1
|
Tang S, Cheng H, Zang X, Tian J, Ling Z, Wang L, Xu W, Jiang J. Small extracellular vesicles: crucial mediators for prostate cancer. J Nanobiotechnology 2025; 23:230. [PMID: 40114183 PMCID: PMC11927207 DOI: 10.1186/s12951-025-03326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Small extracellular vesicles (sEVs) play a critical role in the progression, diagnosis, and treatment of prostate cancer (PCa), particularly within the tumor microenvironment (TME). Acting as novel biomarkers and agents for targeted biological therapy, sEVs contribute significantly to improving patient survival. These vesicles transport a variety of biomolecules, including proteins, nucleic acids, and lipids, which are instrumental in remodeling the TME, facilitating intercellular communication, and influencing key processes such as tumor growth, metastasis, and therapy resistance. A thorough understanding of sEV heterogeneity, including their biogenesis, characteristics, and potential applications, is essential. Recent advances have illuminated the origins, formation processes, and molecular cargo of PCa-derived sEVs (PCa-sEVs), enhancing our understanding of their role in disease progression. Furthermore, sEVs show promise as diagnostic markers, with potential applications in early detection and prognostic assessment in PCa. Therapeutically, natural and engineered sEVs offer versatile applications, including drug delivery, gene therapy, and immunomodulation, underscoring their potential in PCa management. This review delves into the substantial potential of sEVs in clinical practices for PCa.
Collapse
Affiliation(s)
- Sijie Tang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Huiying Cheng
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xueyan Zang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Jiawei Tian
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Zhongli Ling
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Lingling Wang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Wenrong Xu
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Jiajia Jiang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Abdulrahman FA, Benford KA, Lin GT, Maroun AJ, Sammons C, Shirzad DN, Tsai H, Van Brunt VL, Jones Z, Marquez JE, Ratkus EC, Shehadeh AK, Abasto Valle H, Fejzo D, Gilbert AE, McWee CA, Underwood LF, Indico E, Rork BB, Nanjundan M. zDHHC-Mediated S-Palmitoylation in Skin Health and Its Targeting as a Treatment Perspective. Int J Mol Sci 2025; 26:1673. [PMID: 40004137 PMCID: PMC11854935 DOI: 10.3390/ijms26041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
S-acylation, which includes S-palmitoylation, is the only known reversible lipid-based post-translational protein modification. S-palmitoylation is mediated by palmitoyl acyltransferases (PATs), a family of 23 enzymes commonly referred to as zDHHCs, which catalyze the addition of palmitate to cysteine residues on specific target proteins. Aberrant S-palmitoylation events have been linked to the pathogenesis of multiple human diseases. While there have been advances in elucidating the molecular mechanisms underlying the pathogenesis of various skin conditions, there remain gaps in the knowledge, specifically with respect to the contribution of S-palmitoylation to the maintenance of skin barrier function. Towards this goal, we performed PubMed literature searches relevant to S-palmitoylation in skin to define current knowledge and areas that may benefit from further research studies. Furthermore, to identify alterations in gene products that are S-palmitoylated, we utilized bioinformatic tools such as SwissPalm and analyzed relevant data from publicly available databases such as cBioportal. Since the targeting of S-palmitoylated targets may offer an innovative treatment perspective, we surveyed small molecules inhibiting zDHHCs, including 2-bromopalmitate (2-BP) which is associated with off-target effects, and other targeting strategies. Collectively, our work aims to advance both basic and clinical research on skin barrier function with a focus on zDHHCs and relevant protein targets that may contribute to the pathogenesis of skin conditions such as atopic dermatitis, psoriasis, and skin cancers including melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (F.A.A.); (K.A.B.); (G.T.L.); (A.J.M.); (C.S.); (D.N.S.); (H.T.); (V.L.V.B.); (Z.J.); (J.E.M.); (E.C.R.); (A.K.S.); (H.A.V.); (D.F.); (A.E.G.); (C.A.M.); (L.F.U.); (E.I.); (B.B.R.)
| |
Collapse
|
3
|
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int J Mol Sci 2024; 26:189. [PMID: 39796048 PMCID: PMC11720073 DOI: 10.3390/ijms26010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites. The complexity and diversity of EVs require a robust and standardized approach. By adhering to standardized protocols and guidelines, researchers can ensure the consistency, purity, and reproducibility of isolated EVs, facilitating their use in diagnostics, therapies, and research. Exosomes and microvesicles represent an exciting frontier in modern medicine, with significant potential to transform the diagnosis and treatment of various diseases with an important role in personalized medicine and precision therapy. The primary objective of this review is to provide an updated analysis of the significance of EVs by highlighting their mechanisms of action and exploring their applications in the diagnosis and treatment of various diseases. Additionally, the review addresses the existing limitations and future potential of EVs, offering practical recommendations to resolve current challenges and enhance their viability for clinical use. This comprehensive approach aims to bridge the gap between EV research and its practical application in healthcare.
Collapse
Affiliation(s)
| | | | | | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (P.L.); (J.N.D.); (T.P.)
| |
Collapse
|
4
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Li Y, Baniel A, Diaz D, Ogawa-Momohara M, Ricco C, Eldaboush A, Bashir M, Sharma M, Liu ML, Werth VP. Keratinocyte derived extracellular vesicles mediated crosstalk between epidermis and dermis in UVB-induced skin inflammation. Cell Commun Signal 2024; 22:461. [PMID: 39350252 PMCID: PMC11441254 DOI: 10.1186/s12964-024-01839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND RATIONALE Ultraviolet-B (UVB) light induces dermal inflammation, although it is mostly absorbed in the epidermis. Recent reports suggest extracellular vesicles (EVs) act as a mediator of photodamage signaling. Melatonin is reported to be a protective factor against UV-induced damage. We hypothesized that EVs derived from UVB-irradiated keratinocytes might trigger proinflammatory responses in dermal cells and tested whether melatonin can ameliorate UVB-induced inflammation. METHODS We used UVB-irradiated HaCaT cells, primary keratinocytes and STING knock-out mice to model production of EVs under photodamaging conditions and performed immunoblotting and ELISA to measure their effect on dermal macrophages. RESULTS UVB-irradiated keratinocytes produce an increased number of EVs that contain higher concentrations of DNA and protein compared with controls. KC-derived EVs (KEVs) induced a STING- and inflammasome-mediated proinflammatory response in macrophages in vitro, and a pronounced inflammatory infiltrate in mouse dermis in vivo. Melatonin ameliorated KEVs inflammatory effect both in vitro and in vivo. CONCLUSIONS This data suggests EVs are mediators in a crosstalk that takes place between keratinocytes and their neighboring cells as a result of photodamage. Further studies exploring EVs induced by damaging doses of UVB, and their impact on other cells will provide insight into photodamage and may help develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Avital Baniel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mariko Ogawa-Momohara
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Cristina Ricco
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed Eldaboush
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Muhammad Bashir
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Cánovas-Cervera I, Nacher-Sendra E, Suay G, Lahoz A, García-Giménez JL, Mena-Mollá S. Role of miRNAs as epigenetic regulators of immune checkpoints in lung cancer immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:109-139. [PMID: 39864893 DOI: 10.1016/bs.ircmb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The advent of immunotherapy in cancer has provided new avenues in the treatment of many malignancies at various stages. Specifically, immune checkpoint inhibitors (ICIs) have transformed the field of lung cancer treatment. However, since some tumors can evade the immune system, not all patients respond properly. Recent research has provided evidence showing how microRNAs (miRNAs) are involved in regulating many immune checkpoints. MiRNAs have demonstrated their ability to modulate immune evasion of tumor cells. Currently, reliable markers are being sought to predict the efficacy of immunotherapy in these types of cancers. Therefore, the association of serum miRNAs and the response of ICIs in lung cancer is under study. Many miRNA molecules and their corresponding target genes have been identified in the regulation of chemoresistance. Therefore, elucidating how these miRNAs control the function of immune checkpoints, as well as the effectiveness of therapies based on ICIs set the basis for the development of new biomarkers to predict treatment response to ICIs. This chapter delves into the molecular role of miRNAs interacting with ICs, such as PD-1 and PD-L1, and the clinical utility of miRNAs, such as miR-16, miR-146a, and miR-335, in predicting treatment response to ICI-based therapy in lung cancer. The aim is to provide a deep insight of the current landscape, serving as a cornerstone for further research.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Guillermo Suay
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute-Hospital La Fe, Valencia, Spain; Analytical Unit, Health Research Institute-Hospital La Fe, Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.
