1
|
Hoffmann A, Steffens U, Maček B, Franz-Wachtel M, Nieselt K, Harbig TA, Scherlach K, Hertweck C, Sahl HG, Bierbaum G. The unusual mode of action of the polyketide glycoside antibiotic cervimycin C. mSphere 2024; 9:e0076423. [PMID: 38722162 PMCID: PMC11237698 DOI: 10.1128/msphere.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.
Collapse
Affiliation(s)
- Alina Hoffmann
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Ursula Steffens
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Boris Maček
- University of Tübingen, Proteome Center Tübingen, Tübingen, Germany
| | | | - Kay Nieselt
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Theresa Anisja Harbig
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany
| | - Hans-Georg Sahl
- University of Bonn, Institute for Pharmaceutical Microbiology, Bonn, Germany
| | - Gabriele Bierbaum
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| |
Collapse
|
2
|
Binsuwaidan R, Almuzaini O, Mercer S, Doherty C, Mokhtar J, McBain AJ, Ledder R, Humphreys GJ. Variable effects of exposure to ionic silver in wound-associated bacterial pathogens. Lett Appl Microbiol 2024; 77:ovae030. [PMID: 38533656 DOI: 10.1093/lambio/ovae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024]
Abstract
Silver compounds are used in wound dressings to reduce bioburden. Where infection is not rapidly resolved, bacteria may be exposed to sub-therapeutic concentrations of antimicrobials over prolonged periods of time. In this study, a panel of chronic wound bacteria, Pseudomonas aeruginosa (two strains), Staphylococcus aureus, and Escherichia coli, were exposed to silver nitrate on agar. Phenotypic characterization was achieved using broth microdilution sensitivity testing, a crystal violet biofilm assay, and a wax moth pathogenesis model. Repeated exposure to ionic silver did not result in planktonic phenotypic silver resistance in any of the test panels, although S. aureus demonstrated reversible increases in minimum bactericidal concentration. An ulcer-derived P. aeruginosa exhibited marked reductions in biofilm eradication concentration as well as significantly increased biofilm formation and wax moth killing when compared to the same progenitor. These changes were reversible, trending towards baseline measurements following 10 passages on silver-free media. Changes in virulence and biofilm formation in the other test bacteria were generally limited. In summary, phenotypic adaptation following exposure to ionic silver was manifested other than through changes in planktonic susceptibility. Significant changes in pseudomonas biofilm formation and sensitivity could have implications for wound care regimes and therefore warrant further investigation.
Collapse
Affiliation(s)
- Reem Binsuwaidan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 13412, Saudi Arabia
| | - Osama Almuzaini
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Steven Mercer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
| | - Christopher Doherty
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
| | - Jawahir Mokhtar
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
| | - Ruth Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, M13 9PT, United Kingdom
| |
Collapse
|
3
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R. Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y. Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Mishra NN, de Paula Baptista R, Tran TT, Lapitan CK, Garcia-de-la-Maria C, Miró JM, Proctor RA, Bayer AS. Membrane Phenotypic, Metabolic and Genotypic Adaptations of Streptococcus oralis Strains Destined to Rapidly Develop Stable, High-Level Daptomycin Resistance during Daptomycin Exposures. Antibiotics (Basel) 2023; 12:1083. [PMID: 37508179 PMCID: PMC10376253 DOI: 10.3390/antibiotics12071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The Streptococcus mitis-oralis subgroup of viridans group streptococci are important human pathogens. We previously showed that a substantial portion of S. mitis-oralis strains (>25%) are 'destined' to develop rapid, high-level, and stable daptomycin (DAP) resistance (DAP-R) during DAP exposures in vitro. Such DAP-R is often accompanied by perturbations in distinct membrane phenotypes and metabolic pathways. The current study evaluated two S. oralis bloodstream isolates, 73 and 205. Strain 73 developed stable, high-level DAP-R (minimum inhibitory concentration [MIC] > 256 µg/mL) within 2 days of in vitro DAP passage ("high level" DAP-R [HLDR]). In contrast, strain 205 evolved low-level and unstable DAP-R (MIC = 8 µg/mL) under the same exposure conditions in vitro ("non-HLDR"). Comparing the parental 73 vs. 73-D2 (HLDR) strain-pair, we observed the 73-D2 had the following major differences: (i) altered cell membrane (CM) phospholipid profiles, featuring the disappearance of phosphatidylglycerol (PG) and cardiolipin (CL), with accumulation of the PG-CL pathway precursor, phosphatidic acid (PA); (ii) enhanced CM fluidity; (iii) increased DAP surface binding; (iv) reduced growth rates; (v) decreased glucose utilization and lactate accumulation; and (vi) increased enzymatic activity within the glycolytic (i.e., lactate dehydrogenase [LDH]) and lipid biosynthetic (glycerol-3-phosphate dehydrogenase [GPDH]) pathways. In contrast, the 205 (non-HLDR) strain-pair did not show these same phenotypic or metabolic changes over the 2-day DAP exposure. WGS analyses confirmed the presence of mutations in genes involved in the above glycolytic and phospholipid biosynthetic pathways in the 73-D2 passage variant. These data suggest that S. oralis strains which are 'destined' to rapidly develop HLDR do so via a conserved cadre of genotypic, membrane phenotypic, and metabolic adaptations.
