1
|
Ottens F, Efstathiou S, Hoppe T. Cutting through the stress: RNA decay pathways at the endoplasmic reticulum. Trends Cell Biol 2024; 34:1056-1068. [PMID: 38008608 DOI: 10.1016/j.tcb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
The endoplasmic reticulum (ER) is central to the processing of luminal, transmembrane, and secretory proteins, and maintaining a functional ER is essential for organismal physiology and health. Increased protein-folding load on the ER causes ER stress, which activates quality control mechanisms to restore ER function and protein homeostasis. Beyond protein quality control, mRNA decay pathways have emerged as potent ER fidelity regulators, but their mechanistic roles in ER quality control and their interrelationships remain incompletely understood. Herein, we review ER-associated RNA decay pathways - including regulated inositol-requiring enzyme 1α (IRE1α)-dependent mRNA decay (RIDD), nonsense-mediated mRNA decay (NMD), and Argonaute-dependent RNA silencing - in ER homeostasis, and highlight the intricate coordination of ER-targeted RNA and protein decay mechanisms and their association with antiviral defense.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sotirios Efstathiou
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Li Y, Liu Y, Zhang Y, Tan C, Cai Y, Zhang Y, Chen J, Fu Y, Liu G. In vitro and in vivo evaluation of thapsigargin as an antiviral agent against transmissible gastroenteritis virus. Vet Res 2024; 55:97. [PMID: 39095890 PMCID: PMC11297606 DOI: 10.1186/s13567-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Swine enteric coronaviruses (SeCoVs) pose a significant threat to the global pig industry, but no effective drugs are available for treatment. Previous research has demonstrated that thapsigargin (TG), an ER stress inducer, has broad-spectrum antiviral effects on human coronaviruses. In this study, we investigated the impact of TG on transmissible gastroenteritis virus (TGEV) infection using cell lines, porcine intestinal organoid models, and piglets. The results showed that TG effectively inhibited TGEV replication both in vitro and ex vivo. Furthermore, animal experiments demonstrated that oral administration of TG inhibited TGEV infection in neonatal piglets and relieved TGEV-associated tissue injury. Transcriptome analyses revealed that TG improved the expression of the ER-associated protein degradation (ERAD) component and influenced the biological processes related to secretion, nutrient responses, and epithelial cell differentiation in the intestinal epithelium. Collectively, these results suggest that TG is a potential novel oral antiviral drug for the clinical treatment of TGEV infection, even for infections caused by other SeCoVs.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Yuanyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yunhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA), University of Liege, Liege, Belgium
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA), University of Liege, Liege, Belgium
| | - Yifei Cai
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Human Nutrition and Health Group, VLAG, Wageningen University and Research, Wageningen, The Netherlands
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Jianing Chen
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China.
| |
Collapse
|
3
|
Mia ME, Howlader M, Akter F, Hossain MM. Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241263054. [PMID: 39070952 PMCID: PMC11282570 DOI: 10.1177/2632010x241263054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic-led worldwide healthcare crisis necessitates prompt societal, ecological, and medical efforts to stop or reduce the rising number of fatalities. Numerous mRNA based vaccines and vaccines for viral vectors have been licensed for use in emergencies which showed 90% to 95% efficacy in preventing SARS-CoV-2 infection. However, safety issues, vaccine reluctance, and skepticism remain major concerns for making mass vaccination a successful approach to treat COVID-19. Hence, alternative therapeutics is needed for eradicating the global burden of COVID-19 from developed and low-resource countries. Repurposing current medications and drug candidates could be a more viable option for treating SARS-CoV-2 as these therapies have previously passed a number of significant checkpoints for drug development and patient care. Besides vaccines, this review focused on the potential usage of alternative therapeutic agents including antiviral, antiparasitic, and antibacterial drugs, protease inhibitors, neuraminidase inhibitors, and monoclonal antibodies that are currently undergoing preclinical and clinical investigations to assess their effectiveness and safety in the treatment of COVID-19. Among the repurposed drugs, remdesivir is considered as the most promising agent, while favipiravir, molnupiravir, paxlovid, and lopinavir/ritonavir exhibited improved therapeutic effects in terms of elimination of viruses. However, the outcomes of treatment with oseltamivir, umifenovir, disulfiram, teicoplanin, and ivermectin were not significant. It is noteworthy that combining multiple drugs as therapy showcases impressive effectiveness in managing individuals with COVID-19. Tocilizumab is presently employed for the treatment of patients who exhibit COVID-19-related pneumonia. Numerous antiviral drugs such as galidesivir, griffithsin, and thapsigargin are under clinical trials which could be promising for treating COVID-19 individuals with severe symptoms. Supportive treatment for patients of COVID-19 may involve the use of corticosteroids, convalescent plasma, stem cells, pooled antibodies, vitamins, and natural substances. This study provides an updated progress in SARS-CoV-2 medications and a crucial guide for inventing novel interventions against COVID-19.