| | - Salvador Mena-Mollá
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
8
|
Zhou H, Hu S, Yan W. Extracellular vesicles as modifiers of epigenomic profiles. Trends Genet 2024; 40:797-809. [PMID: 38845265 DOI: 10.1016/j.tig.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 09/12/2024]
Abstract
Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.
Collapse
Affiliation(s)
- Haifeng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China..
| |
Collapse
|
9
|
Mashayekhi V, Schomisch A, Rasheed S, Aparicio-Puerta E, Risch T, Yildiz D, Koch M, Both S, Ludwig N, Legroux TM, Keller A, Müller R, Fuhrmann G, Hoppstädter J, Kiemer AK. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages. Cell Commun Signal 2024; 22:344. [PMID: 38937789 PMCID: PMC11212187 DOI: 10.1186/s12964-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Schomisch
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Ernesto Aparicio-Puerta
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Timo Risch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Thierry M Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Department of Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
10
|
Qiu H, Liang J, Yang G, Xie Z, Wang Z, Wang L, Zhang J, Nanda HS, Zhou H, Huang Y, Peng X, Lu C, Chen H, Zhou Y. Application of exosomes in tumor immunity: recent progresses. Front Cell Dev Biol 2024; 12:1372847. [PMID: 38633106 PMCID: PMC11021734 DOI: 10.3389/fcell.2024.1372847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Exosomes are small extracellular vesicles secreted by cells, ranging in size from 30 to 150 nm. They contain proteins, nucleic acids, lipids, and other bioactive molecules, which play a crucial role in intercellular communication and material transfer. In tumor immunity, exosomes present various functions while the following two are of great importance: regulating the immune response and serving as delivery carriers. This review starts with the introduction of the formation, compositions, functions, isolation, characterization, and applications of exosomes, and subsequently discusses the current status of exosomes in tumor immunotherapy, and the recent applications of exosome-based tumor immunity regulation and antitumor drug delivery. Finally, current challenge and future prospects are proposed and hope to demonstrate inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haiyan Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Junting Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guang Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenyu Xie
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenpeng Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Hui Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Huizhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yubin Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
11
|
Wu D, Sun H, Yang B, Song E, Song Y, Tan W. Exosome Heterogeneity Affects the Distal "Barrier-Crossing" Trafficking of Exosome Encapsulated Quantum Dots. ACS NANO 2024; 18:7907-7922. [PMID: 38394382 DOI: 10.1021/acsnano.3c09378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The biological activities of nanoparticles (NPs), which include endocytosis by macrophages and subsequent intracellular degradation and/or release, transfer to other cells, or translocation across tissue barriers, highly depend on their fate in living organisms. Yet, translocation across barriers, especially the distal "barrier-crossing" trafficking of NPs, is still unclear. The exosome (Exo) plays a crucial role in intercellular communication and biological barrier trafficking. Here, we report that ZnCdSe@ZnS quantum dots (QDs), as a representation of NPs in biomedical applications, could cross the blood-brain barrier and approach the mouse brain via active Exo encapsulation. By employing multiple techniques, we demonstrated that QDs were internalized by macrophages (J774A.1) and tumor cells (HeLa) and then released to the extracellular environment along with Exo. Exo encapsulation facilitates the distal barrier-crossing trafficking of QDs in vivo, while Exo biogenesis inhibitor GW4869 suppressed the QDs enriched in the brains of mice with a 4T1-Luc breast cancer xenograft. Interestingly, Exo heterogeneity affects the distal trafficking of enveloped QDs. Exo derived from tumorous HeLa cells, not macrophages, that were enriched in functional proteins with cell adhesion, cell migration, axon guidance, and cell motility, showed a better capacity for the remote trafficking of QDs. This study proposes Exo as a vehicle to deliver exogenous NPs to translocate across the distal barrier and provides further information for biomedical application and the risk assessment of NPs.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Hang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Qu M, Liu X, Wang X, Li Z, Zhou L, Li H. Palmitoylation of vacuole membrane protein 1 promotes small extracellular vesicle secretion via interaction with ALIX and influences intercellular communication. Cell Commun Signal 2024; 22:150. [PMID: 38403678 PMCID: PMC10895845 DOI: 10.1186/s12964-024-01529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Small extracellular vesicles (EVs), exemplified by exosomes, mediate intercellular communication by transporting proteins, mRNAs, and miRNAs. Post-translational modifications are involved in controlling small EV secretion process. However, whether palmitoylation regulates small EV secretion, remains largely unexplored. METHODS Vacuole Membrane Protein 1 (VMP1) was testified to be S-palmitoylated by Palmitoylation assays. VMP1 mutant plasmids were constructed to screen out the exact palmitoylation sites. Small EVs were isolated, identified and compared between wild-type VMP1 or mutant VMP1 transfected cells. Electron microscope and immunofluorescence were used to detect multivesicular body (MVB) number and morphology change when VMP1 was mutated. Immunoprecipitation and Mass spectrum were adopted to identify the protein that interacted with palmitoylated VMP1, while knock down experiment was used to explore the function of targeted protein ALIX. Taking human Sertoli cells (SCs) and human spermatogonial stem cell like cells (SSCLCs) as a model of intercellular communication, SSCLC maintenance was detected by flow cytometry and qPCR at 12 days of differentiation. In vivo, mouse model was established by intraperitoneal injection with palmitoylation inhibitor, 2-bromopalmitate (2BP) for 3 months. RESULTS VMP1 was identified to be palmitoylated at cysteine 263,278 by ZDHHC3. Specifically, palmitoylation of VMP1 regulated its subcellular location and enhanced the amount of small EV secretion. Mutation of VMP1 palmitoylation sites interfered with the morphology and biogenesis of MVBs through suppressing intraluminal vesicle formation. Furthermore, inhibition of VMP1 palmitoylation impeded small EV secretion by affecting the interaction of VMP1 with ALIX, an accessory protein of the ESCRT machinery. Taking SCs and SSCLCs as a model of intercellular communication, we discovered VMP1 palmitoylation in SCs was vital to the growth status of SSCLCs in a co-culture system. Inhibition of VMP1 palmitoylation caused low self-maintenance, increased apoptosis, and decreased proliferation rate of SSCLCs. In vivo, intraperitoneal injection of 2BP inhibited VMP1 palmitoylation and exosomal marker expression in mouse testes, which were closely associated with the level of spermatogenic cell apoptosis and proliferation. CONCLUSIONS Our study revealed a novel mechanism for small EV secretion regulated by VMP1 palmitoylation in Sertoli cells, and demonstrated its pivotal role in intercellular communication and SSC niche.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital), 47 Youyi Road, Shenzhen, 518000, Guangdong, China.
