methods, researchers can gain valuable insights into the intricate relationships and functional roles of microbial communities within the gut, ultimately advancing our understanding of the gut microbiota's impact on human health.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajia Jia
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| |
Collapse
|
4
|
Medeiros D, McMurry K, Pfeiffer M, Newsome K, Testerman T, Graf J, Silver AC, Sacchetti P. Slowing Alzheimer's disease progression through probiotic supplementation. Front Neurosci 2024; 18:1309075. [PMID: 38510467 PMCID: PMC10950931 DOI: 10.3389/fnins.2024.1309075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
The lack of affordable and effective therapeutics against cognitive impairment has promoted research toward alternative approaches to the treatment of neurodegeneration. In recent years, a bidirectional pathway that allows the gut to communicate with the central nervous system has been recognized as the gut-brain axis. Alterations in the gut microbiota, a dynamic population of trillions of microorganisms residing in the gastrointestinal tract, have been implicated in a variety of pathological states, including neurodegenerative disorders such as Alzheimer's disease (AD). However, probiotic treatment as an affordable and accessible adjuvant therapy for the correction of dysbiosis in AD has not been thoroughly explored. Here, we sought to correct the dysbiosis in an AD mouse model with probiotic supplementation, with the intent of exploring its effects on disease progression. Transgenic 3xTg-AD mice were fed a control or a probiotic diet (Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601) for 12 weeks, with the latter leading to a significant increase in the relative abundance of Bacteroidetes. Cognitive functions were evaluated via Barnes Maze trials and improvements in memory performance were detected in probiotic-fed AD mice. Neural tissue analysis of the entorhinal cortex and hippocampus of 10-month-old 3xTg-AD mice demonstrated that astrocytic and microglial densities were reduced in AD mice supplemented with a probiotic diet, with changes more pronounced in probiotic-fed female mice. In addition, elevated numbers of neurons in the hippocampus of probiotic-fed 3xTg-AD mice suggested neuroprotection induced by probiotic supplementation. Our results suggest that probiotic supplementation could be effective in delaying or mitigating early stages of neurodegeneration in the 3xTg-AD animal model. It is vital to explore new possibilities for palliative care for neurodegeneration, and probiotic supplementation could provide an inexpensive and easily implemented adjuvant clinical treatment for AD.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kristina McMurry
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Melissa Pfeiffer
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kayla Newsome
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Todd Testerman
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Joerg Graf
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Adam C. Silver
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Paola Sacchetti
- Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
5
|
Chang B, Zhang W, Wang Y, Zhang Y, Zhong S, Gao P, Wang L, Zhao Z. Uncovering the complexity of childhood undernutrition through strain-level analysis of the gut microbiome. BMC Microbiol 2024; 24:73. [PMID: 38443783 PMCID: PMC10916198 DOI: 10.1186/s12866-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Undernutrition (UN) is a critical public health issue that threatens the lives of children under five in developing countries. While evidence indicates the crucial role of the gut microbiome (GM) in UN pathogenesis, the strain-level inspection and bacterial co-occurrence network investigation in the GM of UN children are lacking. RESULTS This study examines the strain compositions of the GM in 61 undernutrition patients (UN group) and 36 healthy children (HC group) and explores the topological features of GM co-occurrence networks using a complex network strategy. The strain-level annotation reveals that the differentially enriched species between the UN and HC groups are due to discriminated strain compositions. For example, Prevotella copri is mainly composed of P. copri ASM1680343v1 and P. copri ASM345920v1 in the HC group, but it is composed of P. copri ASM346549v1 and P. copri ASM347465v1 in the UN group. In addition, the UN-risk model constructed at the strain level demonstrates higher accuracy (AUC = 0.810) than that at the species level (AUC = 0.743). With complex network analysis, we further discovered that the UN group had a more complex GM co-occurrence network, with more hub bacteria and a higher clustering coefficient but lower information transfer efficiencies. Moreover, the results at the strain level suggested the inaccurate and even false conclusions obtained from species level analysis. CONCLUSIONS Overall, this study highlights the importance of examining the GM at the strain level and investigating bacterial co-occurrence networks to advance our knowledge of UN pathogenesis.
