1
|
Hitzler SUJ, Fernández-Fernández C, Montaño DE, Dietschmann A, Gresnigt MS. Microbial adaptive pathogenicity strategies to the host inflammatory environment. FEMS Microbiol Rev 2025; 49:fuae032. [PMID: 39732621 PMCID: PMC11737513 DOI: 10.1093/femsre/fuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024] Open
Abstract
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, these microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction. An inappropriate deployment of pathogenicity mechanisms will alert host defence mechanisms that aim to eradicate the pathogen. Thus, these adaptations require tight regulation to guarantee nutritional access without eliciting strong immune activation. To work efficiently, the immune system relies on a complex signalling network, involving a myriad of immune mediators, some of which are quite directly associated with imminent danger for the pathogen. To manipulate the host immune system, viruses have evolved cytokine receptors and viral cytokines. However, among bacteria and fungi, selected pathogens have evolved the capacity to use these inflammatory response-specific signals to regulate their pathogenicity. In this review, we explore how bacterial and fungal pathogens can sense the immune system and use adaptive pathogenicity strategies to evade and escape host defence to ensure their persistence in the host.
Collapse
Affiliation(s)
- Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Candela Fernández-Fernández
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| |
Collapse
|
2
|
Goeteyn E, Taylor SL, Dicker A, Bollé L, Wauters M, Joossens M, Van Braeckel E, Simpson JL, Burr L, Chalmers JD, Rogers GB, Crabbé A. Aggregatibacter is inversely associated with inflammatory mediators in sputa of patients with chronic airway diseases and reduces inflammation in vitro. Respir Res 2024; 25:368. [PMID: 39395980 PMCID: PMC11471032 DOI: 10.1186/s12931-024-02983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Chronic airway disease (CAD) is characterized by chronic airway inflammation and colonization of the lungs by pro-inflammatory pathogens. However, while various other bacterial species are present in the lower airways, it is not fully understood how they influence inflammation. We aimed to identify novel anti-inflammatory species present in lower airway samples of patients with CAD. METHODS Paired sputum microbiome and inflammatory marker data of adults with CAD across three separate cohorts (Australian asthma and bronchiectasis, Scottish bronchiectasis) was analyzed using Linear discriminant analysis Effect Size (LEfSE) and Spearman correlation analysis to identify species associated with a low inflammatory profile in patients. RESULTS We identified the genus Aggregatibacter as more abundant in patients with lower levels of airway inflammatory markers in two CAD cohorts (Australian asthma and bronchiectasis). In addition, the relative abundance of Aggregatibacter was inversely correlated with sputum IL-8 (Australian bronchiectasis) and IL-1β levels (Australian asthma and bronchiectasis). Subsequent in vitro testing, using a physiologically relevant three-dimensional lung epithelial cell model, revealed that Aggregatibacter spp. (i.e. A. actinomycetemcomitans, A. aphrophilus) and their cell-free supernatant exerted anti-inflammatory activity without influencing host cell viability. CONCLUSIONS These findings suggest that Aggregatibacter spp. might act to reduce airway inflammation in CAD patients.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alison Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Laura Bollé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Merel Wauters
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, NSW, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Sciences, South Brisbane, QLD, Australia
- Mater Research - University of Queensland, Aubigny Place, South Brisbane, QLD, Australia
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Ryu U, Chien PN, Jang S, Trinh XT, Lee HS, Van Anh LT, Zhang XR, Giang NN, Van Long N, Nam SY, Heo CY, Choi KM. Zirconium-Based Metal-Organic Framework Capable of Binding Proinflammatory Mediators in Hydrogel Form Promotes Wound Healing Process through a Multiscale Adsorption Mechanism. Adv Healthc Mater 2024; 13:e2301679. [PMID: 37931928 DOI: 10.1002/adhm.202301679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/30/2023] [Indexed: 11/08/2023]
Abstract
The regulation of proinflammatory mediators has been explored to promote natural healing without abnormal inflammation or autoimmune response induced by their overproduction. However, most efforts to control these mediators have relied on pharmacological substances that are directly engaged in biological cycles. It is believed that functional porous materials removing target mediators provide a new way to promote the healing process using their adsorption mechanisms. In this study, the Zr-based metal-organic frameworks (MOF)-808 (Zr6 O4 (OH)4 (BTC)2 (HCOO)6 ) crystals are found to be effective at removing proinflammatory mediators, such as nitric oxide (NO), cytokines, and reactive oxygen species (ROS) in vitro and in vivo, because of their porous structure and surface affinity. The MOF-808 crystals are applied to an in vivo skin wound model as a hydrogel dispersion. Hydrogel containing 0.2 wt% MOF-808 crystals shows significant improvement in terms of wound healing efficacy and quality over the corresponding control. It is also proven that the mode of action is to remove the proinflammatory mediators in vivo. Moreover, the application of MOF-808-containing hydrogels promotes cell activation, proliferation and inhibits chronic inflammation, leading to increased wound healing quality. These findings suggest that Zr-based MOFs may be a promising drug-free solution for skin problems related to proinflammatory mediators.