| | - Xinyu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiaotong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Honggang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- Wuhan Huake Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|
13
|
Seretis K, Boptsi E, Boptsi A. Extracellular Vesicles as Novel Diagnostic and Therapeutic Agents for Non-Melanoma Skin Cancer: A Systematic Review. Int J Mol Sci 2024; 25:2617. [PMID: 38473864 DOI: 10.3390/ijms25052617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Standard non-melanoma skin cancer (NMSC) treatment involves surgery, recently combined with chemotherapy or immunotherapy in cases of advanced tumors. EVs, including exosomes, are integral to carcinogenesis, and are found in NMSC releasing mediators impacting tumor progression. Nevertheless, the precise intercellular signaling role of NMSC-derived EVs remains unclear. This review aims to elucidate their potential role in NMSC diagnosis and treatment. This systematic review encompassed literature searches in electronic databases from inception to September 2023, based on certain inclusion and exclusion criteria, addressing NMSC-derived EVs, their molecular cargo, and their implications in the diagnosis, prognosis, and treatment of NMSC. Key components were identified. Extracellular vesicle (EV) proteins and RNA have emerged as diagnostic biomarkers in EV-based liquid biopsy. Circular RNA CYP24A1, known for its molecular stability, holds promise as a diagnostic biomarker. Long noncoding RNAs (lincRNA-PICSAR) and Desmoglein 2 (DSg2) are linked to drug resistance, serving as prognostic biomarkers. EV mediators are being actively investigated for their potential role as drug delivery agents. In conclusion, this systematic review showed that NMSC-derived EVs display promise as therapeutic targets and diagnostic biomarkers. Further research is imperative to fully comprehend EV mechanisms and explore their potential in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Konstantinos Seretis
- Department of Plastic Surgery, Medical School, University of Ioannina, 45100 Ioannina, Greece
| | - Eleni Boptsi
- Department of Plastic Surgery, Medical School, University of Ioannina, 45100 Ioannina, Greece
| | - Anastasia Boptsi
- Department of Plastic Surgery, Medical School, University of Ioannina, 45100 Ioannina, Greece
| |
Collapse
|
14
|
Waury K, Gogishvili D, Nieuwland R, Chatterjee M, Teunissen CE, Abeln S. Proteome encoded determinants of protein sorting into extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e120. [PMID: 38938677 PMCID: PMC11080751 DOI: 10.1002/jex2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are membranous structures released by cells into the extracellular space and are thought to be involved in cell-to-cell communication. While EVs and their cargo are promising biomarker candidates, sorting mechanisms of proteins to EVs remain unclear. In this study, we ask if it is possible to determine EV association based on the protein sequence. Additionally, we ask what the most important determinants are for EV association. We answer these questions with explainable AI models, using human proteome data from EV databases to train and validate the model. It is essential to correct the datasets for contaminants introduced by coarse EV isolation workflows and for experimental bias caused by mass spectrometry. In this study, we show that it is indeed possible to predict EV association from the protein sequence: a simple sequence-based model for predicting EV proteins achieved an area under the curve of 0.77 ± 0.01, which increased further to 0.84 ± 0.00 when incorporating curated post-translational modification (PTM) annotations. Feature analysis shows that EV-associated proteins are stable, polar, and structured with low isoelectric point compared to non-EV proteins. PTM annotations emerged as the most important features for correct classification; specifically, palmitoylation is one of the most prevalent EV sorting mechanisms for unique proteins. Palmitoylation and nitrosylation sites are especially prevalent in EV proteins that are determined by very strict isolation protocols, indicating they could potentially serve as quality control criteria for future studies. This computational study offers an effective sequence-based predictor of EV associated proteins with extensive characterisation of the human EV proteome that can explain for individual proteins which factors contribute to their EV association.
Collapse
Affiliation(s)
- Katharina Waury
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Dea Gogishvili
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Vesicle Observation Centre, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Abeln
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
| |
Collapse
|
15
|
Myo Min KK, Ffrench CB, McClure BJ, Ortiz M, Dorward EL, Samuel MS, Ebert LM, Mahoney MG, Bonder CS. Desmoglein-2 as a cancer modulator: friend or foe? Front Oncol 2023; 13:1327478. [PMID: 38188287 PMCID: PMC10766750 DOI: 10.3389/fonc.2023.1327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Charlie B. Ffrench
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emma L. Dorward
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Queen Elizabeth Hospital, SA, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Claudine S. Bonder
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Zhan Z, Ye M, Jin X. The roles of FLOT1 in human diseases (Review). Mol Med Rep 2023; 28:212. [PMID: 37772385 PMCID: PMC10552069 DOI: 10.3892/mmr.2023.13099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 09/30/2023] Open
Abstract
FLOT1, a scaffold protein of lipid rafts, is involved in several biological processes, including lipid raft protein‑-dependent or clathrin‑independent endocytosis, and the formation of hippocampal synapses, amongst others. Increasing evidence has shown that FLOT1 can function as both a cancer promoter and cancer suppressor dependent on the type of cancer. FLOT1 can affect the occurrence and development of several types of cancer by affecting epithelial‑mesenchymal transition, proliferation of cancer cells, and relevant signaling pathways, and is regulated by long intergenic non‑coding RNAs or microRNAs. In the nervous system, overexpression or abnormally low expression of FLOT1 may lead to the occurrence of neurological diseases, such as Alzheimer's disease, Parkinson's disease, major depressive disorder and other diseases. Additionally, it is also associated with dilated cardiomyopathy, pathogenic microbial infection, diabetes‑related diseases, and gynecological diseases, amongst other diseases. In the present review, the structure and localization of FLOT1, as well as the physiological processes it is involved in are reviewed, and then the upstream and downstream regulation of FLOT1 in human disease, particularly in different types of cancer and neurological diseases are discussed, with a focus on potentially targeting FLOT1 for the clinical treatment of several diseases.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
17
|
Hill BL, Calder AN, Flemming JP, Guo Y, Gilmore SL, Trofa MA, Daniels SK, Nielsen TN, Gleason LK, Antysheva Z, Demina K, Kotlov N, Davitt CJ, Cognetti DM, Prendergast GC, Snook AE, Johnson JM, Kumar G, Linnenbach AJ, Martinez-Outschoorn U, South AP, Curry JM, Harshyne LA, Luginbuhl AJ, Mahoney MG. IL-8 correlates with nonresponse to neoadjuvant nivolumab in HPV positive HNSCC via a potential extracellular vesicle miR-146a mediated mechanism. Mol Carcinog 2023; 62:1428-1443. [PMID: 37401875 PMCID: PMC10524928 DOI: 10.1002/mc.23587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Therapy using anti-PD-1 immune checkpoint inhibitors (ICI) has revolutionized the treatment of many cancers including head and neck squamous cell carcinomas (HNSCC), but only a fraction of patients respond. To better understand the molecular mechanisms driving resistance, we performed extensive analysis of plasma and tumor tissues before and after a 4-week neoadjuvant trial in which HNSCC patients were treated with the anti-PD-1 inhibitor, nivolumab. Luminex cytokine analysis of patient plasma demonstrated that HPVpos nonresponders displayed high levels of the proinflammatory chemokine, interleukin-8 (IL-8), which decreased after ICI treatment, but remained higher than responders. miRNAseq analysis of tetraspanin-enriched small extracellular vesicles (sEV) purified from plasma of HPVpos nonresponders demonstrated significantly lower levels of seven miRNAs that target IL-8 including miR-146a. Levels of the pro-survival oncoprotein Dsg2, which has been to down-regulate miR-146a, are elevated with HPVpos tumors displaying higher levels than HPVneg tumors. Dsg2 levels decrease significantly following ICI in responders but not in nonresponders. In cultured HPVpos cells, restoration of miR-146a by forced expression or treatment with miR-146a-loaded sEV, reduced IL-8 level, blocked cell cycle progression, and promoted cell death. These findings identify Dsg2, miR-146a, and IL-8 as potential biomarkers for ICI response and suggest that the Dsg2/miR-146a/IL-8 signaling axis negatively impacts ICI treatment outcomes and could be targeted to improve ICI responsiveness in HPVpos HNSCC patients.
