1
|
Ogonczyk-Makowska D, Brun P, Vacher C, Chupin C, Droillard C, Carbonneau J, Laurent E, Dulière V, Traversier A, Terrier O, Julien T, Galloux M, Paul S, Eléouët JF, Fouret J, Hamelin ME, Pizzorno A, Boivin G, Rosa-Calatrava M, Dubois J. Mucosal bivalent live attenuated vaccine protects against human metapneumovirus and respiratory syncytial virus in mice. NPJ Vaccines 2024; 9:111. [PMID: 38898106 PMCID: PMC11187144 DOI: 10.1038/s41541-024-00899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Live-Attenuated Vaccines (LAVs) stimulate robust mucosal and cellular responses and have the potential to protect against Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (HMPV), the main etiologic agents of viral bronchiolitis and pneumonia in children. We inserted the RSV-F gene into an HMPV-based LAV (Metavac®) we previously validated for the protection of mice against HMPV challenge, and rescued a replicative recombinant virus (Metavac®-RSV), exposing both RSV- and HMPV-F proteins at the virion surface and expressing them in reconstructed human airway epithelium models. When administered to BALB/c mice by the intranasal route, bivalent Metavac®-RSV demonstrated its capacity to replicate with reduced lung inflammatory score and to protect against both RSV and lethal HMPV challenges in vaccinated mice while inducing strong IgG and broad RSV and HMPV neutralizing antibody responses. Altogether, our results showed the versatility of the Metavac® platform and suggested that Metavac®-RSV is a promising mucosal bivalent LAV candidate to prevent pneumovirus-induced diseases.
Collapse
Affiliation(s)
- Daniela Ogonczyk-Makowska
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Pauline Brun
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Clémence Vacher
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Caroline Chupin
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Vaxxel, 43 Boulevard du onze novembre 1918, 69100, Villeurbanne, France
| | - Clément Droillard
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Emilie Laurent
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Victoria Dulière
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Aurélien Traversier
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Julien
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Stéphane Paul
- CIRI, Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Jean Monnet Saint-Etienne, Saint-Etienne, France
| | | | - Julien Fouret
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Nexomis, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Marie-Eve Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Andrés Pizzorno
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Manuel Rosa-Calatrava
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Julia Dubois
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada.
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France.
| |
Collapse
|
2
|
Myklebust Å, Rae Simpson M, Valand J, Stenhaug Langaas V, Jartti T, Døllner H, Risnes K. Bronchial reactivity and asthma at school age after early-life metapneumovirus infection. ERJ Open Res 2024; 10:00832-2023. [PMID: 38259817 PMCID: PMC10801746 DOI: 10.1183/23120541.00832-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background The association between early-life lower respiratory tract infection (LRTI) and asthma is well established. Knowledge about bronchial hyperresponsiveness (BHR) and asthma after metapneumovirus (MPV) LRTI is scarce. The aim of this study was to assess BHR and current asthma in school-aged children after hospital admission for early-life LRTI with MPV, and to compare with more well-known viruses, rhinovirus (RV) and respiratory syncytial virus (RSV), and with controls. Methods A cohort consisting of children admitted for LRTI and controls was followed-up at school age with a clinical research assessment and lung function tests, including a methacholine provocation test. Current asthma was defined based on objective variable airway obstruction and clinical symptoms. BHR and asthma were compared according to viral groups. Results 135 children (median age 9.3 years) were included (16 MPV, 34 RV, 51 RSV, 13 mixed infections and 21 controls). Compared with controls there was increased BHR after MPV and RV LRTI (provocative dose causing a 20% fall in forced expiratory volume in 1 s and dose-response slope; p<0.05). Using Kaplan-Meier statistics, BHR was increased for MPV compared with both controls and RSV (p=0.02 and p=0.01). The proportion of children with current asthma at follow-up was higher in the LRTI children compared with the controls (46% versus 24%; p=0.06). Among children who had undergone MPV and RV infection, 50% fulfilled the asthma criteria compared with 43% in the RSV group (p=0.37). Conclusion We found increased BHR and a high prevalence of asthma in school-aged children after early-life MPV infection, and findings were similar to RV, and less to RSV, compared with controls.