Collapse
Affiliation(s)
- UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Suin Jang
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyeon Shin Lee
- R&D Center, LabInCube Co. Ltd., Cheongju, 28116, Republic of Korea
| | - Le Thi Van Anh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Nguyen Van Long
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
4
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Vahvelainen N, Bozkurt E, Maula T, Johansson A, Pöllänen MT, Ihalin R. Pilus PilA of the naturally competent HACEK group pathogen Aggregatibacter actinomycetemcomitans stimulates human leukocytes and interacts with both DNA and proinflammatory cytokines. Microb Pathog 2022; 173:105843. [DOI: 10.1016/j.micpath.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
|
6
|
Electrospun Azithromycin-Laden Gelatin Methacryloyl Fibers for Endodontic Infection Control. Int J Mol Sci 2022; 23:ijms232213761. [PMID: 36430238 PMCID: PMC9695100 DOI: 10.3390/ijms232213761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
This study was aimed at engineering photocrosslinkable azithromycin (AZ)-laden gelatin methacryloyl fibers via electrospinning to serve as a localized and biodegradable drug delivery system for endodontic infection control. AZ at three distinct amounts was mixed with solubilized gelatin methacryloyl and the photoinitiator to obtain the following fibers: GelMA+5%AZ, GelMA+10%AZ, and GelMA+15%AZ. Fiber morphology, diameter, AZ incorporation, mechanical properties, degradation profile, and antimicrobial action against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundii were also studied. In vitro compatibility with human-derived dental pulp stem cells and inflammatory response in vivo using a subcutaneous rat model were also determined. A bead-free fibrous microstructure with interconnected pores was observed for all groups. GelMA and GelMA+10%AZ had the highest fiber diameter means. The tensile strength of the GelMA-based fibers was reduced upon AZ addition. A similar pattern was observed for the degradation profile in vitro. GelMA+15%AZ fibers led to the highest bacterial inhibition. The presence of AZ, regardless of the concentration, did not pose significant toxicity. In vivo findings indicated higher blood vessel formation, mild inflammation, and mature and thick well-oriented collagen fibers interweaving with the engineered fibers. Altogether, AZ-laden photocrosslinkable GelMA fibers had adequate mechanical and degradation properties, with 15%AZ displaying significant antimicrobial activity without compromising biocompatibility.
Collapse
|
7
|
Expression of Macrophage Polarization Markers against the Most Prevalent Serotypes of Aggregatibacter actinomycetemomitans. Microorganisms 2022; 10:microorganisms10071384. [PMID: 35889103 PMCID: PMC9318388 DOI: 10.3390/microorganisms10071384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium with seven serotypes (a–g) according to the structure of its LPS, has been defined as one of the most important pathogens in the development of a dysbiotic periodontal biofilm and the onset of periodontitis (an inflammatory chronic disease of the tissues around the teeth), where the serotype b is characterized as the most virulent compared with the other serotypes. The aim of this study was to evaluate the expression of the macrophage polarization markers M0, M1, and M2 against A. actinomycetemcomitans. Methods: THP-1 cells were infected with A. actinomycetemcomitans serotypes a, b, and c. The expression of CD11b, CD4, CD14, and CD68 for M0; IL-6, HLA/DRA, and CXCL10 for M21, and IL-10, CD163, fibronectin-1 or FN1, and CCL17 was evaluated by qPCR at 2 and 24 h after infection. Results: An increase in the expression of these molecules was induced by all serotypes at both times of infection, showing higher levels of expression to the M1 panel at 2 and 24 h compared to other markers. Conclusions: A. actinomycetemcomitans has a role in the macrophage polarization to the M1 phenotype in a non-serotype-dependent manner.