Collapse
Affiliation(s)
- Brianna L. Hill
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alyssa N. Calder
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joseph P. Flemming
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yiyang Guo
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sydney L. Gilmore
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Melissa A. Trofa
- Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sean K. Daniels
- Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA, USA
| | - Torbjoern N. Nielsen
- John A. Burns School of Medicine, University of Hawai’i at Mānoa Honolulu, HI, USA
| | - Laura K. Gleason
- Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - David M. Cognetti
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jennifer M. Johnson
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alban J. Linnenbach
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Andrew P. South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph M. Curry
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Larry A. Harshyne
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam J. Luginbuhl
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Chiang E, Stafford H, Buell J, Ramesh U, Amit M, Nagarajan P, Migden M, Yaniv D. Review of the Tumor Microenvironment in Basal and Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:2453. [PMID: 37173918 PMCID: PMC10177565 DOI: 10.3390/cancers15092453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
It is widely known that tumor cells of basal and squamous cell carcinoma interact with the cellular and acellular components of the tumor microenvironment to promote tumor growth and progression. While this environment differs for basal and squamous cell carcinoma, the cellular players within both create an immunosuppressed environment by downregulating effector CD4+ and CD8+ T cells and promoting the release of pro-oncogenic Th2 cytokines. Understanding the crosstalk that occurs within the tumor microenvironment has led to the development of immunotherapeutic agents, including vismodegib and cemiplimab to treat BCC and SCC, respectively. However, further investigation of the TME will provide the opportunity to discover novel treatment options.
Collapse
Affiliation(s)
- Elizabeth Chiang
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haleigh Stafford
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jane Buell
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Uma Ramesh
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moran Amit
- Head and Neck Surgery Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Migden
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Yaniv
- Head and Neck Surgery Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
19
|
Matas-Nadal C, Bech-Serra JJ, Gatius S, Gomez X, Ribes-Santolaria M, Guasch-Vallés M, Pedraza N, Casanova JM, Gómez CDLT, Garí E, Aguayo-Ortiz RS. Biomarkers found in the tumor interstitial fluid may help explain the differential behavior among keratinocyte carcinomas. Mol Cell Proteomics 2023; 22:100547. [PMID: 37059366 DOI: 10.1016/j.mcpro.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Basal Cell Carcinomas (BCC) and cutaneous Squamous Cell Carcinomas (SCC) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KC). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the Tumor Interstitial Fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing 7 BCCs, 16 SCCs, and 4 Normal Skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF-proteins that could explain the different metastatic behavior in both KC. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin1. Previous studies found their up-regulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KC provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.
Collapse
Affiliation(s)
- Clara Matas-Nadal
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dermatology department. Hospital Santa Caterina, Salt, Girona.
| | - Joan J Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Sònia Gatius
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Servei d'anatomia patològica, Hospital Universitari Arnau de Vilanova, Lleida
| | - Xavier Gomez
- Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marina Ribes-Santolaria
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marta Guasch-Vallés
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Neus Pedraza
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Josep M Casanova
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida
| | | | - Eloi Garí
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Rafael S Aguayo-Ortiz
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida; Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida)
| |
Collapse
|
20
|
Extracellular Vesicles as Biomarkers in Head and Neck Squamous Cell Carcinoma: From Diagnosis to Disease-Free Survival. Cancers (Basel) 2023; 15:cancers15061826. [PMID: 36980712 PMCID: PMC10046514 DOI: 10.3390/cancers15061826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising from different anatomical sites present with different incidences and characteristics, which requires a personalized treatment strategy. Despite the extensive research that has conducted on this malignancy, HNSCC still has a poor overall survival rate. Many attempts have been made to improve the outcomes, but one of the bottlenecks is thought to be the lack of an effective biomarker with high sensitivity and specificity. Extracellular vesicles (EVs) are secreted by various cells and participate in a great number of intercellular communications. Based on liquid biopsy, EV detection in several biofluids, such as blood, saliva, and urine, has been applied to identify the existence and progression of a variety of cancers. In HNSCC, tumor-derived EVs exhibit many functionalities by transporting diverse cargoes, which highlights their importance in tumor screening, the determination of multidisciplinary therapy, prediction of prognosis, and evaluation of therapeutic effects. This review illustrates the classification and formation of EV subtypes, the cargoes conveyed by these vesicles, and their respective functions in HNSCC cancer biology, and discloses their potential as biomarkers during the whole process of tumor diagnosis, treatment, and follow-up.
Collapse
|
21
|
Liu J, Chai L, Zhang X. Advances in the Biological Functions of Extracellular Vesicles and their Potential Use in Treating Oral Cancer. Cell Biochem Biophys 2023; 81:1-5. [PMID: 36441372 DOI: 10.1007/s12013-022-01120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are membranous spheroid organelles secreted by various cells during their development. Previous studies have proved that the elimination of metabolic waste products from the cells is one of the key biological functions of EVs. Besides, recent studies suggest that EVs also promote intercellular information transmission thus further regulating the external environment of cells, especially during the development of cancer. Different EVs are produced by tumor cells and tumor-related cells during the development of tumors. Based on their sources and contents, different EVs may promote the proliferation of tumor cells, interfere with the function of immune cells, or destroy normal tissue barriers. As a landmark component in the occurrence and development of tumors, EVs can be used to solve the biological behaviors that hinder tumor treatment, such as drug resistance and immune escape. Oral cancer is a highly prevalent cancer type in clinic and current therapies often fail to effectively inhibit its deterioration. Based on their essential roles in cancer development, EVs therefore possess great potential to be a target for oral cancer treatment. In this review, we focused on the origin and classification of vesicles in oral cancer tissues around the tumor microenvironment, described their biological functions, and discussed their potential for cancer treatment in combination with existing research methods. In addition, we highlighted the current challenges and recommendations of EVs for the treatment of oral cancer in clinic.