Collapse
Affiliation(s)
- Åsne Myklebust
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Valand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Chongyu T, Guanglin L, Fang S, Zhuoya D, Hao Y, Cong L, Xinyu L, Wei H, Lingyun T, Yan N, Penghui Y. A chimeric influenza virus vaccine expressing fusion protein epitopes induces protection from human metapneumovirus challenge in mice. Front Microbiol 2023; 13:1012873. [PMID: 38155756 PMCID: PMC10753001 DOI: 10.3389/fmicb.2022.1012873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2023] Open
Abstract
Human metapneumovirus (HMPV) is a common virus associated with acute respiratory distress syndrome in pediatric patients. There are no HMPV vaccines or therapeutics that have been approved for prevention or treatment. In this study, we constructed a novel recombinant influenza virus carrying partial HMPV fusion protein (HMPV-F), termed rFLU-HMPV/F-NS, utilizing reverse genetics, which contained (HMPV-F) in the background of NS segments of influenza virus A/PuertoRico/8/34(PR8). The morphological characteristics of rFLU-HMPV/F-NS were consistent with the wild-type flu virus. Additionally, immunofluorescence results showed that fusion proteins in the chimeric rFLU-HMPV/F-NS could work well, and the virus could be stably passaged in SPF chicken embryos. Furthermore, intranasal immunization with rFLU-HMPV/F-NS in BALB/c mice induced robust humoral, mucosal and Th1-type dominant cellular immune responses in vivo. More importantly, we discovered that rFLU-HMPV/F-NS afforded significant protective efficacy against the wild-type HMPV and influenza virus challenge, with significantly attenuated pathological changes and reduced viral titers in the lung tissues of immunized mice. Collectively, these findings demonstrated that chimeric recombinant rFLU-HMPV/F-NS as a promising HMPV candidate vaccine has potentials for the development of HMPV vaccine.
Collapse
Affiliation(s)
- Tian Chongyu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Lei Guanglin
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sun Fang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deng Zhuoya
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Hao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Cong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Xinyu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - He Wei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tan Lingyun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Niu Yan
- Inner Mongolia Medical University, Hohhot, China
| | - Yang Penghui
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Inner Mongolia Medical University, Hohhot, China
- First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Rodríguez-Guilarte L, Ramírez MA, Andrade CA, Kalergis AM. LAG-3 Contribution to T Cell Downmodulation during Acute Respiratory Viral Infections. Viruses 2023; 15:147. [PMID: 36680187 PMCID: PMC9865459 DOI: 10.3390/v15010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
LAG-3 is a type I transmembrane protein expressed on immune cells, such as activated T cells, and binds to MHC class II with high affinity. LAG-3 is an inhibitory receptor, and its multiple biological activities on T cell activation and effector functions play a regulatory role in the immune response. Immunotherapies directed at immune checkpoints, including LAG-3, have become a promising strategy for controlling malignant tumors and chronic viral diseases. Several studies have suggested an association between the expression of LAG-3 with an inadequate immune response during respiratory viral infections and the susceptibility to reinfections, which might be a consequence of the inhibition of T cell effector functions. However, important information relative to therapeutic potential during acute viral lower respiratory tract infections and the mechanism of action of the LAG-3 checkpoint remains to be characterized. In this article, we discuss the contribution of LAG-3 to the impairment of T cells during viral respiratory infections. Understanding the host immune response to respiratory infections is crucial for developing effective vaccines and therapies.