Collapse
|
8
|
Maula T, Vahvelainen N, Tossavainen H, Koivunen T, T. Pöllänen M, Johansson A, Permi P, Ihalin R. Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformation. Virulence 2021; 12:1239-1257. [PMID: 33939577 PMCID: PMC8096337 DOI: 10.1080/21505594.2021.1918497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/03/2021] [Indexed: 11/02/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive nuclearcgq magnetic resonance (NMR) studies confirmed its IDP nature, and expression studies in A. actinomycetemcomitans harboring a red fluorescence reporter protein-encoding gene revealed that bilRI promoter expression was increased at decreased temperatures. The amino acid backbone of BilRI did not stimulate either the production of reactive oxygen species from human leukocytes or the production of interleukin-6 from human macrophages. Moreover, BilRI-specific IgG antibodies could not be detected in the sera of A. actinomycetemcomitans culture-positive periodontitis patients. Since the bilRI gene is located near genes involved in natural competence (i.e., genes associated with the uptake of extracellular (eDNA) and its incorporation into the genome), we also investigated the role of BilRI in these events. Compared to wild-type cells, the ΔbilRI mutants showed a lower transformation efficiency, which indicates either a direct or indirect role in natural competence. In conclusion, A. actinomycetemcomitans might express BilRI, especially outside the host, to survive under stressful conditions and improve its transmission potential.
Collapse
Affiliation(s)
- Terhi Maula
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Nelli Vahvelainen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Helena Tossavainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Tuuli Koivunen
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Perttu Permi
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Riikka Ihalin
- Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Vicencio E, Cordero EM, Cortés BI, Palominos S, Parra P, Mella T, Henrríquez C, Salazar N, Monasterio G, Cafferata EA, Murgas P, Vernal R, Cortez C. Aggregatibacter Actinomycetemcomitans Induces Autophagy in Human Junctional Epithelium Keratinocytes. Cells 2020; 9:E1221. [PMID: 32423042 PMCID: PMC7290389 DOI: 10.3390/cells9051221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
The adverse environmental conditions found in the periodontium during periodontitis pathogenesis stimulate local autophagy responses, mainly due to a continuous inflammatory response against the dysbiotic subgingival microbiome. The junctional epithelium represents the main site of the initial interaction between the host and the dysbiotic biofilm. Here, we investigated the role of autophagy in junctional epithelium keratinocytes (JEKs) in response to Aggregatibacter actinomycetemcomitans or its purified lipopolysaccharides (LPS). Immunofluorescence confocal analysis revealed an extensive nuclear translocation of transcription factor EB (TFEB) and consequently, an increase in autophagy markers and LC3-turnover assessed by immunoblotting and qRT-PCR. Correspondingly, challenged JEKs showed a punctuate cytosolic profile of LC3 protein contrasting with the diffuse distribution observed in untreated controls. Three-dimensional reconstructions of confocal images displayed a close association between intracellular bacteria and LC3-positive vesicles. Similarly, a close association between autophagic vesicles and the protein p62 was observed in challenged JEKs, indicating that p62 is the main adapter protein recruited during A. actinomycetemcomitans infection. Finally, the pharmacological inhibition of autophagy significantly increased the number of bacteria-infected cells as well as their death, similar to treatment with LPS. Our results indicate that A. actinomycetemcomitans infection induces autophagy in JEKs, and this homeostatic process has a cytoprotective effect on the host cells during the early stages of infection.