Collapse
Affiliation(s)
- Jingwen Liu
- The Affiliated People's Hospital of Ningbo University, Zhejiang, 315000, China.
| | - Luyi Chai
- The Affiliated People's Hospital of Ningbo University, Zhejiang, 315000, China
| | - Xia Zhang
- The Affiliated People's Hospital of Ningbo University, Zhejiang, 315000, China
| |
Collapse
|
22
|
The Roles of Exosomes in the Diagnose, Development and Therapeutic Resistance of Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24031968. [PMID: 36768288 PMCID: PMC9916286 DOI: 10.3390/ijms24031968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Oral cancer is one of the most common cancers worldwide, of which more than half of patients are diagnosed at a locally advanced stage with poor prognosis due to recurrence, metastasis and resistant to treatment. Thus, it is imperative to further explore the potential mechanism of development and drug resistance of oral cancer. Exosomes are small endosome-derived lipid nanoparticles that are released by cells. Since the cargoes of exosomes were inherited from their donor cells, the cargo profiles of exosomes can well recapitulate that of their donor cells. This is the theoretical basis of exosome-based liquid biopsy, providing a tool for early diagnosis of oral cancer. As an important intracellular bioactive cargo delivery vector, exosomes play a critical role in the development of oral cancer by transferring their cargoes to receipt cells. More importantly, recent studies have revealed that exosomes could induce therapy-resistance in oral cancer through multiple ways, including exosome-mediated drug efflux. In this review, we summarize and compare the role of exosomes in the diagnosis, development and therapy-resistant of oral cancer. We also highlight the clinical application of exosomes, and discuss the advantages and challenges of exosomes serving as predictive biomarker, therapy target and therapy vector in oral cancer.
Collapse
|
23
|
Zhang C, Chen W, Pan S, Zhang S, Xie H, Zhang Z, Lei W, Bao L, You Y. SEVs-mediated miR-6750 transfer inhibits pre-metastatic niche formation in nasopharyngeal carcinoma by targeting M6PR. Cell Death Dis 2023; 9:2. [PMID: 36609569 PMCID: PMC9823008 DOI: 10.1038/s41420-022-01262-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/07/2023]
Abstract
Reliable detection of circulating small extracellular vesicles (SEVs) and their miRNA cargo has been needed to develop potential specific non-invasive diagnostic and therapeutic marker for cancer metastasis. Here, we detected miR-6750, the precise molecular function of which was largely unknown, was significantly enriched in serum-SEVs from normal volunteers vs. patients with nasopharyngeal carcinoma (NPC). And we determined that miR-6750-SEVs attenuated NPC metastasis. Subsequently, miR-6750-SEVs was proven to inhibit angiogenesis and activate macrophage toward to M1 phenotype to inhibit pre-metastatic niche formation. After analyzing the expression level of miR-6750 in NPC cells, HUVECs and macrophage, we found that once miR-6750 level in NPC cells was close to or higher than normal nasopharyngeal epithelial cells (NP69), miR-6750-SEVs would be transferred from NPC cells to macrophage and then to HUVECs to modulate metastatic niche. Moreover, in vitro assays and BALB/c mouse tumor models revealed that miR-6750 directly targeted mannose 6-phosphate receptor (M6PR). Taken together, our findings revealed that miR-6750-M6PR axis can mediate NPC metastasis by remodeling tumor microenvironment (TME) via SEVs, which give novel sights to pathogenesis of NPC.
Collapse
Affiliation(s)
- Caiming Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenhui Chen
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Si Pan
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyu Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Haijing Xie
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zixiang Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Lei
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lili Bao
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yiwen You
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
24
|
Luo X, Li Y, Hua Z, Xue X, Wang X, Pang M, Xiao C, Zhao H, Lyu A, Liu Y. Exosomes-mediated tumor metastasis through reshaping tumor microenvironment and distant niche. J Control Release 2023; 353:327-336. [PMID: 36464063 DOI: 10.1016/j.jconrel.2022.11.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Tumor-derived exosomes (TDEs) are the particular communicator and messenger between tumor cells and other cells containing cancer-associated genetic materials and proteins. And TDEs who are also one of the important components consisting of the tumor microenvironment (TME) can reshape and interact with TME to promote tumor development and metastasis. Moreover, due to their long-distance transmission by body fluids, TDEs can facilitate the formation of pre-metastatic niche to support tumor colonization. We discuss the main characteristics and mechanism of TDE-mediated tumor metastasis by reshaping TME and pre-metastatic niche as well as the potential of TDEs for diagnosing tumor and predicting future metastatic development.
Collapse
Affiliation(s)
- Xinyi Luo
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
25
|
Gao B, Li R, Song X, Hu S, Yang F. miR-139-5p and miR-451a as a Diagnostic Biomarker in LUSC. Pharmgenomics Pers Med 2023; 16:313-323. [PMID: 37063774 PMCID: PMC10093518 DOI: 10.2147/pgpm.s402750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a type of lung cancer that originates from segmental or subsegmental bronchial mucosa. There is evidence that miRNA plays an important role in the occurrence and progression of tumors. Methods In this study, plasma samples of patients with early LUSC and healthy volunteers were subjected to miRNA sequencing, and the levels of differentially expressed miRNAs (DEMs) in LUSC tissues were analyzed using R language. Cox regression and Kaplan-Meier (K-M) survival curve analyses were performed to determine the relationship between DEMs and prognosis in LUSC, and PCR method was verified for the plasma expression level of DEMs in patients with LUSC. The levels of CYFRA21-1 and SCC-Ag in plasma were measured, and area under curve (AUC) was used to evaluate the diagnostic value of the DEMs. Results A total of 21 DEMs were screened out by sequencing. The expression levels of DEMs in tissue samples in the TCGA database were analyzed, and four DEMs with consistent expression levels were further screened from plasma and tissue samples. Regression analysis and K-M curve were performed to select two DEMs (miR-139-5p, miR-451a) that were correlated with the prognosis. PCR verification results showed that the levels of miR-451a and miR-139-5p were low in patients, and the level of miR-139-5p in late stages III & IV with the patients of LUSC was higher than that in stages I & II. The AUC values of the four indicators (SCC-Ag, CYFRA21-1, miR-451a and miR-139-5p) in the diagnosis of LUSC, early and late cases were 0.884, 0.935 and 0.778, respectively. Conclusion The detection of miR-139-5p and miR-451a levels in plasma has a certain potential in the non-invasive diagnosis, especially in patients with early stages of LUSC.