Collapse
Affiliation(s)
- Bingmei Chang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wenjie Zhang
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yinan Wang
- Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Yuanzheng Zhang
- Shenzhen Byoryn Technology Co., Ltd, Shenzhen, People's Republic of China
| | - Shilin Zhong
- Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Peng Gao
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, People's Republic of China.
| | - Lili Wang
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd, Shenzhen, People's Republic of China.
| |
Collapse
|
6
|
Wang D, Liu X, Shi S, Ren T, Wang W. Gut microbiota and metabolite variations in a migraine mouse model. Front Cell Infect Microbiol 2024; 13:1322059. [PMID: 38357211 PMCID: PMC10864585 DOI: 10.3389/fcimb.2023.1322059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Migraine is a prevalent clinical disorder characterized by recurrent unilateral throbbing headache episodes accompanied by symptoms such as nausea, vomiting, photophobia, and phonophobia. Despite its common occurrence, the diagnosis, pathophysiology, and treatment of migraine remain controversial. Extensive research has implicated the gut microbiota in various central nervous system disorders, including anxiety disorders, depression, and Parkinson's disease. Some studies have also suggested that migraine may stem from disruptions to neurohormones and metabolism. This study aimed to investigate the disparities in gut microbiota and metabolites between migraine mice model and normal mice to shed light on the underlying mechanisms and potential therapeutic approaches. Distinct differences in gut microbial composition were observed between the migraine mouse model and normal mouse, indicating a potential correlation between these variations and the pathogenesis of migraine. This study provides evidence of differences in gut microbiota composition and metabolites between a migraine mouse model and normal mice, which showed that Akkermansiaceae constituted the most abundant taxon in the sham injection mouse group, while Lachnospiraceae constituted the most prevalent group in the migraine mouse model group. The associations between the abundances of Akkermansia muciniphila and Lachnospiraceae bacteria and metabolites suggested their potential roles in the pathogenesis of migraine. The altered abundance of Lachnospiraceae observed in migraine-afflicted mice and its correlations with changes in metabolites suggest that it may affect the host's health. Thus, probiotic therapy emerges as a possible treatment for migraine. Moreover, significant disparities in gut metabolites were observed between the migraine mouse model and normal mice. These alterations encompass multiple metabolic pathways, suggesting that metabolic disturbances may also contribute to the development of migraines.
Collapse
Affiliation(s)
- Dan Wang
- Ear, Nose, and Throat (ENT) Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- National Health Council (NHC) Key Laboratory of Hearing Medicine, Fudan University, Shanghai, sChina
| | - Xu Liu
- Ear, Nose, and Throat (ENT) Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- National Health Council (NHC) Key Laboratory of Hearing Medicine, Fudan University, Shanghai, sChina
| | - Suming Shi
- Ear, Nose, and Throat (ENT) Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- National Health Council (NHC) Key Laboratory of Hearing Medicine, Fudan University, Shanghai, sChina
| | - Tongli Ren
- Ear, Nose, and Throat (ENT) Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- National Health Council (NHC) Key Laboratory of Hearing Medicine, Fudan University, Shanghai, sChina
| | - Wuqing Wang
- Ear, Nose, and Throat (ENT) Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- National Health Council (NHC) Key Laboratory of Hearing Medicine, Fudan University, Shanghai, sChina
| |
Collapse
|
7
|
Chen Y, Li Y, Fan Y, Chen S, Chen L, Chen Y, Chen Y. Gut microbiota-driven metabolic alterations reveal gut-brain communication in Alzheimer's disease model mice. Gut Microbes 2024; 16:2302310. [PMID: 38261437 PMCID: PMC10807476 DOI: 10.1080/19490976.2024.2302310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The gut microbiota (GM) and its metabolites affect the host nervous system and are involved in the pathogeneses of various neurological diseases. However, the specific GM alterations under pathogenetic pressure and their contributions to the "microbiota - metabolite - brain axis" in Alzheimer's disease (AD) remain unclear. Here, we investigated the GM and the fecal, serum, cortical metabolomes in APP/PS1 and wild-type (WT) mice, revealing distinct hub bacteria in AD mice within scale-free GM networks shared by both groups. Moreover, we identified diverse peripheral - central metabolic landscapes between AD and WT mice that featured bile acids (e.g. deoxycholic and isodeoxycholic acid) and unsaturated fatty acids (e.g. 11Z-eicosenoic and palmitoleic acid). Machine-learning models revealed the relationships between the differential/hub bacteria and these metabolic signatures from the periphery to the brain. Notably, AD-enriched Dubosiella affected AD occurrence via cortical palmitoleic acid and vice versa. Considering the transgenic background of the AD mice, we propose that Dubosiella enrichment impedes AD progression via the synthesis of palmitoleic acid, which has protective properties against inflammation and metabolic disorders. We identified another association involving fecal deoxycholic acid-mediated interactions between the AD hub bacteria Erysipelatoclostridium and AD occurrence, which was corroborated by the correlation between deoxycholate levels and cognitive scores in humans. Overall, this study elucidated the GM network alterations, contributions of the GM to peripheral - central metabolic landscapes, and mediatory roles of metabolites between the GM and AD occurrence, thus revealing the critical roles of bacteria in AD pathogenesis and gut - brain communications under pathogenetic pressure.