Collapse
Affiliation(s)
- Emiliano Vicencio
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Esteban M. Cordero
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- Parasitology Section, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa 7780050, Chile
| | - Bastián I. Cortés
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Sebastián Palominos
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
| | - Pedro Parra
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
| | - Tania Mella
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Constanza Henrríquez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Nelda Salazar
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
| | - Emilio A. Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Av. Paseo de la República 5544, Lima 15074, Peru
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| |
Collapse
|
10
|
Lindholm M, Metsäniitty M, Granström E, Oscarsson J. Outer membrane vesicle-mediated serum protection in Aggregatibacter actinomycetemcomitans. J Oral Microbiol 2020; 12:1747857. [PMID: 32363008 PMCID: PMC7178816 DOI: 10.1080/20002297.2020.1747857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans belongs to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in periodontitis, with rapid progress in adolescents. We recently demonstrated that the major outer membrane protein, OmpA1 was critical for serum survival of the A. actinomycetemcomitans serotype a model strain, D7SS, and that the paralogue, OmpA2 could operate as a functional homologue to OmpA1 in mediating serum resistance. In the present work, an essentially serum-sensitive ompA1 ompA2 double mutant A. actinomycetemcomitans strain derivative was exploited to elucidate if A. actinomycetemcomitans OMVs can contribute to bacterial serum resistance. Indeed, supplementation of OMVs resulted in a dose-dependent increase of the survival of the serum-sensitive strain in incubations in 50% normal human serum (NHS). Whereas neither OmpA1 nor OmpA2 was required for the OMV-mediated serum protection, OMVs and LPS from an A. actinomycetemcomitans strain lacking the LPS O-antigen polysaccharide part were significantly impaired in protecting D7SS ompA1 ompA2. Our results using a complement system screen assay support a model where A. actinomycetemcomitans OMVs can act as a decoy, which can trigger complement activation in an LPS-dependent manner, and consume complement components to protect serum-susceptible bacterial cells.
Collapse
Affiliation(s)
- Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Marjut Metsäniitty
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
12
|
Ingendoh‐Tsakmakidis A, Mikolai C, Winkel A, Szafrański SP, Falk CS, Rossi A, Walles H, Stiesch M. Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol 2019; 21:e13078. [PMID: 31270923 PMCID: PMC6771885 DOI: 10.1111/cmi.13078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The impact of oral commensal and pathogenic bacteria on peri-implant mucosa is not well understood, despite the high prevalence of peri-implant infections. Hence, we investigated responses of the peri-implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri-implant mucosa-biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri-implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin-6 (IL-6), interleukin-8 (CXCL8), and monocyte chemoattractant protein-1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor-alpha (TNF-α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri-implant mucosa-biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri-implant disease.
Collapse
Affiliation(s)
| | - Carina Mikolai
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Szymon P. Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Angela Rossi
- Translational Center for Regenerative TherapiesFraunhofer Institute of Silicate Research ISCWürzburgGermany
| | - Heike Walles
- Translational Center for Regenerative TherapiesFraunhofer Institute of Silicate Research ISCWürzburgGermany
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital of WürzburgWürzburgGermany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| |
Collapse
|
13
|
Oscarsson J, Claesson R, Lindholm M, Höglund Åberg C, Johansson A. Tools of Aggregatibacter actinomycetemcomitans to Evade the Host Response. J Clin Med 2019; 8:E1079. [PMID: 31336649 PMCID: PMC6678183 DOI: 10.3390/jcm8071079] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an infection-induced inflammatory disease that affects the tooth supporting tissues, i.e., bone and connective tissues. The initiation and progression of this disease depend on dysbiotic ecological changes in the oral microbiome, thereby affecting the severity of disease through multiple immune-inflammatory responses. Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with such cellular and molecular mechanisms associated with the pathogenesis of periodontitis. In the present review, we outline virulence mechanisms that help the bacterium to escape the host response. These properties include invasiveness, secretion of exotoxins, serum resistance, and release of outer membrane vesicles. Virulence properties of A. actinomycetemcomitans that can contribute to treatment resistance in the infected individuals and upon translocation to the circulation, also induce pathogenic mechanisms associated with several systemic diseases.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Rolf Claesson
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Mark Lindholm
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Carola Höglund Åberg
- Department of Odontology, Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Anders Johansson
- Department of Odontology, Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden.
| |
Collapse
|