Collapse
Affiliation(s)
- Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
5
|
Funes SC, Ríos M, Fernández-Fierro A, Rivera-Pérez D, Soto JA, Valbuena JR, Altamirano-Lagos MJ, Gómez-Santander F, Jara EL, Zoroquiain P, Roa JC, Kalergis AM, Riedel CA. Female offspring gestated in hypothyroxinemia and infected with human Metapneumovirus (hMPV) suffer a more severe infection and have a higher number of activated CD8+ T lymphocytes. Front Immunol 2022; 13:966917. [PMID: 36159799 PMCID: PMC9494552 DOI: 10.3389/fimmu.2022.966917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Maternal thyroid hormones (THs) are essential for the appropriate development of the fetus and especially for the brain. Recently, some studies have shown that THs deficiency can also alter the immune system development of the progeny and their ability to mount an appropriate response against infectious agents. In this study, we evaluated whether adult mice gestated under hypothyroxinemia (Hpx) showed an altered immune response against infection with human metapneumovirus (hMPV). We observed that female mice gestated under Hpx showed higher clinical scores after seven days of hMPV infection. Besides, males gestated under Hpx have higher lung viral loads at day seven post-infection. Furthermore, the female offspring gestated in Hpx have already reduced the viral load at day seven and accordingly showed an increased proportion of activated (CD71+ and FasL+) CD8+ T cells in the lungs, which correlated with a trend for a higher histopathological clinical score. These results support that T4 deficiency during gestation might condition the offspring differently in males and females, enhancing their ability to respond to hMPV.
Collapse
Affiliation(s)
- Samanta C. Funes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Mariana Ríos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José R. Valbuena
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María J. Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Felipe Gómez-Santander
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Evelyn L. Jara
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Departmento de Farmacología, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Pablo Zoroquiain
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C. Roa
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- *Correspondence: Claudia A. Riedel,
| |
Collapse
|
6
|
Increased Heme Oxygenase 1 Expression upon a Primary Exposure to the Respiratory Syncytial Virus and a Secondary Mycobacterium bovis Infection. Antioxidants (Basel) 2022; 11:antiox11081453. [PMID: 35892656 PMCID: PMC9332618 DOI: 10.3390/antiox11081453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/05/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the leading cause of severe lower respiratory tract infections in infants. Because recurrent epidemics based on reinfection occur in children and adults, hRSV has gained interest as a potential primary pathogen favoring secondary opportunistic infections. Several infection models have shown different mechanisms by which hRSV promotes immunopathology to prevent the development of adaptive protective immunity. However, little is known about the long-lasting effects of viral infection on pulmonary immune surveillance mechanisms. As a first approach, here we evaluated whether a primary infection by hRSV, once resolved, dampens the host immune response to a secondary infection with an attenuated strain of Mycobacterium bovis (M. Bovis) strain referred as to Bacillus Calmette-Guerin (BCG). We analyzed leukocyte dynamics and immunomodulatory molecules in the lungs after eleven- and twenty-one-days post-infection with Mycobacterium, using previous hRSV infected mice, by flow cytometry and the expression of critical genes involved in the immune response by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Among the latter, we analyzed the expression of Heme Oxygenase (HO)-1 in an immunization scheme in mice. Our data suggest that a pre-infection with hRSV has a conditioning effect promoting lung pathology during a subsequent mycobacterial challenge, characterized by increased infiltration of innate immune cells, including interstitial and alveolar macrophages. Our data also suggest that hRSV impairs pulmonary immune responses, promoting secondary mycobacterial colonization and lung survival, which could be associated with an increase in the expression of HO-1. Additionally, BCG is a commonly used vaccine that can be used as a platform for the generation of new recombinant vaccines, such as a recombinant BCG strain expressing the nucleoprotein of hRSV (rBCG-N-hRSV). Therefore, we evaluated if the immunization with rBCG-N-hRSV could modulate the expression of HO-1. We found a differential expression pattern for HO-1, where a higher induction of HO-1 was detected on epithelial cells compared to dendritic cells during late infection times. This is the first study to demonstrate that infection with hRSV produces damage in the lung epithelium, promoting subsequent mycobacterial colonization, characterized by an increase in the neutrophils and alveolar macrophages recruitment. Moreover, we determined that immunization with rBCG-N-hRSV modulates differentially the expression of HO-1 on immune and epithelial cells, which could be involved in the repair of pulmonary tissue.