Collapse
Affiliation(s)
- Nagendra N Mishra
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson St. MRL Bldg. Room 224, Torrance, CA 90502, USA
- The David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Rodrigo de Paula Baptista
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
| | - Truc T Tran
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
| | - Christian K Lapitan
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson St. MRL Bldg. Room 224, Torrance, CA 90502, USA
| | - Cristina Garcia-de-la-Maria
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jose M Miró
- CIBERINFEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Richard A Proctor
- The Department of Medicine, University of Wisconsin School of Medicine, Madison, WI 53705, USA
| | - Arnold S Bayer
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson St. MRL Bldg. Room 224, Torrance, CA 90502, USA
- The David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Xu L, Henriksen C, Mebus V, Guérillot R, Petersen A, Jacques N, Jiang JH, Derks RJE, Sánchez-López E, Giera M, Leeten K, Stinear TP, Oury C, Howden BP, Peleg AY, Frees D. A Clinically Selected Staphylococcus aureus clpP Mutant Survives Daptomycin Treatment by Reducing Binding of the Antibiotic and Adapting a Rod-Shaped Morphology. Antimicrob Agents Chemother 2023; 67:e0032823. [PMID: 37184389 PMCID: PMC10269151 DOI: 10.1128/aac.00328-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Daptomycin is a last-resort antibiotic used for the treatment of infections caused by Gram-positive antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Treatment failure is commonly linked to accumulation of point mutations; however, the contribution of single mutations to resistance and the mechanisms underlying resistance remain incompletely understood. Here, we show that a single nucleotide polymorphism (SNP) selected during daptomycin therapy inactivates the highly conserved ClpP protease and is causing reduced susceptibility of MRSA to daptomycin, vancomycin, and β-lactam antibiotics as well as decreased expression of virulence factors. Super-resolution microscopy demonstrated that inactivation of ClpP reduced binding of daptomycin to the septal site and diminished membrane damage. In both the parental strain and the clpP strain, daptomycin inhibited the inward progression of septum synthesis, eventually leading to lysis and death of the parental strain while surviving clpP cells were able to continue synthesis of the peripheral cell wall in the presence of 10× MIC daptomycin, resulting in a rod-shaped morphology. To our knowledge, this is the first demonstration that synthesis of the outer cell wall continues in the presence of daptomycin. Collectively, our data provide novel insight into the mechanisms behind bacterial killing and resistance to this important antibiotic. Also, the study emphasizes that treatment with last-line antibiotics is selective for mutations that, like the SNP in clpP, favor antibiotic resistance over virulence gene expression.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Henriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktor Mebus
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Guérillot
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Nicolas Jacques
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Jhih-Hang Jiang
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Rico J. E. Derks
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Elena Sánchez-López
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Kirsten Leeten
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Patil R, Dehari D, Chaudhuri A, Kumar DN, Kumar D, Singh S, Nath G, Agrawal AK. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol Res 2023; 273:127413. [PMID: 37216845 DOI: 10.1016/j.micres.2023.127413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is growing as a critical challenge in a variety of disease conditions including ocular infections leading to disastrous effects on the human eyes. Staphylococcus aureus (S. aureus) mediated ocular infections are very common affecting different parts of the eye viz. vitreous chamber, conjunctiva, cornea, anterior and posterior chambers, tear duct, and eyelids. Blepharitis, dacryocystitis, conjunctivitis, keratitis, endophthalmitis, and orbital cellulitis are some of the commonly known ocular infections caused by S. aureus. Some of these infections are so fatal that they could cause bilateral blindness like panophthalmitis and orbital cellulitis, which is caused by methicillin-resistant S. aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). The treatment of S. aureus infections with known antibiotics is becoming gradually difficult because of the development of resistance against multiple antibiotics. Apart from the different combinations and formulation strategies, bacteriophage therapy is growing as an effective alternative to treat such infections. Although the superiority of bacteriophage therapy is well established, yet physical factors (high temperatures, acidic pH, UV-rays, and ionic strength) and pharmaceutical barriers (poor stability, low in-vivo retention, controlled and targeted delivery, immune system neutralization, etc.) have the greatest influence on the viability of phage virions (also phage proteins). A variety of Nanotechnology based formulations such as polymeric nanoparticles, liposomes, dendrimers, nanoemulsions, and nanofibres have been recently reported to overcome the above-mentioned obstacles. In this review, we have compiled all these recent reports and discussed bacteriophage-based nanoformulations techniques for the successful treatment of ocular infections caused by multidrug-resistant S. aureus and other bacteria.