Collapse
Affiliation(s)
- Md. Easin Mia
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
4
|
Prista A. Efficacy of government laws to contain SARS-CoV-2 spread in Mozambique. J Public Health Afr 2023; 14:2218. [PMID: 37197261 PMCID: PMC10184178 DOI: 10.4081/jphia.2023.2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/03/2022] [Indexed: 05/19/2023] Open
Abstract
Background The purpose of this research was to assess the relationship between infection by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) containment measures implemented in Mozambique and the spread of SARS-CoV-2 from March 17, 2020, to September 30, 2021. Materials and Methods The number of SARS-CoV-2 tests conducted, the positivity rate for SARS-CoV-2, the daily hospitalization due to COVID-19, and the average number of patients hospitalized with COVID-19 each day were all documented in a database, from which the positivity rate and weekly growth rate were calculated. Seven milestones were specified, each corresponding to a critical date in the legal measures linked to confinement and relaxation of measures. To compare SARS-CoV-2 data, three periods were created for each milestone: Period 1 = 15 days before the date of the decree; Period 2 = Date of the decree to the 15th day after; and Period 3 = from the 16th day to the 30th day of the decree date. ANOVA was used to compare the average values for each indicator between the three times for each milestone. Results A comparison of all indicators in each milestone's three periods reveals no consistent significant impact of the measures, regardless of the tendency to lockdown or provide relief. Conclusion No relationship was discovered between the legal measures for SARS-CoV-2 pandemic control and the positive rate and growth rates, as well as the number of hospitalized people. Because it was not feasible to determine the degree of efficacy of each specific measure, this conclusion is related to the measures as a whole.
Collapse
Affiliation(s)
- António Prista
- Universidade Pedagógica de Maputo, Av. Eduardo Mondlane, nº 901, Maputo, Mozambique. +258.820110110.
| |
Collapse
|
5
|
Li Q, Jiang Z, Ren S, Guo H, Song Z, Chen S, Gao X, Meng F, Zhu J, Liu L, Tong Q, Sun H, Sun Y, Pu J, Chang K, Liu J. SRSF5-Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host-Directed Target Against Influenza Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203088. [PMID: 36257906 PMCID: PMC9731694 DOI: 10.1002/advs.202203088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Indexed: 05/29/2023]
Abstract
Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target.
Collapse
Affiliation(s)
- Qiuchen Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhimin Jiang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Shuning Ren
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Hui Guo
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhimin Song
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Saini Chen
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xintao Gao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Fanfeng Meng
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Junda Zhu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Qi Tong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Kin‐Chow Chang
- School of Veterinary Medicine and ScienceUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
6
|
Shaban MS, Müller C, Mayr-Buro C, Weiser H, Schmitz ML, Ziebuhr J, Kracht M. Reply to: The stress-inducible ER chaperone GRP78/BiP is upregulated during SARS-CoV-2 infection and acts as a pro-viral protein. Nat Commun 2022; 13:6550. [PMID: 36376283 PMCID: PMC9663517 DOI: 10.1038/s41467-022-34066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mohammed Samer Shaban
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Christin Müller
- grid.8664.c0000 0001 2165 8627Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Christin Mayr-Buro
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Hendrik Weiser
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - M. Lienhard Schmitz
- grid.8664.c0000 0001 2165 8627Institute of Biochemistry, Justus Liebig University, Giessen, Germany ,grid.440517.3German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC) and Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - John Ziebuhr
- grid.8664.c0000 0001 2165 8627Institute of Medical Virology, Justus Liebig University, Giessen, Germany ,grid.452463.2German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Michael Kracht
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany ,grid.440517.3German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC) and Cardio-Pulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
7
|
Thiopurines inhibit coronavirus Spike protein processing and incorporation into progeny virions. PLoS Pathog 2022; 18:e1010832. [PMID: 36121863 PMCID: PMC9522307 DOI: 10.1371/journal.ppat.1010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals. The COVID-19 pandemic has ignited efforts to repurpose existing drugs as safe and effective antivirals. Rather than directly inhibiting viral enzymes, host-targeted antivirals inhibit host cell processes to indirectly impede viral replication and/or stimulate antiviral responses. Here, we describe a new antiviral mechanism of action for an FDA-approved thiopurine known as 6-thioguanine (6-TG). We demonstrate that 6-TG is a pro-drug that must be metabolized by host enzymes to gain antiviral activity. We show that it can inhibit the replication of human coronaviruses, including SARS-CoV-2, at least in part by interfering with the processing and accumulation of Spike glycoproteins, thereby impeding assembly of infectious progeny viruses. We provide evidence implicating host cell GTPase enzymes in the antiviral mechanism of action.
