1
|
Wang Z, Kaplan RC, Burk RD, Qi Q. The Oral Microbiota, Microbial Metabolites, and Immuno-Inflammatory Mechanisms in Cardiovascular Disease. Int J Mol Sci 2024; 25:12337. [PMID: 39596404 PMCID: PMC11594421 DOI: 10.3390/ijms252212337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality. Recent advancements in high-throughput omics techniques have enhanced our understanding of the human microbiome's role in the development of CVDs. Although the relationship between the gut microbiome and CVDs has attracted considerable research attention and has been rapidly evolving in recent years, the role of the oral microbiome remains less understood, with most prior studies focusing on periodontitis-related pathogens. In this review, we summarized previously reported associations between the oral microbiome and CVD, highlighting known CVD-associated taxa such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We also discussed the interactions between the oral and gut microbes. The potential mechanisms by which the oral microbiota can influence CVD development include oral and systemic inflammation, immune responses, cytokine release, translocation of oral bacteria into the bloodstream, and the impact of microbial-related products such as microbial metabolites (e.g., short-chain fatty acids [SCFAs], trimethylamine oxide [TMAO], hydrogen sulfide [H2S], nitric oxide [NO]) and specific toxins (e.g., lipopolysaccharide [LPS], leukotoxin [LtxA]). The processes driven by these mechanisms may contribute to atherosclerosis, endothelial dysfunction, and other cardiovascular pathologies. Integrated multi-omics methodologies, along with large-scale longitudinal population studies and intervention studies, will facilitate a deeper understanding of the metabolic and functional roles of the oral microbiome in cardiovascular health. This fundamental knowledge will support the development of targeted interventions and effective therapies to prevent or reduce the progression from cardiovascular risk to clinical CVD events.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
2
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
3
|
Li Y, Zhu M, Liu Y, Luo B, Cui J, Huang L, Chen K, Liu Y. The oral microbiota and cardiometabolic health: A comprehensive review and emerging insights. Front Immunol 2022; 13:1010368. [PMID: 36466857 PMCID: PMC9716288 DOI: 10.3389/fimmu.2022.1010368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
There is mounting evidence demonstrating that oral dysbiosis causes periodontal disease and promotes the development of cardiovascular disease. The advancement of omics techniques has driven the optimization of oral microbiota species analysis and has provided a deeper understanding of oral pathogenic bacteria. A bi-directional relationship exists between the oral microbiota and the host, and oral-gut microbiota transfer is known to alter the composition of the gut microbiota and may cause local metabolic disorders. Furthermore, cardiovascular health can also be highly affected by oral microbiota functions and metabolites, including short-chain fatty acids (SCFAs), nitric oxide (NO), hydrogen sulfide (H2S), and some lipid metabolites. Studies have found that trimethylamine oxide (TMAO) may have adverse effects on cardiovascular health, whereas SCFAs, NO, and H2S have cardioprotective effects. SCFAs and H2S exert varying oral and cardiovascular effects, however reports on this specific topic remain controversial. Previous evidences are accustomed to summarizing the functions of oral microbiota in the context of periodontitis. The direct relationship between oral microbiota and cardiovascular diseases is insufficient. By systematically summarizing the methods associated with oral microbiota transplantation (OMT), this review facilitates an investigation into the causal links between oral microbiota and cardiovascular disease. The concomitant development of omics, bioinformatics, bacterial culture techniques, and microbiota transplantation techniques is required to gain a deeper understanding of the relationship between oral microbiota and cardiovascular disease occurrence.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Center for Evidence-based Medicine of Traditional Chinese Medicine (TCM), China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Li Q, Zhou H, Wang C, Zhu Z. Long non-coding RNA Linc01133 promotes osteogenic differentiation of human periodontal ligament stem cells via microRNA-30c / bone gamma-carboxyglutamate protein axis. Bioengineered 2022; 13:9602-9612. [PMID: 35435112 PMCID: PMC9161927 DOI: 10.1080/21655979.2022.2054912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is a chronic inflammation caused by the deposition of dental plaque on the tooth surface. Human periodontal ligament stem cells (hPDLSCs) have the potential of osteogenic differentiation. Long non-coding RNAs (lncRNAs) are collectively involved in periodontitis. This study was designed to explore the roles of Linc01133 in osteogenic differentiation of hPDLSCs. hPDLSCs obtained from the periodontal ligament (PDL) of patients with periodontitis were used to collect Linc01133, microRNA-30c (miR-30c), and bone gamma-carboxyglutamate protein (BGLAP) expression data, and their expression changes were traced during osteogenic differentiation of hPDLSCs. Quantitative reverse-transcription polymerase chain reaction as well as western blotting were used to analyze the levels of RNAs and proteins. Dual-luciferase reporter and RNA pull-down assays demonstrated the relationship between Linc01133, miR-30c, and BGLAP. Furthermore, alkaline phosphatase (ALP) staining and alizarin red staining were applied to evaluate the degree of osteogenic differentiation. Linc01133 was downregulated in the PDL of patients with periodontitis. Upregulated Linc01133 promoted osteogenic differentiation of hPDLSCs. Linc01133 could inhibit miR-30c expression by sponging miR-30c. miR-30c suppressed osteogenic differentiation. Additionally, miR-30c targeted BGLAP. Knockdown of BGLAP abrogated the effects of decreased miR-30c on osteogenic differentiation of hPDLSCs. Linc01133 acted as a ceRNA to regulate osteogenic differentiation of hPDLSCs via the miR-30c/BGLAP axis. Therefore, Linc01133 may participate in the progress of periodontitis.