Collapse
Affiliation(s)
- Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India; Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
7
|
Cervimycin-Resistant Staphylococcus aureus Strains Display Vancomycin-Intermediate Resistant Phenotypes. Microbiol Spectr 2022; 10:e0256722. [PMID: 36173303 PMCID: PMC9603734 DOI: 10.1128/spectrum.02567-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Resistance to antibiotics is an increasing problem and necessitates novel antibacterial therapies. The polyketide antibiotics cervimycin A to D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug-resistant staphylococci and vancomycin-resistant enterococci. To initiate mode of action studies, we selected cervimycin C- and D-resistant (CmR) Staphylococcus aureus strains. Genome sequencing of CmR mutants revealed amino acid exchanges in the essential histidine kinase WalK, the Clp protease proteolytic subunit ClpP or the Clp ATPase ClpC, and the heat shock protein DnaK. Interestingly, all characterized CmR mutants harbored a combination of mutations in walK and clpP or clpC. In vitro and in vivo analyses showed that the mutations in the Clp proteins abolished ClpP or ClpC activity, and the deletion of clpP rendered S. aureus but not all Bacillus subtilis strains cervimycin-resistant. The essential gene walK was the second mutational hotspot in the CmR S. aureus strains, which decreased WalK activity in vitro and generated a vancomycin-intermediate resistant phenotype, with a thickened cell wall, a lower growth rate, and reduced cell lysis. Transcriptomic and proteomic analyses revealed massive alterations in the CmR strains compared to the parent strain S. aureus SG511, with major shifts in the heat shock regulon, the metal ion homeostasis, and the carbohydrate metabolism. Taken together, mutations in the heat shock genes clpP, clpC, and dnaK, and the walK kinase gene in CmR mutants induced a vancomycin-intermediate resistant phenotype in S. aureus, suggesting cell wall metabolism or the Clp protease system as primary target of cervimycin. IMPORTANCE Staphylococcus aureus is a frequent cause of infections in both the community and hospital setting. Resistance development of S. aureus to various antibiotics is a severe problem for the treatment of this pathogen worldwide. New powerful antimicrobial agents against Gram-positives are needed, since antibiotics like vancomycin fail to cure vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-resistant enterococci (VRE) infections. One candidate substance with promising activity against these organisms is cervimycin, which is an antibiotic complex with a yet unknown mode of action. In our study, we provide first insights into the mode of action of cervimycins. By characterizing cervimycin-resistant S. aureus strains, we revealed the Clp system and the essential kinase WalK as mutational hotspots for cervimycin resistance in S. aureus. It further emerged that cervimycin-resistant S. aureus strains show a VISA phenotype, indicating a role of cervimycin in perturbing the bacterial cell envelope.
Collapse
|
8
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
9
|
The Resistance to Host Antimicrobial Peptides in Infections Caused by Daptomycin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10020096. [PMID: 33498191 PMCID: PMC7908987 DOI: 10.3390/antibiotics10020096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
Daptomycin is an important antibiotic for the treatment of infections caused by Staphylococcus aureus. The emergence of daptomycin resistance in S. aureus is associated with treatment failure and persistent infections with poor clinical outcomes. Here, we investigated host innate immune responses against clinically derived, daptomycin-resistant (DAP-R) and -susceptible S. aureus paired isolates using a zebrafish infection model. We showed that the control of DAP-R S. aureus infections was attenuated in vivo due to cross-resistance to host cationic antimicrobial peptides. These data provide mechanistic understanding into persistent infections caused by DAP-R S. aureus and provide crucial insights into the adaptive evolution of this troublesome pathogen.
