1
|
Soares da Veiga GT, Donassolo RA, Forcellini S, Ferraboli JW, Kujbida Junior MA, Nisimura LM, Bassai LW, Kessler RL, Serpeloni M, Bittencourt NC, Salazar YEAR, Guimarães LFF, Louzada J, Barros DKADS, Lopes SCP, Carvalho LH, Nóbrega de Sousa T, Kano FS, Costa FTM, Fanini Wowk P, Albrecht L. Exploring the naturally acquired response to Pvs47 gametocyte antigen. Front Immunol 2024; 15:1455454. [PMID: 39450180 PMCID: PMC11499161 DOI: 10.3389/fimmu.2024.1455454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Malaria represents a challenging global public health task, with Plasmodium vivax being the predominant parasite in Brazil and the most widely distributed species throughout the world. Developing a vaccine against P. vivax malaria demands innovative strategies, and targeting gametocyte antigens shows promise for blocking transmission prevention. Among these antigens, Pvs47, expressed in gametocytes, has shown remarkable efficacy in transmission blocking. However, remains underexplored in vaccine formulations. This study employed in silico methods to comprehensively characterize the physicochemical properties, structural attributes, epitope presence, and conservation profile of Pvs47. Additionally, we assessed its antigenicity in individuals exposed to malaria in endemic Brazilian regions. Recombinant protein expression occurred in a eukaryotic system, and antigenicity was evaluated using immunoenzymatic assays. The responses of naturally acquired IgM, total IgG, and IgG subclasses were analyzed in three groups of samples from Amazon region. Notably, all samples exhibited anti-Pvs47 IgM and IgG antibodies, with IgG3 predominating. Asymptomatic patients demonstrated stronger IgG responses and more diverse subclass responses. Anti-Pvs47 IgM and IgG responses in symptomatic individuals decrease over time. Furthermore, we observed a negative correlation between anti-Pvs47 IgM response and gametocytemia in samples of symptomatic patients, indicating a gametocyte-specific response. Additionally, negative correlation was observed among anti-Pvs47 antibody response and hematocrit levels. Furthermore, comparative analysis with widely characterized blood antigens, PvAMA1 and PvMSP119, revealed that Pvs47 was equally or more recognized than both proteins. In addition, there is positive correlation between P. vivax blood asexual and sexual stage immune responses. In summary, our study unveils a significant prevalence of anti-Pvs47 antibodies in diverse Amazonian samples and the importance of IgM response for gametocytes depuration. These findings regarding the in silico characterization and antigenicity of Pvs47 provide crucial insights for potential integration into P. vivax vaccine formulations.
Collapse
Affiliation(s)
| | - Rafael Amaral Donassolo
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Sofia Forcellini
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Julia Weber Ferraboli
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Mario Antonio Kujbida Junior
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Líndice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | | | | | | | - Najara Carneiro Bittencourt
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Yanka Evellyn Alves R. Salazar
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Luiz Felipe Ferreira Guimarães
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Jaime Louzada
- Laboratório de Parasitologia e Monitoramento de Artrópodes Vetores na Amazônia, Centro de Ciências da Saúde, Universidade Federal de Roraima (UFRR), Boa Vista, Brazil
| | | | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil
| | - Luzia Helena Carvalho
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Tais Nóbrega de Sousa
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Flora Satiko Kano
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Pryscilla Fanini Wowk
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| |
Collapse
|
2
|
Arora G, Černý J. Plasmodium proteases and their role in development of Malaria vaccines. ADVANCES IN PARASITOLOGY 2024; 126:253-273. [PMID: 39448193 DOI: 10.1016/bs.apar.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malaria remains a major health hazard for humans, despite the availability of efficacious antimalarial drugs and other interventions. Given that the disease is often deadly for children under 5 years and pregnant women living in malaria-endemic areas, an efficacious vaccine to prevent transmission and clinical disease would be ideal. Plasmodium, the causative agent of malaria, uses proteases and protease inhibitors to control and process to invade host, modulate host immunity, and for pathogenesis. Plasmodium parasites rely on these proteases for their development and survival, including feeding their metabolic needs and invasion of both mosquito and human tissues, and have thus been explored as potential targets for prophylaxis. In this chapter, we have discussed the potential of proteases like ROM4, SUB2, SERA4, SERA5, and others as vaccine candidates. We have also discussed the role of some protease inhibitors of plasmodium and mosquito origin. Inhibition of plasmodium proteases can interrupt the parasite development at many different stages therefore understanding their function is key to developing new drugs and malaria vaccines.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia
| |
Collapse
|
3
|
Hawadak J, Arya A, Chaudhry S, Singh V. Genetic diversity and natural selection analysis of VAR2CSA and vir genes: implication for vaccine development. Genomics Inform 2024; 22:11. [PMID: 39010183 PMCID: PMC11247734 DOI: 10.1186/s44342-024-00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024] Open
Abstract
Variable surface antigens (VSAs) encoded by var and vir genes in Plasmodium falciparum and Plasmodium vivax, respectively, are known to be involved in malaria pathogenesis and host immune escape through antigenic variations. Knowledge of the genetic diversity of these antigens is essential for malaria control and effective vaccine development. In this study, we analysed the genetic diversity and evolutionary patterns of two fragments (DBL2X and DBL3X) of VAR2CSA gene and four vir genes (vir 4, vir 12, vir 21 and vir 27) from different endemic regions, including Southeast Asia and sub-Saharan Africa. High levels of segregating sites (S) and haplotype diversity (Hd) were observed in both var and vir genes. Among vir genes, vir 12 (S = 131, Hd = 0.996) and vir 21 (S = 171, Hd = 892) were found to be more diverse as compared to vir 4 (S = 11, Hd = 0.748) and vir 27 (S = 23, Hd = 0.814). DBL2X (S = 99, Hd = 0.996) and DBL3X (S = 307, Hd = 0.999) fragments showed higher genetic diversity. Our analysis indicates that var and vir genes are highly diverse and follow the similar evolutionary pattern globally. Some codons showed signatures of positive or negative selection pressure, but vir and var genes are likely to be under balancing selection. This study highlights the high variability of var and vir genes and underlines the need of functional experimental studies to determine the most relevant allelic forms for effective progress towards vaccine formulation and testing.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Aditi Arya
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Sun Y, Xin J, Xu Y, Wang X, Zhao F, Niu C, Liu S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules 2024; 29:1648. [PMID: 38611927 PMCID: PMC11013193 DOI: 10.3390/molecules29071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive biological significance and medicinal potential. The genus's sesquiterpene compounds have attracted considerable interest from the scientific community due to their structural complexity and diverse biological activities. These compounds exhibit a range of biological activities, including antimalarial, antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising candidates for medical applications. This review aims to summarize the current knowledge on the variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms, offering a comprehensive foundation for future research.
Collapse
Affiliation(s)
- Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| |
Collapse
|
5
|
Najer A, Kim J, Saunders C, Che J, Baum J, Stevens MM. Enhanced Antimalarial and Antisequestration Activity of Methoxybenzenesulfonate-Modified Biopolymers and Nanoparticles for Tackling Severe Malaria. ACS Infect Dis 2024; 10:732-745. [PMID: 38271991 PMCID: PMC10862538 DOI: 10.1021/acsinfecdis.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Severe malaria is a life-threatening condition that is associated with a high mortality. Severe Plasmodium falciparum infections are mediated primarily by high parasitemia and binding of infected red blood cells (iRBCs) to the blood vessel endothelial layer, a process known as sequestration. Here, we show that including the 5-amino-2-methoxybenzenesulfonate (AMBS) chemical modification in soluble biopolymers (polyglutamic acid and heparin) and poly(acrylic acid)-exposing nanoparticles serves as a universal tool to introduce a potent parasite invasion inhibitory function in these materials. Importantly, the modification did not add or eliminated (for heparin) undesired anticoagulation activity. The materials protected RBCs from invasion by various parasite strains, employing both major entry pathways. Two further P. falciparum strains, which either expose ligands for chondroitin sulfate A (CSA) or intercellular adhesion molecule 1 (ICAM-1) on iRBCs, were tested in antisequestration assays due to their relevance in placental and cerebral malaria, respectively. Antisequestration activity was found to be more efficacious with nanoparticles vs gold-standard soluble biopolymers (CSA and heparin) against both strains, when tested on receptor-coated dishes. The nanoparticles also efficiently inhibited and reversed the sequestration of iRBCs on endothelial cells. First, the materials described herein have the potential to reduce the parasite burden by acting at the key multiplication stage of reinvasion. Second, the antisequestration ability could help remove iRBCs from the blood vessel endothelium, which could otherwise cause vessel obstruction, which in turn can lead to multiple organ failure in severe malaria infections. This approach represents a further step toward creation of adjunctive therapies for this devastating condition to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Junyoung Kim