Collapse
|
7
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
8
|
McCormick TS, Hejal RB, Leal LO, Ghannoum MA. GM-CSF: Orchestrating the Pulmonary Response to Infection. Front Pharmacol 2022; 12:735443. [PMID: 35111042 PMCID: PMC8803133 DOI: 10.3389/fphar.2021.735443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
This review summarizes the structure and function of the alveolar unit, comprised of alveolar macrophage and epithelial cell types that work in tandem to respond to infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) helps to maintain the alveolar epithelium and pulmonary immune system under physiological conditions and plays a critical role in restoring homeostasis under pathologic conditions, including infection. Given the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and global spread of coronavirus disease 2019 (COVID-19), with subsequent acute respiratory distress syndrome, understanding basic lung physiology in infectious diseases is especially warranted. This review summarizes clinical and preclinical data for GM-CSF in respiratory infections, and the rationale for sargramostim (yeast-derived recombinant human [rhu] GM-CSF) as adjunctive treatment for COVID-19 and other pulmonary infectious diseases.
Collapse
Affiliation(s)
- Thomas S. McCormick
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Rana B. Hejal
- Medical Intensive Care Unit, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Pulmonary and Critical Care Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Luis O. Leal
- Partner Therapeutics, Lexington, MA, United States
| | - Mahmoud A. Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
9
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
10
|
Soto JA, Gálvez NMS, Pacheco GA, Canedo-Marroquín G, Bueno SM, Kalergis AM. Induction of Protective Immunity by a Single Low Dose of a Master Cell Bank cGMP-rBCG-P Vaccine Against the Human Metapneumovirus in Mice. Front Cell Infect Microbiol 2021; 11:662714. [PMID: 34268134 PMCID: PMC8276701 DOI: 10.3389/fcimb.2021.662714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Human metapneumovirus (hMPV) is an emergent virus, which mainly infects the upper and lower respiratory tract epithelium. This pathogen is responsible for a significant portion of hospitalizations due to bronchitis and pneumonia in infants and the elderly worldwide. hMPV infection induces a pro-inflammatory immune response upon infection of the host, which is not adequate for the clearance of this pathogen. The lack of knowledge regarding the different molecular mechanisms of infection of this virus has delayed the licensing of effective treatments or vaccines. As part of this work, we evaluated whether a single and low dose of a recombinant Mycobacterium bovis Bacillus Calmette-Guérin (BCG) expressing the phosphoprotein of hMPV (rBCG-P) can induce a protective immune response in mice. Immunization with the rBCG-P significantly decreased neutrophil counts and viral loads in the lungs of infected mice at different time points. This immune response was also associated with a modulated infiltration of innate cells into the lungs, such as interstitial macrophages (IM) and alveolar macrophages (AM), activated CD4+ and CD8+ T cells, and changes in the population of differentiated subsets of B cells, such as marginal zone B cells and plasma cells. The humoral immune response induced by the rBCG-P led to an early and robust IgA response and a late and constant IgG response. Finally, we determined that the transfer of cells or sera from immunized and infected mice to naïve mice promoted an efficient viral clearance. Therefore, a single and low dose of rBCG-P can protect mice from the disease caused by hMPV, and this vaccine could be a promising candidate for future clinical trials.
Collapse
Affiliation(s)
- Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A. Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gisela Canedo-Marroquín
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens 2020; 9:pathogens9060481. [PMID: 32570728 PMCID: PMC7350342 DOI: 10.3390/pathogens9060481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illnesses in children, the elderly and immunocompromised patients. Although this pathogen was only discovered in 2001, an enormous amount of research has been conducted in order to develop safe and effective vaccines to prevent people from contracting the disease. In this review, we summarize current knowledge about the most promising experimental B- and T-cell epitopes of human metapneumovirus for the rational design of HMPV vaccines using vector delivery systems, paying special attention to the conservation of these epitopes among different lineages/genotypes of HMPV. The prospects of the successful development of an epitope-based HMPV vaccine are discussed in the context of recent findings regarding HMPV’s ability to modulate host immunity. In particular, we discuss the lack of data on experimental human CD4 T-cell epitopes for HMPV despite the role of CD4 lymphocytes in both the induction of higher neutralizing antibody titers and the establishment of CD8 memory T-cell responses. We conclude that current research should be focused on searching for human CD4 T-cell epitopes of HMPV that can help us to design a safe and cross-protective epitope-based HMPV vaccine.