Collapse
Affiliation(s)
- Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yingying Fan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Shuai Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Li Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
8
|
Qian X, Hai W, Chen S, Zhang M, Jiang X, Tang H. Multi-omics data reveals aberrant gut microbiota-host glycerophospholipid metabolism in association with neuroinflammation in APP/PS1 mice. Gut Microbes 2023; 15:2282790. [PMID: 37992400 PMCID: PMC10730179 DOI: 10.1080/19490976.2023.2282790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Numerous studies have described the notable impact of gut microbiota on the brain in Alzheimer's disease (AD) via the gut - brain axis. However, the molecular mechanisms underlying the involvement of gut microbiota in the development of AD are limited. This study aimed to explore the potential mechanisms of gut microbiota in AD by integrating multi-omics data. In this study, APP/PS1 and WT mice at nine months of age were used as study mouse model. Cognitive function was assessed using the Morris water maze test. The levels of Aβ plaque and neuroinflammation in the brain were detected using immunofluorescence and PET/CT. In addition, we not only used 16S rRNA gene sequencing and metabolomics to explore the variation characteristics of gut microbiota and serum metabolism abundance, but also combined spatial metabolomics and transcriptomics to explore the change in the brain and identify their potential correlation. APP/PS1 mice showed significant cognitive impairment and amyloid-β deposits in the brain. The abundance of gut microbiota was significantly changed in APP/PS1 mice, including decreased Desulfoviobrio, Enterococcus, Turicibacter, and Ruminococcus and increased Pseudomonas. The integration of serum untargeted metabolomics and brain spatial metabolomics showed that glycerophospholipid metabolism was a common alteration pathway in APP/PS1 mice. Significant proliferation and activation of astrocyte and microglia were observed in APP/PS1 mice, accompanied by alterations in immune pathways. Integration analysis and fecal microbiota transplantation (FMT) intervention revealed potential association of gut microbiota, host glycerophospholipid metabolism, and neuroinflammation levels in APP/PS1 mice.
Collapse
Affiliation(s)
- Xiaohang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Chen J, Zhu J, Lu W, Wang H, Pan M, Tian P, Zhao J, Zhang H, Chen W. Uncovering Predictive Factors and Interventions for Restoring Microecological Diversity after Antibiotic Disturbance. Nutrients 2023; 15:3925. [PMID: 37764709 PMCID: PMC10536327 DOI: 10.3390/nu15183925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic treatment can lead to a loss of diversity of gut microbiota and may adversely affect gut microbiota composition and host health. Previous studies have indicated that the recovery of gut microbes from antibiotic-induced disruption may be guided by specific microbial species. We expect to predict recovery or non-recovery using these crucial species or other indices after antibiotic treatment only when the gut microbiota changes. This study focused on this prediction problem using a novel ensemble learning framework to identify a set of common and reasonably predictive recovery-associated bacterial species (p-RABs), enabling us to predict the host microbiome recovery status under broad-spectrum antibiotic treatment. Our findings also propose other predictive indicators, suggesting that higher taxonomic and functional diversity may correlate with an increased likelihood of successful recovery. Furthermore, to explore the validity of p-RABs, we performed a metabolic support analysis and identified Akkermansia muciniphila and Bacteroides uniformis as potential key supporting species for reconstruction interventions. Experimental results from a C57BL/6J male mouse model demonstrated the effectiveness of p-RABs in facilitating intestinal microbial reconstitution. Thus, we proved the reliability of the new p-RABs and validated a practical intervention scheme for gut microbiota reconstruction under antibiotic disturbance.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingluo Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Li X, Deng R, Li J, Li H, Xu Z, Zhang L, Feng L, Shu C, Zhen M, Wang C. Oral [60]fullerene reduces neuroinflammation to alleviate Parkinson's disease via regulating gut microbiome. Theranostics 2023; 13:4936-4951. [PMID: 37771782 PMCID: PMC10526674 DOI: 10.7150/thno.85711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Neuroinflammation is considered to drive the pathogenic process of neuronal degeneration in Parkinson's disease (PD). However, effective anti-neuroinflammation therapeutics for PD still remain dissatisfactory. Here we explore a robust therapeutic strategy for PD using anti-neuroinflammatory fullerenes. Methods: Oral fullerene was prepared by a ball-milling method. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was used to investigate the therapeutic effects and mechanisms of it. The gut microenvironment was evaluated by 16S rRNA gene sequencing, gas chromatography-mass spectrometry, quantitative polymerase chain reaction (Q-PCR), and western blot (WB). The neuroinflammation and neurodegeneration were evaluated by pathological analysis, Elisa kits, transmission electron microscopy, Q-PCR, WB and so on. Toxicity was assessed by weight, blood test and hematoxylin-eosin (HE) staining. Results: Oral fullerene therapeutic system that dissolved [60]fullerene into olive oil (abbreviated as OFO) was dexterously designed, which could reduce neuroinflammation via regulating the diversity of gut microbiome, increasing the contents of short chain fatty acids (SCFAs) and recovering the integrity of gut barrier. Accordingly, the reduction of neuroinflammation prevented dopaminergic neuronal degeneration. And thus, OFO significantly ameliorated motor deficits and fundamentally reversed dopamine (DA) loss in MPTP-induced PD mice. Of note, OFO exhibited low toxicity towards the living body. Conclusion: Our findings suggest that OFO is a safe-to-use, easy-to-apply, and prospective candidate for PD treatment in clinic, opening a therapeutic window for neuroinflammation-triggered neurodegeneration.
Collapse
Affiliation(s)
- Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Beijing Fullcan Biotechnology Co., Ltd., Beijing, 100085, China
| | - Zhe Xu
- Chifeng Fullcan Biotechnology Co., Ltd., Inner Mongolia, 024099, China
| | - Lei Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linyin Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Gao K, Chen C, Ke X, Fan Q, Wang H, Li Y, Chen S. Improvements of Age-Related Cognitive Decline in Mice by Lactobacillus helveticus WHH1889, a Novel Strain with Psychobiotic Properties. Nutrients 2023; 15:3852. [PMID: 37686884 PMCID: PMC10489973 DOI: 10.3390/nu15173852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
A gradual decline in cognitive function occurs with age. Accumulating evidence suggests that certain probiotic strains exert beneficial effects on age-related cognitive decline. Our previous study revealed that Lactobacillus helveticus WHH1889 attenuated symptoms of anxiety and depression in depressed mice via shaping the 5-hydroxytryptamine (5-HT) and 5-hydroxytryptophan (5-HTP) metabolism and gut microbial community, indicating the psychobiotic potential of WHH1889. In the present study, the effects of WHH1889 on age-related cognitive decline were investigated. WHH1889 was orally administrated (1 × 109 CFU/day) for twelve weeks in aged mice, and their cognitive behaviors, neurochemical factors, cognitive-related gene expressions, neuroinflammation, and serum tryptophan pathway-targeted metabolic profiling, as well as gut microbiome composition were assessed. WHH1889 demonstrated improvement of the cognitive behaviors via the novel object recognition test (NORT), the active shuttle avoidance test (ASAT), the Y-maze test, and the passive avoidance test (PAT). The hippocampal neuronal loss; the declined concentrations of BDNF, 5-HT, and 5-HTP; the decreased gene expressions of neurodegeneration biomarkers; and the increased production of hippocampal inflammatory cytokines in aged mice were restored by WHH1889. In addition, WHH1889 increased the 5-HT/5HTP levels and decreased the serum levels of tryptophan-derived metabolites (e.g., kynurenine, xanthurenic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid). Furthermore, WHH1889 was revealed to shape the gut microbiota community by reversing the relative abundances of Bacteroidota and Firmicutes. The present findings suggest that L. helveticus WHH1889 exerted cognitive improving effects on aged mice, which was associated with the modulation of 5-HT and 5-HTP metabolism and gut microbial composition. The supplementation of WHH1889 may therefore be a promising therapeutic agent for age-related cognitive deficits.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Xueqin Ke
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Haifeng Wang
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
12
|
Polygonatum sibiricum polysaccharides improve cognitive function in D-galactose-induced aging mice by regulating the microbiota-gut-brain axis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|