Collapse
Affiliation(s)
- Qiang Li
- Maxillofacial surgery, Deyang Stomatology Department, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| | - Hangyu Zhou
- Plastic and maxillofacial surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan, China
| | - Chuan Wang
- Deyang Stomatological Hospital, Deyang, Sichuan, China
| | - Zhibin Zhu
- Maxillofacial surgery, Deyang Stomatology Department, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Ruan D, Wu C, Zhang Y, Zhang Y. LncRNA LOXL1-AS1 inhibits proliferation of PDLSCs and downregulates IL-1β in periodontitis patients. J Periodontal Res 2021; 57:324-331. [PMID: 34910833 DOI: 10.1111/jre.12962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The carcinogenic role of lncRNA LOXL1-AS1 in thoracic aortic aneurysm has been confirmed, but its role in the pathogenesis of periodontitis remains unclear. Our preliminary deep sequencing data revealed LOXL1-AS1 downregulation in periodontitis and its inverse correlation with IL-1β, a critical inflammatory mediator in periodontitis. This study was therefore performed to investigate the potential interaction between LOXL1-AS1 and IL-1β in periodontitis. METHODS The study included 30 periodontitis patients (18 males and 12 females at the age of 34 to 44 years, with a mean of 39.3 ± 2.1 years) and 30 healthy controls (18 males and 12 females at the age of 33 to 44 years with a mean of 39.2 ± 2.0 years). The effects of LOXL1-AS1 overexpression on IL-1β were evaluated by RT-qPCR and Western blot. CCK-8 assay was used to analyze cell proliferation. RESULTS LOXL1-AS1 was downregulated in periodontitis-affected periodontal ligament stem cells (PDLSCs) compared with healthy PDLSCs, while IL-1β was upregulated in periodontitis-affected PDLSCs and was inversely correlated with LOXL1-AS1. LOXL1-AS1 overexpression mediated IL-1β downregulation in PDLSCs. IL-1β treatment did not affect LOXL1-AS1 expression. Moreover, LOXL1-AS1 overexpression inhibited the proliferation of periodontitis-affected PDLSCs. LOXL1-AS1 overexpression and IL-1β knockdown increased Bax/Bcl-2 ratio and caspase-3 level. CONCLUSION This study is the first to report LOXL1-AS1 downregulation in periodontitis. Moreover, LOXL1-AS1 might inhibit the proliferation of periodontitis-affected PDLSCs and downregulate IL-1β to improve periodontitis.
Collapse
Affiliation(s)
- Danping Ruan
- Department of Stomatology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyun Wu
- Department of Stomatology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of Stomatology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of Stomatology, Shanghai Yangpu Shidong Hospital, Shanghai, China
| |
Collapse
|
6
|
Basic A, Serino G, Leonhardt Å, Dahlén G, Bylund J. The secretion of cytokines by peripheral blood mononuclear cells of patients with periodontitis and healthy controls when exposed to H 2S. J Oral Microbiol 2021; 13:1957368. [PMID: 34408814 PMCID: PMC8366616 DOI: 10.1080/20002297.2021.1957368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Hydrogen sulfide(H2S) is a bacterial metabolite produced as a result of bacterial growth in subgingival pockets, suggested to partake in the pathogenesis of periodontitis. H2S has previously been shown to induce the secretion of the pro-inflammatory cytokines IL-1β and IL-18 via the NLRP3 inflammasome in monocytes. Objective: To investigate the non-NLRP3 inflammasome-dependent immunological response of human peripheral blood mononuclear cells (PBMCs) of periodontitis patients and healthy controls exposed to H2S in vitro. Methods: PBMCs of periodontitis patients(N = 31) and healthy controls(N = 32) were exposed to 1 mM sodium hydrosulfide (NaHS) at 37°C for 24 h and the secretion of cytokines was compared to resting cells. TNF-α, IFN-γ, IL-6, IL-8, IL-12p40, IL-12p70, IL-17, MCP-1, and IL-1Ra secretions were measured with Bio-Plex Pro™ Human Cytokine Assay. Results: H2S triggered the secretion of the pro-inflammatory IFN-γ, IL-6, IL-17, TNF-α, IL-12p40, and IL-12p70, while the reverse was seen for IL-1Ra. In addition, a higher basal secretion of IFN-γ, IL-6, IL-12p70, IL-17 and MCP-1 was seen from PBMCs of periodontitis patients compared to healthy controls. Conclusion: The bacterial metabolite H2S triggers the secretion of pro-inflammatory cytokines from PBMCs and may thus have a prominent role in the host-bacteria interplay in periodontitis.