Collapse
|
12
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
13
|
Human Metapneumovirus Establishes Persistent Infection in Lung Microvascular Endothelial Cells and Primes a Th2-Skewed Immune Response. Microorganisms 2020; 8:microorganisms8060824. [PMID: 32486193 PMCID: PMC7357125 DOI: 10.3390/microorganisms8060824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Human Metapneumovirus (HMPV) is a major cause of lower respiratory tract infections. HMPV infection has been hypothesized to alter dendritic cell (DC) immune response; however, many questions regarding HMPV pathogenesis within the infected lung remain unanswered. Here, we show that HMPV productively infects human lung microvascular endothelial cells (L-HMVECs). The release of infectious virus occurs for up to more than 30 days of culture without producing overt cytopathic effects and medium derived from persistently HMPV-infected L-HMVECs (secretome) induced monocyte-derived DCs to prime naïve CD4 T-cells toward a Th2 phenotype. Moreover, we demonstrated that infected secretomes trigger DCs to up-regulate OX40L expression and OX40L neutralization abolished the pro-Th2 effect that is induced by HMPV-secretome. We clarified secretome from HMPV by size exclusion and ultracentrifugation with the aim to characterize the role of viral particles in the observed pro-Th2 effect. In both cases, the percentage of IL-4-producing cells and expression of OX40L returned at basal levels. Finally, we showed that HMPV, per se, could reproduce the ability of secretome to prime pro-Th2 DCs. These results suggest that HMPV, persistently released by L-HMVECs, might take part in the development of a skewed, pro-Th2 lung microenvironment.
Collapse
|
14
|
Libster R, Esteban I, Bianchi A, Alva Grimaldi L, Dueñas K, Sancillo A, Rodriguez A, Ferrero F, Stein K, Acosta PL, Ferolla FM, Bergel E, Caballero MT, Polack FP. Role for Maternal Asthma in Severe Human Metapneumovirus Lung Disease Susceptibility in Children. J Infect Dis 2020; 223:2072-2079. [PMID: 31965186 PMCID: PMC7107446 DOI: 10.1093/infdis/jiaa019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022] Open
Abstract
Background Severity of human metapneumovirus (hMPV) lower respiratory illness (LRTI) is considered similar to that observed for respiratory syncytial virus (RSV). However, differences in severity between these pathogens have been noted, suggesting the degree of illness may vary in different populations. Moreover, a potential association between hMPV and asthma also suggests that hMPV may preferentially affect asthmatic subjects. Methods In a population-based surveillance study in children aged <2 years admitted for severe LRTI in Argentina, nasopharyngeal aspirates were tested by RT-PCR for hMPV, RSV, influenza A, and human rhinovirus. Results Of 3947 children, 383 (10%) were infected with hMPV. The hospitalization rate for hMPV LRTI was 2.26 per 1000 children (95% confidence interval [CI], 2.04–2.49). Thirty-nine (10.2%) patients infected with hMPV experienced life-threatening disease (LTD; 0.23 per 1000 children; 95% CI, .16–.31/1000), and 2 died (mortality rate 0.024 per 1000; 95% CI, .003–.086). In hMPV-infected children birth to an asthmatic mother was an increased risk for LTD (odds ratio, 4.72; 95% CI, 1.39–16.01). We observed a specific interaction between maternal asthma and hMPV infection affecting risk for LTD. Conclusions Maternal asthma increases the risk for LTD in children <2 years old hospitalized for severe hMPV LRTI.