Collapse
Affiliation(s)
- Bo Gao
- Departments of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
| | - Rui Li
- Departments of Medical office, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
| | - Xiaojia Song
- Shiyan Prefecture Center for Disease Control and Prevention, Shiyan, Hubei, 442000, People’s Republic of China
| | - Shan Hu
- Departments of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
| | - Fengmei Yang
- Departments of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
- Correspondence: Fengmei Yang, Email
| |
Collapse
|
26
|
Fibroblast growth factor-2 bound to specific dermal fibroblast-derived extracellular vesicles is protected from degradation. Sci Rep 2022; 12:22131. [PMID: 36550142 PMCID: PMC9780220 DOI: 10.1038/s41598-022-26217-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor-2 (FGF2) has multiple roles in cutaneous wound healing but its natural low stability prevents the development of its use in skin repair therapies. Here we show that FGF2 binds the outer surface of dermal fibroblast (DF)-derived extracellular vesicles (EVs) and this association protects FGF2 from fast degradation. EVs isolated from DF cultured in the presence of FGF2 harbor FGF2 on their surface and FGF2 can bind purified EVs in absence of cells. Remarkably, FGF2 binding to EVs is restricted to a specific subpopulation of EVs, which do not express CD63 and CD81 markers. Treatment of DF with FGF2-EVs activated ERK and STAT signaling pathways and increased cell proliferation and migration. Local injection of FGF2-EVs improved wound healing in mice. We further demonstrated that binding to EVs protects FGF2 from both thermal and proteolytic degradation, thus maintaining FGF2 function. This suggests that EVs protect soluble factors from degradation and increase their stability and half-life. These results reveal a novel aspect of EV function and suggest EVs as a potential tool for delivering FGF2 in skin healing therapies.
Collapse
|
27
|
EV-out or EV-in: Tackling cell-to-cell communication within the tumor microenvironment to enhance anti-tumor efficacy using extracellular vesicle-based therapeutic strategies. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21:207. [PMID: 36320056 PMCID: PMC9623991 DOI: 10.1186/s12943-022-01671-0] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing-Fang Han
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wen-Jia Li
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai-Shun Hu
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jie Gao
- grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China
| | - Wen-Long Zhai
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing-Hua Yang
- grid.412633.10000 0004 1799 0733Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shui-Jun Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China ,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
29
|
Desmoglein-2 is important for islet function and β-cell survival. Cell Death Dis 2022; 13:911. [PMID: 36309486 PMCID: PMC9617887 DOI: 10.1038/s41419-022-05326-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022]
Abstract
Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells. Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports β-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing β-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced β-cell apoptosis. Following transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing diabetes. In vitro assays using the Beta-TC-6 murine β-cell line suggest that DSG2 supports the actin cytoskeleton as well as the release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of β-cell function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat type 1 diabetes.
Collapse
|
30
|
Cancer-Derived Extracellular Vesicles as Biomarkers for Cutaneous Squamous Cell Carcinoma: A Systematic Review. Cancers (Basel) 2022; 14:cancers14205098. [PMID: 36291882 PMCID: PMC9599948 DOI: 10.3390/cancers14205098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Biomarkers including DNA, RNA, and surface-associated proteins in tumor-derived extracellular vesicles promote accurate clinical diagnosis and indicate the prognosis of cancer. In this systematic review, pre-clinical and clinical studies on extracellular vesicles derived from cutaneous squamous cell carcinoma (cSCC-derived EVs) were summarized, for which studies on the genomics, transcriptomics, and proteomics of cSCC-derived EVs were highlighted. The contents in cSCC-derived EVs may reflect the mutational landscape of the original cancer cells or be selectively enriched in extracellular vesicles, as provided by the significant role of target molecules including desmoglein 2 protein (Dsg2), Ct-SLCO1B3 mRNA, CYP24A1 circular RNA (circRNA), long intergenic non-coding RNA (linc-PICSAR) and DNA Copy Number Alteration (CNA). Evidence of these studies implied the diagnostic and therapeutic potential of cSCC-derived EVs for cutaneous squamous cell carcinoma. Abstract Cutaneous squamous cell carcinoma (cSCC) as one of the most prevalent cancers worldwide is associated with significant morbidity and mortality. Full-body skin exam and biopsy is the gold standard for cSCC diagnosis, but it is not always feasible given constraints on time and costs. Furthermore, biopsy fails to reflect the dynamic changes in tumor genomes, which challenges long-term medical treatment in patients with advanced diseases. Extracellular vesicle (EV) is an emerging biological entity in oncology with versatile clinical applications from screening to treatment. In this systematic review, pre-clinical and clinical studies on cSCC-derived EVs were summarized. Seven studies on the genomics, transcriptomics, and proteomics of cSCC-derived EVs were identified. The contents in cSCC-derived EVs may reflect the mutational landscape of the original cancer cells or be selectively enriched in EVs. Desmoglein 2 protein (Dsg2) is an important molecule in the biogenesis of cSCC-derived EVs. Ct-SLCO1B3 mRNA, and CYP24A1 circular RNA (circRNA) are enriched in cSCC-derived EVs, suggesting potentials in cSCC screening and diagnosis. p38 inhibited cSCC-associated long intergenic non-coding RNA (linc-PICSAR) and Dsg2 involved in EV-mediated tumor invasion and drug resistance served as prognostic and therapeutic predictors. We also proposed future directions to devise EV-based cSCC treatment based on these molecules and preliminary studies in other cancers.
Collapse
|
31
|
Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic Applications of Mammal and Plant-Derived Extracellular Vesicles: Latest Findings, Current Technologies, and Prospects. Molecules 2022; 27:3941. [PMID: 35745063 PMCID: PMC9228370 DOI: 10.3390/molecules27123941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
Collapse
Affiliation(s)
- Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
32
|
Du Y, Gu Z, Li Z, Yuan Z, Zhao Y, Zheng X, Bo X, Chen H, Wang C. Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200818. [PMID: 35570408 PMCID: PMC9218654 DOI: 10.1002/advs.202200818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Indexed: 06/05/2023]
Abstract
Structural variations (SVs) are the greatest source of variations in the genome and can lead to oncogenesis. However, the identification and interpretation of SVs in human cancer remain technologically challenging. Here, long-read sequencing is first employed to depict the signatures of structural variations in carcinogenesis of human pancreatic ductal epithelium. Then widespread reprogramming of the 3D chromatin architecture is revealed by an in situ Hi-C technique. Integrative analyses indicate that the distribution pattern of SVs among the 3D genome is highly cell-type specific and the bulk remodeling effects of SVs in the chromatin organization partly depend on intercellular genomic heterogeneity. Meanwhile, contact domains tend to minimize these disrupting effects of SVs within local adjacent genomic regions to maintain overall stability. Notably, complex genomic rearrangements involving two key driver genes CDKN2A and SMAD4 are identified, and their influence on the expression of oncogenes MIR31HG, MYO5B, etc., are further elucidated from both a linear view and 3D perspective. Overall, this work provides a genome-wide resource and highlights the impact, complexity, and dynamicity of the interplay between structural variations and high-order chromatin organization, which expands the current understanding of the pathogenesis of SVs in human cancer.