Collapse
Affiliation(s)
- Amina Basic
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Serino
- Department of Periodontology, Södra Älvsborgs Hospital, Borås, Sweden
| | - Åsa Leonhardt
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Dahlén
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
8
|
Darbyshire AL, Mothersole RG, Wolthers KR. A Fold Type II PLP-Dependent Enzyme from Fusobacterium nucleatum Functions as a Serine Synthase and Cysteine Synthase. Biochemistry 2021; 60:524-536. [PMID: 33539704 DOI: 10.1021/acs.biochem.0c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine synthase (SS) from Fusobacterium nucleatum is a fold type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine with water to form l-serine and H2S. Herein, we show that SS can also function as a cysteine synthase, catalyzing the β-replacement of l-serine with bisulfide to produce l-cysteine and H2O. The forward (serine synthase) and reverse (cysteine synthase) reactions occur with comparable turnover numbers and catalytic efficiencies for the amino acid substrate. Reaction of SS with l-cysteine leads to transient formation of a quinonoid species, suggesting that deprotonation of the Cα and β-elimination of the thiolate group from l-cysteine occur via a stepwise mechanism. In contrast, the quinonoid species was not detected in the formation of the α-aminoacrylate intermediate following reaction of SS with l-serine. A key active site residue, D232, was shown to stabilize the more chemically reactive ketoenamine PLP tautomer and also function as an acid/base catalyst in the forward and reverse reactions. Fluorescence resonance energy transfer between PLP and W99, the enzyme's only tryptophan residue, supports ligand-induced closure of the active site, which shields the PLP cofactor from the solvent and increases the basicity of D232. These results provide new insight into amino acid metabolism in F. nucleatum and highlight the multiple catalytic roles of D232 in a new member of the fold type II family of PLP-dependent enzymes.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
9
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral Oncol 2020; 107:104710. [PMID: 32371264 DOI: 10.1016/j.oraloncology.2020.104710] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/16/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Previous studies have proved that periodontitis is an independent risk factor of oral squamous cell carcinoma (OSCC) epidemiologically. Along with the important role of microbiota in the cancer process and the specific anatomical position, our study explored the microbial composition and functions in periodontitis and gingival squamous cell carcinoma (GSCC). MATERIALS AND METHODS GSCC patients (n = 10), matched periodontitis patients (n = 15), and healthy individuals (n = 15) were recruited. Saliva, subgingival plaque, tongue dorsum, buccal mucosa, cancerous tissue, and paracancerous tissue samples were collected. 16S rDNA amplicon sequencing and functional prediction were applied for the taxonomic analysis. RESULTS Periodontal pathogens occupied 46% in GSCC. Besides, the mutual operational taxonomy unites (OTU) generated from the subgingival plaque occupied 38.36% and 44.13% from saliva. Fusobacterium, Peptostreptococcus, and Prevotella were more abundant in cancerous tissues, while Streptococcus, Neisseria, and Haemophilus were more enriched in saliva or soft mucosa. PCoA exhibited similar cluster between tongue dorsum and saliva in GSCC. GSCC showed lower richness than periodontitis. In saliva and subgingival plaque, Atopobium was more prevalent in GSCC than periodontitis and controls in descending order. Lipopolysaccharide (LPS) biosynthesis increased in subgingival plaque of GSCC compared with the other two groups. CONCLUSION Periodontal pathogens were abundant in GSCC. Cancerous tissues harbor enriched periodontal pathogens while saliva or soft mucosa harbored more periodontal health related bacteria. A high level of Atopobium in saliva and LPS biosynthesis have the potential for increasing the risk of suffering from GSCC in individuals with periodontitis, which needs more evidence to clarify it.
Collapse
|