Collapse
|
8
|
Shi M, Chen L, Wei Y, Chen R, Guo R, Luo F. Systematic analysis of prognostic and immunologic characteristics associated with coronavirus disease 2019 regulators in acute myeloid leukemia. Front Genet 2022; 13:959109. [PMID: 36147489 PMCID: PMC9485716 DOI: 10.3389/fgene.2022.959109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has so far damaged the health of millions and has made the treatment of cancer patients more complicated, and so did acute myeloid leukemia (AML). The current problem is the lack of understanding of their interactions and suggestions of evidence-based guidelines or historical experience for the treatment of such patients. Here, we first identified the COVID-19-related differentially expressed genes (C-DEGs) in AML patients by analyzing RNA-seq from public databases and explored their enrichment pathways and candidate drugs. A total of 76 C-DEGs associated with the progress of AML and COVID-19 infection were ultimately identified, and the functional analysis suggested that there are some shared links between them. Their protein–protein interactions (PPIs) and protein–drug interactions were then recognized by multiple bioinformatics algorithms. Moreover, a COVID-19 gene-associated prognostic model (C-GPM) with riskScore was constructed, patients with a high riskScore had poor survival and apparently immune-activated phenotypes, such as stronger monocyte and neutrophil cell infiltrations and higher immunosuppressants targeting expressions, meaning which may be one of the common denominators between COVID-19 and AML and the reason what complicates the treatment of the latter. Among the study’s drawbacks is that these results relied heavily on publicly available datasets rather than being clinically confirmed. Yet, these findings visualized those C-DEGs’ enrichment pathways and inner associations, and the C-GPM based on them could accurately predict survival outcomes in AML patients, which will be helpful for further optimizing therapies for AML patients with COVID-19 infections.
Collapse
Affiliation(s)
- Mingjie Shi
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity andChild Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Lidan Chen
- First College of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Riling Chen
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity andChild Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Department of Hematology-Oncology, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Runmin Guo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity andChild Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- *Correspondence: Fei Luo, ; Runmin Guo,
| | - Fei Luo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity andChild Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Department of Hematology-Oncology, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- *Correspondence: Fei Luo, ; Runmin Guo,
| |
Collapse
|
9
|
von Wintersdorff CJH, Dingemans J, van Alphen LB, Wolffs PFG, van der Veer BMJW, Hoebe CJPA, Savelkoul PHM. Infections with the SARS-CoV-2 Delta variant exhibit fourfold increased viral loads in the upper airways compared to Alpha or non-variants of concern. Sci Rep 2022; 12:13922. [PMID: 35978025 PMCID: PMC9382600 DOI: 10.1038/s41598-022-18279-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
There has been a growing body of evidence that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) shows enhanced transmissibility and increased viral loads compared to other variants. A recent study has even suggested that respiratory samples from people infected with the Delta variant can harbor up to 1000 times higher viral loads compared to samples with variants that are more closely related to the original Wuhan strain, although the sample size of this study (n = 125) was very limited. Here, we have compared the viral load in 16,185 samples that were obtained in periods during which non-VOC, the Alpha (B.1.1.7) or Delta variant (B.1.617.2) were dominant as evidenced by genomic surveillance. We found that the Delta variant contained about fourfold higher viral loads across all age groups compared to the non-VOC or Alpha variants, which is significantly lower than reported earlier. Interestingly, the increased viral load for the Delta variant seemed to be age-dependent, regardless of sex, as the viral load was about 14-fold higher for Delta compared to the non-VOC or Alpha variant in age group 0-20 years and fourfold higher in age group 21-40 years, while there was no difference in viral load between variants in age groups 41-60 and 61+ years, most likely as a consequence of a higher degree of vaccination in the older age groups.