Collapse
Affiliation(s)
- Romina Libster
- Fundación INFANT, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ignacio Esteban
- Fundación INFANT, Buenos Aires, Argentina.,Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | | | | | - Karina Dueñas
- Hospital Interzonal General de Agudos "Evita," Lanus, Argentina
| | - Andrea Sancillo
- Hospital Interzonal General de Agudos "Evita," Lanus, Argentina
| | - Andrea Rodriguez
- Hospital Zonal General de Agudos Descentralizado "Evita Pueblo," Berazategui, Argentina
| | - Fernando Ferrero
- Hospital General de Niños "Pedro de Elizalde," Buenos Aires, Argentina
| | | | - Patricio L Acosta
- Fundación INFANT, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | - Mauricio T Caballero
- Fundación INFANT, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | |
Collapse
|
15
|
Rahman MZ, Sumiya M, Sahabuddin M, Pell LG, Gubbay JB, Rahman R, Momtaz F, Azmuda N, Shanta SS, Jahan I, Rahman M, Mahmud AA, Roth DE, Morris SK. Genetic characterization of human metapneumovirus identified through community and facility-based surveillance of infants in Dhaka, Bangladesh. J Med Virol 2018; 91:549-554. [PMID: 30372530 DOI: 10.1002/jmv.25351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Acute respiratory infection (ARI) is a leading cause of morbidity and mortality in children in low and middle-income countries. Human metapneumovirus (hMPV) is one of the most common viral etiological agents for ARIs in children. OBJECTIVES In this study, we explored the genotypic diversity and the epidemiology of hMPV among infants in Dhaka, Bangladesh. STUDY DESIGN Between December 2014 and August 2016, a total of 3810 mid-turbinate nasal swab samples were collected from infants (0 to 6 months of age) who met clinical ARI criteria, as a part of a prospective ARI cohort study. hMPV was detected using polymerase chain reaction, and genotyped by sequencing and phylogenetic analysis. RESULTS hMPV was identified in 206 (5.4%) nasal swab specimens. One-tenth of the hMPV-positive swabs (n = 19) were also positive for other respiratory viruses. hMPV activity peaked in January and September in 2015; however, no seasonal pattern of hMPV infection was detected. Phylogenetic analyses of the N and F gene-fragments revealed that the hMPV strains circulating in Dhaka, Bangladesh, belonged to three genotypes: A2b, A2c, and B1. Genotype A (57%) was the predominant hMPV genotype circulating in Bangladesh during the study period. CONCLUSION This study describes both the epidemiology of hMPV infection and its genotypic strain diversity in Dhaka, Bangladesh.
Collapse
Affiliation(s)
| | - Mariya Sumiya
- Infectious Diseases Division (IDD), icddr,b, Dhaka, Bangladesh
| | | | - Lisa G Pell
- Centre for Global Child Health and Child Health Evaluative Sciences, Sick Kids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan B Gubbay
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.,Public Health Ontario, Toronto, Ontario, Canada
| | - Rajibur Rahman
- Infectious Diseases Division (IDD), icddr,b, Dhaka, Bangladesh
| | - Farhana Momtaz
- Infectious Diseases Division (IDD), icddr,b, Dhaka, Bangladesh
| | - Nafisa Azmuda
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Shaila S Shanta
- Nutrition and Clinical Services Division (NCSD), icddr,b, Dhaka, Bangladesh
| | - Ishrat Jahan
- Maternal and Child Health Training Institute (MCHTI), Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | | | - Abdullah A Mahmud
- Nutrition and Clinical Services Division (NCSD), icddr,b, Dhaka, Bangladesh
| | - Daniel E Roth
- Centre for Global Child Health and Child Health Evaluative Sciences, Sick Kids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Shaun K Morris
- Centre for Global Child Health and Child Health Evaluative Sciences, Sick Kids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018; 29:434-444. [PMID: 30539045 PMCID: PMC6261883 DOI: 10.1007/s13337-018-0498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important pneumovirus which causes acute respiratory disease in human beings. The viral infection leads to mild to severe respiratory symptoms depending on the age and immune status of the infected individual. Several groups across the world are working on the development of immunogens and therapy to manage HMPV infection with promising results under laboratory conditions but till date any virus specific vaccine or therapy has not been approved for clinical use. This minireview gives an overview of the prophylactic and therapeutic approaches to manage HMPV infections.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| | - Mansi Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| |
Collapse
|