Collapse
|
10
|
Touati A, Bellil Z, Barache D, Mairi A. Fitness Cost of Antibiotic Resistance in Staphylococcus aureus: A Systematic Review. Microb Drug Resist 2021; 27:1218-1231. [PMID: 33417813 DOI: 10.1089/mdr.2020.0426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Recent reports have shown the potential of Staphylococcus aureus for acquiring resistance to last-resort antibiotics. However, most antibiotic resistance mechanisms were associated with a fitness cost that was typically observed as a reduced bacterial growth rate. This systematic review aimed to address the fitness cost of antibiotic resistance in S. aureus that emerged by mutations. Methods: A systematic review was conducted after searching in two databases (PubMed and Scopus) using specific keywords. We included peer-reviewed articles published only in English. All studies describing the fitness cost associated with antibiotic resistance in S. aureus were selected. For each article, the results of fitness testing, minimum inhibition concentrations of mutants, the position of mutation, and the appearance of compensatory mutations were recorded. Results: At all, 35 articles were recorded in the final analysis examining the fitness cost associated with antibiotic resistance in S. aureus that conferred by mutations. Analysis of the data showed that 26 studies reported that the emergence of antibiotic resistance was frequently associated with a fitness cost. Conclusion: This review summarized that the antibiotic resistance selection caused in the majority of cases a substantial fitness cost. Further in vivo experiments revealed that these mutations affected bacterial virulence and the ability to establish a successful infection.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Zahra Bellil
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Damia Barache
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Assia Mairi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
11
|
Comparative genome analysis of 12 Shigella sonnei strains: virulence, resistance, and their interactions. Int Microbiol 2020; 24:83-91. [PMID: 32880768 DOI: 10.1007/s10123-020-00145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Shigellosis is a highly infectious disease that is mainly transmitted via fecal-oral contact of the bacteria Shigella. Four species have been identified in Shigella genus, among which Shigella flexneri is used to be the most prevalent species globally and commonly isolated from developing countries. However, it is being replaced by Shigella sonnei that is currently the main causative agent for dysentery pandemic in many emerging industrialized countries such as Asia and the Middle East. For a better understanding of S. sonnei virulence and antibiotic resistance, we sequenced 12 clinical S. sonnei strains with varied antibiotic-resistance profiles collected from four cities in Jiangsu Province, China. Phylogenomic analysis clustered antibiotic-sensitive and resistant S. sonnei into two distinct groups while pan-genome analysis reveals the presence and absence of unique genes in each group. Screening of 31 classes of virulence factors found out that type 2 secretion system is doubled in resistant strains. Further principle component analysis based on the interactions between virulence and resistance indicated that abundant virulence factors are associated with higher levels of antibiotic resistance. The result present here is based on statistical analysis of a small sample size and serves basically as a guidance for further experimental and theoretical studies.
Collapse
|
12
|
Gostev VV, Sopova YV, Kalinogorskaya OS, Tsvetkova IA, Sidorenko SV. Selection of Resistance to Daptomycin in Methicillin-Resistant Staphylococcus aureus: Role of Homo- and Hetero-Mutations. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gray DA, Wenzel M. More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics (Basel) 2020; 9:E17. [PMID: 31947747 PMCID: PMC7168178 DOI: 10.3390/antibiotics9010017] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic, which was discovered in 1987 and entered the market in 2003. To date, it serves as last resort antibiotic to treat complicated skin infections, bacteremia, and right-sided endocarditis caused by Gram-positive pathogens, most prominently methicillin-resistant Staphylococcus aureus. Daptomycin was the last representative of a novel antibiotic class that was introduced to the clinic. It is also one of the few membrane-active compounds that can be applied systemically. While membrane-active antibiotics have long been limited to topical applications and were generally excluded from systemic drug development, they promise slower resistance development than many classical drugs that target single proteins. The success of daptomycin together with the emergence of more and more multi-resistant superbugs attracted renewed interest in this compound class. Studying daptomycin as a pioneering systemic membrane-active compound might help to pave the way for future membrane-targeting antibiotics. However, more than 30 years after its discovery, the exact mechanism of action of daptomycin is still debated. In particular, there is a prominent discrepancy between in vivo and in vitro studies. In this review, we discuss the current knowledge on the mechanism of daptomycin against Gram-positive bacteria and try to offer explanations for these conflicting observations.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains. Appl Microbiol Biotechnol 2019; 104:817-831. [DOI: 10.1007/s00253-019-10131-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 02/04/2023]