Collapse
Affiliation(s)
- Christian J H von Wintersdorff
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Jozef Dingemans
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Lieke B van Alphen
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Petra F G Wolffs
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Brian M J W van der Veer
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Christian J P A Hoebe
- Department of Sexual Health, Infectious Diseases and Environment, South Limburg Public Health Service, Heerlen, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| |
Collapse
|
10
|
Pell B, Johnston MD, Nelson P. A data-validated temporary immunity model of COVID-19 spread in Michigan. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10122-10142. [PMID: 36031987 DOI: 10.3934/mbe.2022474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We introduce a distributed-delay differential equation disease spread model for COVID-19 spread. The model explicitly incorporates the population's time-dependent vaccine uptake and incorporates a gamma-distributed temporary immunity period for both vaccination and previous infection. We validate the model on COVID-19 cases and deaths data from the state of Michigan and use the calibrated model to forecast the spread and impact of the disease under a variety of realistic booster vaccine strategies. The model suggests that the mean immunity duration for individuals after vaccination is 350 days and after a prior infection is 242 days. Simulations suggest that both high population-wide adherence to vaccination mandates and a more-than-annually frequency of booster doses will be required to contain outbreaks in the future.
Collapse
Affiliation(s)
- Bruce Pell
- Department of Mathematics & Computer Science, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI 48075, USA
| | - Matthew D Johnston
- Department of Mathematics & Computer Science, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI 48075, USA
| | - Patrick Nelson
- Department of Mathematics & Computer Science, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI 48075, USA
| |
Collapse
|
11
|
Samara A, Khalil A, O’Brien P, Herlenius E. The effect of the delta SARS-CoV-2 variant on maternal infection and pregnancy. iScience 2022; 25:104295. [PMID: 35492217 PMCID: PMC9040522 DOI: 10.1016/j.isci.2022.104295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A greater proportion of pregnant women with COVID-19 have mild disease compared with their non-pregnant counterparts. Paradoxically, however, they are at higher risk of developing severe disease, requiring respiratory support and admission to intensive care. The delta SARS-Cov-2 variant is associated with increased risk of hospitalization and morbidity in unvaccinated pregnant populations. However, it is not known whether the worse pregnancy outcomes associated with the delta variant are due to a direct effect of the virus on the pregnancy, or whether this effect is mediated through more severe maternal infection. Here, we synthesize studies of COVID-19 pregnancies, focusing on the different routes of SARS-CoV-2 infection of lung and placenta, and the mechanisms of syncytial formation for each SARS-CoV-2 variant. To delineate COVID-19 complications in pregnant women, future studies should explore whether the delta variant causes greater placental infection compared to other variants and contributes to increased syncytial formation.
Collapse
Affiliation(s)
- Athina Samara
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Asma Khalil
- Fetal Medicine Unit, St George’s Hospital, St George’s University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
- Fetal Medicine Unit, Liverpool Women’s Hospital, University of Liverpool, Liverpool, UK
| | - Patrick O’Brien
- The Royal College of Obstetricians and Gynaecologists, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Thapsigargin: key to new host-directed coronavirus antivirals? Trends Pharmacol Sci 2022; 43:557-568. [PMID: 35534355 PMCID: PMC9013669 DOI: 10.1016/j.tips.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
Despite the great success of vaccines that protect against RNA virus infections, and the development and clinical use of a limited number of RNA virus-specific drugs, there is still an urgent need for new classes of antiviral drugs against circulating or emerging RNA viruses. To date, it has proved difficult to efficiently suppress RNA virus replication by targeting host cell functions, and there are no approved drugs of this type. This opinion article discusses the recent discovery of a pronounced and sustained antiviral activity of the plant-derived natural compound thapsigargin against enveloped RNA viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), and influenza A virus. Based on its mechanisms of action, thapsigargin represents a new prototype of compounds with multimodal host-directed antiviral activity.
Collapse
|
13
|
Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses, and in particular, RNA viruses, dominate the WHO’s current list of ten global health threats. Of these, we review the widespread and most common HIV, influenza virus, and SARS-CoV-2 infections, as well as their possible prevention by vaccination and treatments by pharmacotherapeutic approaches. Beyond the vaccination, we discuss the virus-targeting and host-targeting drugs approved in the last five years, in the case of SARS-CoV-2 in the last one year, as well as new drug candidates and lead molecules that have been published in the same periods. We share our views on vaccination and pharmacotherapy, their mutually reinforcing strategic significance in combating pandemics, and the pros and cons of host and virus-targeted drug therapy. The COVID-19 pandemic has provided evidence of our limited armamentarium to fight emerging viral diseases. Novel broad-spectrum vaccines as well as drugs that could even be applied as prophylactic treatments or in early phases of the viremia, possibly through oral administration, are needed in all three areas. To meet these needs, the use of multi-data-based precision medicine in the practice and innovation of vaccination and drug therapy is inevitable.
Collapse
|