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Junyi Che
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
6
|
Chinedu SN, Bella-Omunagbe M, Okafor E, Afolabi R, Adebiyi E. Computational Studies on 6-Pyruvoyl Tetrahydropterin Synthase (6-PTPS) of Plasmodium falciparum. Bioinform Biol Insights 2024; 18:11779322241230214. [PMID: 38333003 PMCID: PMC10851736 DOI: 10.1177/11779322241230214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
6-Pyruvoyl tetrahydropterin synthase (6-PTPS) is a lyase involved in the synthesis of tetrahydrobiopterin. In Plasmodium species where dihydroneopterin aldolase (DHNA) is absent, it acts in the folate biosynthetic pathway necessary for the growth and survival of the parasite. The 6-pyruvoyl tetrahydropterin synthase of Plasmodium falciparum (PfPTPS) has been identified as a potential antimalarial drug target. This study identified potential inhibitors of PfPTPS using molecular docking techniques. Molecular docking and virtual screening of 62 compounds including the control to the deposited Protein Data Bank (PDB) structure was carried out using AutoDock Vina in PyRx. Five of the compounds, N,N-dimethyl-N'-[4-oxo-6-(2,2,5-trimethyl-1,3-dioxolan-4-yl)-3H-pteridin-2-yl]methanimidamide (140296439), 2-amino-6-[(1R)-3-cyclohexyl-1-hydroxypropyl]-3H-pteridin-4-one (140296495), 2-(2,3-dihydroxypropyl)-8,9-dihydro-6H-pyrimido[2,1-b]pteridine-7,11-dione (144380406), 2-(dimethylamino)-6-[(2,2-dimethyl-1,3-dioxolan-4-yl)-hydroxymethyl]-3H-pteridin-4-one (135573878), and [1-acetyloxy-1-(2-methyl-4-oxo-3H-pteridin-6-yl)propan-2-yl] acetate (136075207), showed better binding affinity than the control ligand, biopterin (135449517), and were selected and screened. Three conformers of 140296439 with the binding energy of -7.2, -7.1, and -7.0 kcal/mol along with 140296495 were better than the control at -5.7 kcal/mol. In silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies predicted good pharmacokinetic properties of all the compounds while reporting a high risk of irritant toxicity in 140296439 and 144380406. The study highlights the five compounds, 140296439, 140296495, 144380406, 135573878 and 136075207, as potential inhibitors of PfPTPS and possible compounds for antimalarial drug development.
Collapse
Affiliation(s)
- Shalom N Chinedu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Public Health & Well-being Research Cluster (CUPHWERC), Covenant University, Ota, Nigeria
| | - Mercy Bella-Omunagbe
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication—Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Esther Okafor
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research (CUBre), Covenant University, Ota, Nigeria
| | - Rufus Afolabi
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research (CUBre), Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant Applied Informatics and Communication—Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research (CUBre), Covenant University, Ota, Nigeria
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Gallego-Delgado J. Pathology of Severe Malaria. Pathogens 2023; 12:1389. [PMID: 38133274 PMCID: PMC10746059 DOI: 10.3390/pathogens12121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Malaria, a devastating disease transmitted by mosquitoes, continues to plague many regions worldwide, affecting millions of lives annually [...].
Collapse
Affiliation(s)
- Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, NY 10468, USA; ; Tel.: +1-347-577-4109
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY 10016, USA
| |
Collapse
|
8
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565723. [PMID: 37986738 PMCID: PMC10659346 DOI: 10.1101/2023.11.05.565723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-Ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| |
Collapse
|
9
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
10
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
12
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
13
|
Manoutcharian K, Gevorkian G. Shark VNAR phage display libraries: An alternative source for therapeutic and diagnostic recombinant antibody fragments. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108808. [PMID: 37169114 DOI: 10.1016/j.fsi.2023.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico.
| |
Collapse
|