|
15
|
Patton T, Jiang JH, Lundie RJ, Bafit M, Gao W, Peleg AY, O'Keeffe M. Daptomycin-resistant Staphylococcus aureus clinical isolates are poorly sensed by dendritic cells. Immunol Cell Biol 2019; 98:42-53. [PMID: 31559654 DOI: 10.1111/imcb.12295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/18/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) presents an increasing threat to public health, with antimicrobial resistance on the rise and infections endemic in the hospital setting. Despite a global research effort to understand and combat antimicrobial resistance, less work has focused on understanding the nuances in the immunopathogenesis of clinical strains. In particular, there is a surprising gap of knowledge in the literature pertaining to how clinical strains are recognized by dendritic cells (DCs). Here, we show that the activation of DCs is compromised in response to MRSA strains resistant to the last-line antibiotic daptomycin. We found a significant reduction in the secretion of proinflammatory cytokines including tumor necrosis factor-α, interleukin-6, regulated upon activation, normal T cell expressed, and secreted and macrophage inflammatory protein-1β, as well as decreased expression of CD80 by DCs responding to daptomycin-resistant MRSA. We further demonstrate that this phenotype is coincident with the acquisition of specific point mutations in the cardiolipin synthase gene cls2, and, partly, in the bifunctional lysylphosphatidylglycerol flippase/synthetase gene mprF, which are genes that are often mutated in clinical daptomycin-resistant strains. Therefore, throughout infection and antibiotic therapy, MRSA has the capacity to not only develop further antibiotic resistance, but also develop resistance to immunological recognition by DCs, because of single amino acid point mutations occurring under the selective pressures of both host immunity and antibiotic therapy. Understanding the diversity of clinical MRSA isolates and the nuances in their immune recognition will have important implications for future therapeutics and the treatment of these infections.
Collapse
Affiliation(s)
- Timothy Patton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Rachel J Lundie
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Mariam Bafit
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infectious Diseases, Melbourne, VIC, 3000, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.,Department of Infectious Diseases, The Alfred and Central Clinical School, Monash University, Melbourne, VIC, 3000, Australia
| | - Meredith O'Keeffe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
16
|
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
|
17
|
VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection. mSphere 2019; 4:4/1/e00557-18. [PMID: 30760612 PMCID: PMC6374592 DOI: 10.1128/msphere.00557-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host. Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAPs) and DAP-resistant (DAPr) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAPr CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAPr CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAPr CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAPr adherence to epithelial cells, which would affect DAPr strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAPs) and CB5014 (DAPr) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants. IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host.
Collapse
|
18
|
Antibiotic resistance and host immune evasion in Staphylococcus aureus mediated by a metabolic adaptation. Proc Natl Acad Sci U S A 2019; 116:3722-3727. [PMID: 30808758 DOI: 10.1073/pnas.1812066116] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a notorious human bacterial pathogen with considerable capacity to develop antibiotic resistance. We have observed that human infections caused by highly drug-resistant S. aureus are more prolonged, complicated, and difficult to eradicate. Here we describe a metabolic adaptation strategy used by clinical S. aureus strains that leads to resistance to the last-line antibiotic, daptomycin, and simultaneously affects host innate immunity. This response was characterized by a change in anionic membrane phospholipid composition induced by point mutations in the phospholipid biosynthesis gene, cls2, encoding cardiolipin synthase. Single cls2 point mutations were sufficient for daptomycin resistance, antibiotic treatment failure, and persistent infection. These phenotypes were mediated by enhanced cardiolipin biosynthesis, leading to increased bacterial membrane cardiolipin and reduced phosphatidylglycerol. The changes in membrane phospholipid profile led to modifications in membrane structure that impaired daptomycin penetration and membrane disruption. The cls2 point mutations also allowed S. aureus to evade neutrophil chemotaxis, mediated by the reduction in bacterial membrane phosphatidylglycerol, a previously undescribed bacterial-driven chemoattractant. Together, these data illustrate a metabolic strategy used by S. aureus to circumvent antibiotic and immune attack and provide crucial insights into membrane-based therapeutic targeting of this troublesome pathogen.