Collapse
Affiliation(s)
- Yongxing Du
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongting Gu
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongze Li
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zan Yuan
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Yue Zhao
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Xiaohao Zheng
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xiaochen Bo
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Hebing Chen
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Chengfeng Wang
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
33
|
Feng L, Weng J, Yao C, Wang R, Wang N, Zhang Y, Tanaka Y, Su L. Extracellular Vesicles Derived from SIPA1high Breast Cancer Cells Enhance Macrophage Infiltration and Cancer Metastasis through Myosin-9. BIOLOGY 2022; 11:biology11040543. [PMID: 35453742 PMCID: PMC9032110 DOI: 10.3390/biology11040543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The high expression of signal-induced proliferation-associated 1 (SIPA1) in breast cancer could aggravate cancer cell metastasis, but how the tumour microenvironment is involved in this incident is unknown. In this study, we investigated whether breast cancer cells with high SIPA1 expression recruited macrophages into the tumour microenvironment. We also found that extracellular vesicles (EVs) derived from MDA-MB-231 cells significantly enhanced macrophage migration, compared with that from SIPA1-knockdown MDA-MB-231 cells both in vitro and in vivo. In terms of the mechanism, SIPA1 in cancer cells modulated the key protein myosin-9 in EVs and promoted macrophage infiltration via EVs. We confirmed that either down-regulating SIPA1 expression or blocking myosin-9 by its inhibitor, blebbistatin, led to the suppression of macrophage infiltration. These findings contribute to a deep understanding of how SIPA1 regulates the tumour microenvironment in breast cancer to facilitate tumour metastasis and provide a basis for the development of therapeutics against breast cancer metastasis. Abstract Tumour cell metastasis can be genetically regulated by proteins contained in cancer cell-derived extracellular vesicles (EVs) released to the tumour microenvironment. Here, we found that the number of infiltrated macrophages was positively correlated with the expression of signal-induced proliferation-associated 1 (SIPA1) in invasive breast ductal carcinoma tissues and MDA-MB-231 xenograft tumours. EVs derived from MDA-MB-231 cells (231-EVs) significantly enhanced macrophage migration, compared with that from SIPA1-knockdown MDA-MB-231 cells (231/si-EVs) both in vitro and in vivo. We revealed that SIPA1 promoted the transcription of MYH9, which encodes myosin-9, and up-regulated the expression level of myosin-9 in breast cancer cells and their EVs. We also found that blocking myosin-9 by either down-regulating SIPA1 expression or blebbistatin treatment led to the suppression of macrophage infiltration. Survival analysis showed that breast cancer patients with high expression of SIPA1 and MYH9 molecules had worse relapse-free survival (p = 0.028). In summary, SIPA1high breast cancer can enhance macrophage infiltration through EVs enriched with myosin-9, which might aggravate the malignancy of breast cancer.
Collapse
Affiliation(s)
- Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Chenguang Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Ruyuan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Ning Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| |
Collapse
|
34
|
Identification of differentially expressed miRNAs derived from serum exosomes associated with gastric cancer by microarray analysis. Clin Chim Acta 2022; 531:25-35. [PMID: 35300960 DOI: 10.1016/j.cca.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS To explore the differentially expressed microRNAs (DEMs) in serum exosomes between gastric cancer (GC) patients and healthy people to provide new targets for GC diagnosis and treatment. METHODS DEMs in serum exosomes were screened by microarray analysis and verified by RT-qPCR. The target genes of DEMs were predicted using Targetscan and miRTarBase databases and then overlapped with the DEGs of STAD in TCGA database to obtain the common target genes. Biological function and pathway enrichment were analyzed using enrichr database, and a PPI network was constructed using STRING database. The potential target genes of DEMs were identified using the MCODE and cytoHubba plug-ins of Cytoscape software. Survival analysis were conducted using KMP and TCGA databases. The DEMs -target genes-pathways network was established using Cytoscape software. A Cox proportional hazards regression model formed by optimal target genes was used to access the reliability of this prediction process. RESULTS Three serum exosomal microRNAs (exo-miRNAs, has-miR-1273 g-3p, has-miR-4793-3p, has-miR-619-5p) were identified to be highly expressed in GC patients and performed excellent diagnostic ability. A total of 179 common target genes related to GC were predicted. They were mainly involved in 79 GO functional annotations and 6 KEGG pathways. The prognostic model formed by eight optimal target genes (TIMELESS, DNA2, MELK, CHAF1B, DBF4, PAICS, CHEK1 and NCAPG2), which were low-risk genes of GC, also performed perfect prognostic ability. CONCLUSIONS Serum exosomal has-miR-1273 g-3p, has-miR-4793-3p and has-miR-619-5p can be used as new diagnostic biomarkers for GC. Among them, serum exosomal hsa-miR-1273 g-3p / hsa-miR-4793-3p targets MELK and hsa-miR-619-5p targets NCAPG2 were identified as novel mechanisms involved in the development of GC. It provides new targets for the diagnosis and treatment of GC by exo-miRNAs.
Collapse
|
35
|
Yang K, Zhou Q, Qiao B, Shao B, Hu S, Wang G, Yuan W, Sun Z. Exosome-derived noncoding RNAs: Function, mechanism, and application in tumor angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:983-997. [PMID: 35317280 PMCID: PMC8905256 DOI: 10.1016/j.omtn.2022.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exosomes are extracellular vesicles released by various cell types that perform various biological functions, mainly mediating communication between different cells, especially those active in cancer. Noncoding RNAs (ncRNAs), of which there are many types, were recently identified as enriched and stable in the exocrine region and play various roles in the occurrence and progression of cancer. Abnormal angiogenesis has been confirmed to be related to human cancer. An increasing number of studies have shown that exosome-derived ncRNAs play an important role in tumor angiogenesis. In this review, we briefly outline the characteristics of exosomes, ncRNAs, and tumor angiogenesis. Then, the mechanism of the impact of exosome-derived ncRNAs on tumor angiogenesis is analyzed from various angles. In addition, we focus on the regulatory role of exosome-derived ncRNAs in angiogenesis in different types of cancer. Furthermore, we emphasize the potential role of exosome-derived ncRNAs as biomarkers in cancer diagnosis and prognosis and therapeutic targets in the treatment of tumors.
Collapse
Affiliation(s)
- Kangkang Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
36
|
Flemming JP, Hill BL, Anderson-Pullinger L, Harshyne LA, Mahoney MG. Cytokine Profiling in Low- and High-Density Small Extracellular Vesicles from Epidermoid Carcinoma Cells. JID INNOVATIONS 2021; 1:100053. [PMID: 34909749 PMCID: PMC8659799 DOI: 10.1016/j.xjidi.2021.100053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes or small extracellular vesicles (sEVs) are membrane-bound nanoparticles that carry various macromolecules and act as autocrine and paracrine signaling messengers. In this study, sEVs from epidermoid carcinoma cells influenced by membrane presentation of the glycoprotein desmoglein 2 and its palmitoylation state were investigated. In this study, sEVs were isolated by sequential ultracentrifugation followed by iodixanol density gradient separation. They were then subjected to multiplex profiling of cytokines associated with the surface of intact sEVs. The results revealed a previously undescribed active sorting of cytokines onto the surface of low-density and high-density sEV subpopulations. Specifically, an altered surface presentation of desmoglein 2 decreased FGF-2 and VEGF in low-density sEVs. In addition, in response to desmoglein 2, IL-8 and RANTES were increased in low-density sEVs but only slightly decreased in high-density sEVs. Finally, IL-6 and G-CSF were increased dramatically in high-density sEVs. This comprehensive analysis of the cytokine production profile by squamous cell carcinoma‒derived sEVs highlights their contribution to immune evasion, pro-oncogenic and proangiogenic activity, and the potential to identify diagnostic disease biomarkers.