Collapse
|
19
|
Ma Z, Lasek-Nesselquist E, Lu J, Schneider R, Shah R, Oliva G, Pata J, McDonough K, Pai MP, Rose WE, Sakoulas G, Malik M. Characterization of genetic changes associated with daptomycin nonsusceptibility in Staphylococcus aureus. PLoS One 2018; 13:e0198366. [PMID: 29879195 PMCID: PMC5991675 DOI: 10.1371/journal.pone.0198366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022] Open
Abstract
The extensive use of daptomycin (DAP) for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the last decade has led to the emergence of DAP non-susceptible (DNS) Staphylococcus aureus strains. A better understanding of the molecular changes underlying DAP-non-susceptibility is required for early diagnosis and intervention with alternate combination therapies. The phenotypic changes associated with DNS strains have been well established. However, the genotypic changes—especially the kinetics of expression of the genes responsible for DAP-non-susceptibility are not well understood. In this study, we used three clinically derived isogenic pairs of DAP-susceptible (DAP-S) and DNS S. aureus strains to study gene expression profiles with the objective of identifying the potential genotypic changes associated with DAP-nonsusceptibility. We determined the expression profiles of genes involved in cell membrane (CM) charge, autolysis, cell wall (CW) synthesis, and penicillin binding proteins in DAP-S and DNS isogenic pairs. Our results demonstrate characteristic expression profiles for mprF, dltABCD, vraS, femB, and pbp2a genes, which are common to all the DNS S. aureus strains tested. Whole genome sequencing of DAP-S and DNS clinical isolates of S. aureus showed non-synonymous mutations in all DNS strains in genes involved in CM charge, CM composition, CW thickness and CW composition. To conclude, this study unravels some of the complex molecular changes involved in the development of DAP-nonsusceptibility by demonstrating distinct differences in gene expression profiles and mutations in the DNS S. aureus strains. This knowledge will aid in rapid identification of DNS S. aureus in clinical settings.
Collapse
Affiliation(s)
- Zhuo Ma
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Erica Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jackson Lu
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Ryan Schneider
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Riddhi Shah
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - George Oliva
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Janice Pata
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Kathleen McDonough
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Manjunath P. Pai
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Warren E. Rose
- Universtiy of Wisconsin-Madison, School of Pharmacy, Madison, Wisconsin, United States of America
| | - George Sakoulas
- Center for Immunity, Infection & Inflammation, UCSD School of Medicine, La Jolla, California, United States of America
| | - Meenakshi Malik
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Vancomycin and daptomycin minimum inhibitory concentrations as a predictor of outcome of methicillin-resistant Staphylococcus aureus bacteraemia. J Glob Antimicrob Resist 2018; 14:141-144. [PMID: 29601996 DOI: 10.1016/j.jgar.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of this study was to determine the persistence of the adverse prognostic effect of elevated vancomycin minimum inhibitory concentration (MIC) in methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia in a setting with low vancomycin use. METHODS A retrospective study focusing on episodes of bacteraemia due to MRSA diagnosed from January 2010 through December 2015 was designed. The main outcome measures were 30-day mortality and treatment failure. Multivariate logistic regression analysis was used to identify variables associated with patient mortality and treatment outcome. RESULTS In total, 79 MRSA bacteraemia episodes were included. The vancomycin MIC was >1.0μg/mL in 53 episodes (67.1%). The presence of high vancomycin MIC was not associated with a higher mortality rate or treatment success. A daptomycin MIC≥0.5μg/mL was present in 16 (26.2%) of 61 episodes for which the daptomycin MIC was obtained and was associated with 30-day mortality in the multivariate analysis (odds ratio=4.72, 95% confidence interval 1.19-18.71). None of the antimicrobials used were associated with a lower risk of treatment failure or mortality. CONCLUSIONS The pernicious effect of high vancomycin MIC disappears in the absence of a predominant use of this antibiotic. However, a high daptomycin MIC in MRSA bacteraemia is associated with higher mortality in patients with bacteraemia, irrespective of antimicrobial treatment choice.
Collapse
|
21
|
A novel series of enoyl reductase inhibitors targeting the ESKAPE pathogens, Staphylococcus aureus and Acinetobacter baumannii. Bioorg Med Chem 2017; 26:65-76. [PMID: 29162308 DOI: 10.1016/j.bmc.2017.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/22/2022]
Abstract
S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain.
Collapse
|
22
|
Fluorescence Reporter in Staphylococcus aureus as a Useful Tool for Studying L-forms and Virulence. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.57238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Ruiz-Ramos J, Vidal-Cortés P, Díaz-Lamas A, Reig-Valero R, Roche-Campo F, Del Valle-Ortiz M, Nuvials-Casals X, Ortiz-Piquer M, Andaluz-Ojeda D, Tamayo-Lomas L, Blasco-Navalpotro MA, Rodriguez-Aguirregabiria M, Aguado J, Ramirez P. Ventilator-associated pneumonia by methicillin-susceptible Staphylococcus aureus: do minimum inhibitory concentrations to vancomycin and daptomycin matter? Eur J Clin Microbiol Infect Dis 2017; 36:1569-1575. [PMID: 28378244 DOI: 10.1007/s10096-017-2970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/16/2017] [Indexed: 01/21/2023]
Abstract
The use of vancomycin minimum inhibitory concentration (MIC) as an outcome predictor in patients with methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia has become an important topic for debate in the last few years. Given these previous results, we decided to investigate whether MICs to vancomycin or daptomycin had any effect on the evolution of patients with ventilator-associated pneumonia (VAP) due to MSSA. An observational, retrospective, multicenter study was conducted among patients with MSSA VAP. We analyzed the relationship between vancomycin and daptomycin MICs and early clinical response (72 h), 30-day mortality, intensive care unit (ICU) length of stay (LOS), and duration on mechanical ventilation. Univariate and multivariate analyses were performed. Sixty-six patients from 12 centers were included. Twenty-six patients (39%) had an infection due to MSSA strains with a vancomycin MIC ≥1.5 μg/mL. Daptomycin MIC was determined in 58 patients, of whom 17 (29%) had an MIC ≥1.0 μg/mL. Ten patients (15%) did not respond to first-line treatment. Only daptomycin MIC ≥1.0 μg/mL had a significant association [odds ratio (OR): 30.00; 95% confidence interval (CI): 2.91-60.41] with early treatment failure. The 30-day mortality was 12% (n = 8). Any variable was associated with mortality in the multivariate analysis. None of the variables studied were associated with ICU LOS or duration on mechanical ventilation. In patients with MSSA VAP, vancomycin MIC does not influence the response to antibiotic treatment or the 30-day mortality. Daptomycin MIC was directly related to early treatment failure.
Collapse
Affiliation(s)
- J Ruiz-Ramos
- Intensive Care Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - P Vidal-Cortés
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - A Díaz-Lamas
- Intensive Care Unit, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - R Reig-Valero
- Intensive Care Unit, Hospital Universitario General de Castellón, Castellón, Spain
| | - F Roche-Campo
- Intensive Care Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - M Del Valle-Ortiz
- Intensive Care Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - X Nuvials-Casals
- Intensive Care Unit, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Institut de Recerca Biomèdica (IRB Lleida), Lleida, Spain
| | - M Ortiz-Piquer
- Intensive Care Unit, Hospital Lucus Augusti, Lugo, Spain
| | - D Andaluz-Ojeda
- Intensive Care Unit, Hospital Clínico Universitario Valladolid, Valladolid, Spain
| | - L Tamayo-Lomas
- Intensive Care Unit, Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | | | | | - J Aguado
- Infectious Disease Department, University Hospital 12 de Octubre, Madrid, Spain
| | - P Ramirez
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell n°106, 46026, Valencia, Spain.
| |
Collapse
|
24
|
The action mechanism of daptomycin. Bioorg Med Chem 2016; 24:6253-6268. [DOI: 10.1016/j.bmc.2016.05.052] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/15/2022]
|
25
|
Pompilio A, Crocetta V, Ghosh D, Chakrabarti M, Gherardi G, Vitali LA, Fiscarelli E, Di Bonaventura G. Stenotrophomonas maltophilia Phenotypic and Genotypic Diversity during a 10-year Colonization in the Lungs of a Cystic Fibrosis Patient. Front Microbiol 2016; 7:1551. [PMID: 27746770 PMCID: PMC5044509 DOI: 10.3389/fmicb.2016.01551] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/15/2016] [Indexed: 11/25/2022] Open
Abstract
The present study was carried out to understand the adaptive strategies developed by Stenotrophomonas maltophilia for chronic colonization of the cystic fibrosis (CF) lung. For this purpose, 13 temporally isolated strains from a single CF patient chronically infected over a 10-year period were systematically characterized for growth rate, biofilm formation, motility, mutation frequencies, antibiotic resistance, and pathogenicity. Pulsed-field gel electrophoresis (PFGE) showed over time the presence of two distinct groups, each consisting of two different pulsotypes. The pattern of evolution followed by S. maltophilia was dependent on pulsotype considered, with strains belonging to pulsotype 1.1 resulting to be the most adapted, being significantly changed in all traits considered. Generally, S. maltophilia adaptation to CF lung leads to increased growth rate and antibiotic resistance, whereas both in vivo and in vitro pathogenicity as well as biofilm formation were decreased. Overall, our results show for the first time that S. maltophilia can successfully adapt to a highly stressful environment such as CF lung by paying a “biological cost,” as suggested by the presence of relevant genotypic and phenotypic heterogeneity within bacterial population. S. maltophilia populations are, therefore, significantly complex and dynamic being able to fluctuate rapidly under changing selective pressures.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Dipankar Ghosh
- Special Center for Molecular Medicine, Jawaharlal Nehru University New Delhi, India
| | - Malabika Chakrabarti
- Special Center for Molecular Medicine, Jawaharlal Nehru University New Delhi, India
| | | | | | | | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| |
Collapse
|
26
|
Raf-kinase inhibitor GW5074 shows antibacterial activity against methicillin-resistant Staphylococcus aureus and potentiates the activity of gentamicin. Future Med Chem 2016; 8:1941-1952. [PMID: 27652456 DOI: 10.4155/fmc-2016-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Increasing antimicrobial resistance has compromised the effectiveness of many antibiotics, including those used to treat staphylococcal infections like methicillin-resistant Staphylococcus aureus. The development of combination therapies, where antimicrobial agents are used with compounds that inhibit resistance pathways is a promising strategy. Results/methodology: The Raf kinase inhibitor GW5074 exhibited selective in vitro activity against Gram-positive bacteria, including clinical isolates of S. aureus with a minimum inhibitory concentration (MIC) of 2-8 µg/ml. GW5074 was effective in vivo in the Galleria mellonella infection model. The compound showed synergy with gentamicin by lowering MIC by fourfold, compared with gentamicin MIC alone. CONCLUSION This work demonstrates the antimicrobial properties of GW5074 and supports further investigation of the kinase inhibitors as antibiotic adjuvants.