Collapse
Affiliation(s)
- Joseph P. Flemming
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brianna L. Hill
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Larry A. Harshyne
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mỹ G. Mahoney
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Peng M, Ren J, Jing Y, Jiang X, Xiao Q, Huang J, Tao Y, Lei L, Wang X, Yang Z, Yang Z, Zhan Q, Lin C, Jin G, Zhang X, Zhang L. Tumour-derived small extracellular vesicles suppress CD8+ T cell immune function by inhibiting SLC6A8-mediated creatine import in NPM1-mutated acute myeloid leukaemia. J Extracell Vesicles 2021; 10:e12168. [PMID: 34807526 PMCID: PMC8607980 DOI: 10.1002/jev2.12168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) carrying nucleophosmin (NPM1) mutations has been defined as a distinct entity of acute leukaemia. Despite remarkable improvements in diagnosis and treatment, the long-term outcomes for this entity remain unsatisfactory. Emerging evidence suggests that leukaemia, similar to other malignant diseases, employs various mechanisms to evade killing by immune cells. However, the mechanism of immune escape in NPM1-mutated AML remains unknown. In this study, both serum and leukemic cells from patients with NPM1-mutated AML impaired the immune function of CD8+ T cells in a co-culture system. Mechanistically, leukemic cells secreted miR-19a-3p into the tumour microenvironment (TME) via small extracellular vesicles (sEVs), which was controlled by the NPM1-mutated protein/CCCTC-binding factor (CTCF)/poly (A)-binding protein cytoplasmic 1 (PABPC1) signalling axis. sEV-related miR-19a-3p was internalized by CD8+ T cells and directly repressed the expression of solute-carrier family 6 member 8 (SLC6A8; a creatine-specific transporter) to inhibit creatine import. Decreased creatine levels can reduce ATP production and impair CD8+ T cell immune function, leading to immune escape by leukemic cells. In summary, leukemic cell-derived sEV-related miR-19a-3p confers immunosuppression to CD8+ T cells by targeting SLC6A8-mediated creatine import, indicating that sEV-related miR-19a-3p might be a promising therapeutic target for NPM1-mutated AML.
Collapse
Affiliation(s)
- Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xin Wang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zailin Yang
- Department of Clinical Laboratory The Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing University Cancer HospitalChongqingChina
| | - Zesong Yang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qian Zhan
- The Center for Clinical Molecular Medical detectionThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Guoxiang Jin
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xian Zhang
- Immunology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| |
Collapse
|
38
|
Ebert LM, Vandyke K, Johan MZ, DeNichilo M, Tan LY, Myo Min KK, Weimann BM, Ebert BW, Pitson SM, Zannettino ACW, Wallington-Beddoe CT, Bonder CS. Desmoglein-2 expression is an independent predictor of poor prognosis patients with multiple myeloma. Mol Oncol 2021; 16:1221-1240. [PMID: 34245117 PMCID: PMC8936512 DOI: 10.1002/1878-0261.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is the second most common haematological malignancy and is an incurable disease of neoplastic plasma cells (PC). Newly diagnosed MM patients currently undergo lengthy genetic testing to match chromosomal mutations with the most potent drug/s to decelerate disease progression. With only 17% of MM patients surviving 10‐years postdiagnosis, faster detection and earlier intervention would unequivocally improve outcomes. Here, we show that the cell surface protein desmoglein‐2 (DSG2) is overexpressed in ~ 20% of bone marrow biopsies from newly diagnosed MM patients. Importantly, DSG2 expression was strongly predictive of poor clinical outcome, with patients expressing DSG2 above the 70th percentile exhibiting an almost 3‐fold increased risk of death. As a prognostic factor, DSG2 is independent of genetic subtype as well as the routinely measured biomarkers of MM activity (e.g. paraprotein). Functional studies revealed a nonredundant role for DSG2 in adhesion of MM PC to endothelial cells. Together, our studies suggest DSG2 to be a potential cell surface biomarker that can be readily detected by flow cytometry to rapidly predict disease trajectory at the time of diagnosis.
Collapse
Affiliation(s)
- Lisa M Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kate Vandyke
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.,Myeloma Research Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Mark DeNichilo
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Lih Y Tan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kay K Myo Min
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Benjamin M Weimann
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Brenton W Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew C W Zannettino
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.,Myeloma Research Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Flinders Medical Centre, Bedford Park, SA, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
39
|
Liu YQ, Zou HY, Xie JJ, Fang WK. Paradoxical Roles of Desmosomal Components in Head and Neck Cancer. Biomolecules 2021; 11:914. [PMID: 34203070 PMCID: PMC8234459 DOI: 10.3390/biom11060914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes involved in various aspects of epithelial pathophysiology, including tissue homeostasis, morphogenesis, and disease development. Recent studies have reported that the abnormal expression of various desmosomal components correlates with tumor progression and poor survival. In addition, desmosomes have been shown to act as a signaling platform to regulate the proliferation, invasion, migration, morphogenesis, and apoptosis of cancer cells. The occurrence and progression of head and neck cancer (HNC) is accompanied by abnormal expression of desmosomal components and loss of desmosome structure. However, the role of desmosomal components in the progression of HNC remains controversial. This review aims to provide an overview of recent developments showing the paradoxical roles of desmosomal components in tumor suppression and promotion. It offers valuable insights for HNC diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW In this review, we describe the biology of extracellular vesicles (EV) and how they contribute to bone-associated cancers. RECENT FINDINGS Crosstalk between tumor and bone has been demonstrated to promote tumor and metastatic progression. In addition to direct cell-to-cell contact and soluble factors, such as cytokines, EVs mediate crosstalk between tumor and bone. EVs are composed of a heterogenous group of membrane-delineated vesicles of varying size range, mechanisms of formation, and content. These include apoptotic bodies, microvesicles, large oncosomes, and exosomes. EVs derived from primary tumors have been shown to alter bone remodeling and create formation of a pre-metastatic niche that favors development of bone metastasis. Similarly, EVs from marrow stromal cells have been shown to promote tumor progression. Additionally, EVs can act as therapeutic delivery vehicles due to their low immunogenicity and targeting specificity. EVs play critical roles in intercellular communication. Multiple classes of EVs exist based on size on mechanism of formation. In addition to a role in pathophysiology, EVs can be exploited as therapeutic delivery vehicles.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evan T Keller
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Agobe F, DeLouise LA. The Role of Extracellular Vesicles in the Skin and Their Interactions with Nanoparticles. WORLD JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2020; 1:17-21. [PMID: 39045530 PMCID: PMC11265537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EVs) include exosomes and microvesicles. They are released from cells under both physiological and pathological conditions. EVs can be isolated from a host of biological mediums, such as blood plasma, saliva, and skin. The role of EVs and their contents including RNA, proteins, and signaling molecules, depends on the specific cells and organs from which they are derived and diseased state. EVs play a key role in cell-to-cell communication. Although the role of EVs in skin biology is a developing field, recent literature suggests they play an important role in skin homeostasis, disease, and transdermal drug delivery. EVs have been shown to modulate skin pigmentation, and aid in the cutaneous wound healing process and the secretion of nanoparticles. This paper reviews the basics of EV biogenesis, their isolation and their role in skin. We also review what is currently known about how nanoparticles may impact the contents of EVs in the skin.
Collapse
Affiliation(s)
- Francesca Agobe
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa A. DeLouise
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|