Collapse
|
27
|
Daptomycin Tolerance in the Staphylococcus aureus pitA6 Mutant Is Due to Upregulation of the dlt Operon. Antimicrob Agents Chemother 2016; 60:2684-91. [PMID: 26883712 DOI: 10.1128/aac.03022-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/03/2016] [Indexed: 02/01/2023] Open
Abstract
Understanding the mechanisms of how bacteria become tolerant toward antibiotics during clinical therapy is a very important object. In a previous study, we showed that increased daptomycin (DAP) tolerance of Staphylococcus aureus was due to a point mutation in pitA (inorganic phosphate transporter) that led to intracellular accumulation of both inorganic phosphate (Pi) and polyphosphate (polyP). DAP tolerance in the pitA6 mutant differs from classical resistance mechanisms since there is no increase in the MIC. In this follow-up study, we demonstrate that DAP tolerance in the pitA6 mutant is not triggered by the accumulation of polyP. Transcriptome analysis revealed that 234 genes were at least 2.0-fold differentially expressed in the mutant. Particularly, genes involved in protein biosynthesis, carbohydrate and lipid metabolism, and replication and maintenance of DNA were downregulated. However, the most important change was the upregulation of the dlt operon, which is induced by the accumulation of intracellular Pi The GraXRS system, known as an activator of the dlt operon (d-alanylation of teichoic acids) and of the mprF gene (multiple peptide resistance factor), is not involved in DAP tolerance of the pitA6 mutant. In conclusion, DAP tolerance of the pitA6 mutant is due to an upregulation of the dlt operon, triggered directly or indirectly by the accumulation of Pi.
Collapse
|
28
|
Abstract
Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP resistance (DAP-R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP-R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria.
Collapse
Affiliation(s)
- Truc T Tran
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas.,International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Jose M Munita
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas.,International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia.,Clinica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas.,International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia.,Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas.,Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
29
|
Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob Agents Chemother 2015; 59:6983-91. [PMID: 26324273 DOI: 10.1128/aac.01303-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Daptomycin is a lipopeptide antibiotic used clinically for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The emergence of daptomycin-nonsusceptible S. aureus isolates during therapy is often associated with multiple genetic changes; however, the relative contributions of these changes to resistance and other phenotypic changes usually remain unclear. The present study was undertaken to investigate this issue using a genetically characterized series of four isogenic clinical MRSA strains derived from a patient with bacteremia before and during daptomycin treatment. The first strain obtained after daptomycin therapy carried a single-nucleotide polymorphism (SNP) in rpoB (RpoB A477D) that decreased susceptibility not only to daptomycin but also to vancomycin, β-lactams, and rifampin. Furthermore, the rpoB mutant exhibited pleiotropic phenotypes, including increased cell wall thickness, reduced expression of virulence traits, induced expression of the stress-associated transcriptional regulator Spx, and slow growth. A subsequently acquired loss-of-function mutation in clpX partly alleviated the growth defect conferred by the rpoB mutation without changing antibiotic susceptibility. The final isolate acquired three additional mutations, including an SNP in mprF (MprF S295L) known to confer daptomycin nonsusceptibility, and accordingly, this isolate was the only daptomycin-nonsusceptible strain of this series. Interestingly, in this isolate, the cell wall had regained the same thickness as that of the parental strain, while the level of transcription of the vraSR (cell wall stress regulator) was increased. In conclusion, this study illustrates how serial genetic changes selected in vivo contribute to daptomycin nonsusceptibility, growth fitness, and virulence traits.
Collapse
|