1
|
Mahlandt EK, Palacios Martínez S, Arts JJG, Tol S, van Buul JD, Goedhart J. Opto-RhoGEFs, an optimized optogenetic toolbox to reversibly control Rho GTPase activity on a global to subcellular scale, enabling precise control over vascular endothelial barrier strength. eLife 2023; 12:RP84364. [PMID: 37449837 PMCID: PMC10393062 DOI: 10.7554/elife.84364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The inner layer of blood vessels consists of endothelial cells, which form the physical barrier between blood and tissue. This vascular barrier is tightly regulated and is defined by cell-cell contacts through adherens and tight junctions. To investigate the signaling that regulates vascular barrier strength, we focused on Rho GTPases, regulators of the actin cytoskeleton and known to control junction integrity. To manipulate Rho GTPase signaling in a temporal and spatial manner we applied optogenetics. Guanine-nucleotide exchange factor (GEF) domains from ITSN1, TIAM1, and p63RhoGEF, activating Cdc42, Rac, and Rho, respectively, were integrated into the optogenetic recruitment tool improved light-induced dimer (iLID). This tool allows for Rho GTPase activation at the subcellular level in a reversible and non-invasive manner by recruiting a GEF to a specific area at the plasma membrane, The membrane tag of iLID was optimized and a HaloTag was applied to gain more flexibility for multiplex imaging. The resulting optogenetically recruitable RhoGEFs (Opto-RhoGEFs) were tested in an endothelial cell monolayer and demonstrated precise temporal control of vascular barrier strength by a cell-cell overlap-dependent, VE-cadherin-independent, mechanism. Furthermore, Opto-RhoGEFs enabled precise optogenetic control in endothelial cells over morphological features such as cell size, cell roundness, local extension, and cell contraction. In conclusion, we have optimized and applied the optogenetic iLID GEF recruitment tool, that is Opto-RhoGEFs, to study the role of Rho GTPases in the vascular barrier of the endothelium and found that membrane protrusions at the junction region can rapidly increase barrier integrity independent of VE-cadherin.
Collapse
Affiliation(s)
- Eike K Mahlandt
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastián Palacios Martínez
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| | - Janine J G Arts
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Simon Tol
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jaap D van Buul
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Schelski M, Bradke F. Microtubule retrograde flow retains neuronal polarization in a fluctuating state. SCIENCE ADVANCES 2022; 8:eabo2336. [PMID: 36332023 PMCID: PMC9635824 DOI: 10.1126/sciadv.abo2336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In developing vertebrate neurons, a neurite is formed by more than a hundred microtubules. While individual microtubules are dynamic, the microtubule array has been regarded as stationary. Using live-cell imaging of neurons in culture or in brain slices, combined with photoconversion techniques and pharmacological manipulations, we uncovered that the microtubule array flows retrogradely within neurites to the soma. This flow drives cycles of microtubule density, a hallmark of the fluctuating state before axon formation, thereby inhibiting neurite growth. The motor protein dynein fuels this process. Shortly after axon formation, microtubule retrograde flow slows down in the axon, reducing microtubule density cycles and enabling axon extension. Thus, keeping neurites short is an active process. Microtubule retrograde flow is a previously unknown type of cytoskeletal dynamics, which changes the hitherto axon-centric view of neuronal polarization.
Collapse
Affiliation(s)
- Max Schelski
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
- International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Frank Bradke
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| |
Collapse
|
3
|
Berlew EE, Yamada K, Kuznetsov IA, Rand EA, Ochs CC, Jaber Z, Gardner KH, Chow BY. Designing Single-Component Optogenetic Membrane Recruitment Systems: The Rho-Family GTPase Signaling Toolbox. ACS Synth Biol 2022; 11:515-521. [PMID: 34978789 PMCID: PMC8867532 DOI: 10.1021/acssynbio.1c00604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We describe the efficient creation of single-component optogenetic tools for membrane recruitment-based signaling perturbation using BcLOV4 technology. The workflow requires two plasmids to create six different domain arrangements of the dynamic membrane binder BcLOV4, a fluorescent reporter, and the fused signaling protein of interest. Screening of this limited set of genetic constructs for expression characteristics and dynamic translocation in response to one pulse of light is sufficient to identify viable signaling control tools. The reliability of this streamlined approach is demonstrated by the creation of an optogenetic Cdc42 GTPase and Rac1-activating Tiam1 GEF protein, which together with our other recently reported technologies, completes a toolbox for spatiotemporally precise induction of Rho-family GTPase signaling at the GEF or GTPase level, for driving filopodial protrusions, lamellipodial protrusions, and cell contractility, respectively mediated by Cdc42, Rac1, and RhoA.
Collapse
Affiliation(s)
- Erin E. Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Keisuke Yamada
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan 169-8050
| | - Ivan A. Kuznetsov
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Eleanor A. Rand
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,Department of Systems Biology, Harvard University Medical School, Boston MA 02115, USA
| | - Chandler C. Ochs
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Zaynab Jaber
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA,Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Kevin H. Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA,Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA,Ph.D. Programs in Biochemistry, Chemistry, and Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Brian Y. Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,Correspondence: ; 210 S 33rd Street, Suite 240, Philadelphia, PA 19104; (+1) (215) 898-5159
| |
Collapse
|
4
|
Natwick DE, Collins SR. Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment. ACS Synth Biol 2021; 10:1009-1023. [PMID: 33843200 DOI: 10.1021/acssynbio.0c00511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Optogenetic protein dimerization systems are powerful tools to investigate the biochemical networks that cells use to make decisions and coordinate their activities. These tools, including the improved Light-Inducible Dimer (iLID) system, offer the ability to selectively recruit components to subcellular locations, such as micron-scale regions of the plasma membrane. In this way, the role of individual proteins within signaling networks can be examined with high spatiotemporal resolution. Currently, consistent recruitment is limited by heterogeneous optogenetic component expression, and spatial precision is diminished by protein diffusion, especially over long time scales. Here, we address these challenges within the iLID system with alternative membrane anchoring domains and fusion configurations. Using live cell imaging and mathematical modeling, we demonstrate that the anchoring strategy affects both component expression and diffusion, which in turn impact recruitment strength, kinetics, and spatial dynamics. Compared to the commonly used C-terminal iLID fusion, fusion proteins with large N-terminal anchors show stronger local recruitment, slower diffusion of recruited components, efficient recruitment over wider gene expression ranges, and improved spatial control over signaling outputs. We also define guidelines for component expression regimes for optimal recruitment for both cell-wide and subcellular recruitment strategies. Our findings highlight key sources of imprecision within light-inducible dimer systems and provide tools that allow greater control of subcellular protein localization across diverse cell biological applications.
Collapse
Affiliation(s)
- Dean E. Natwick
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, United States
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Van Geel O, Cheung S, Gadella TWJ. Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations. Sci Rep 2020; 10:6034. [PMID: 32265472 PMCID: PMC7138840 DOI: 10.1038/s41598-020-62874-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.
Collapse
Affiliation(s)
- Orry Van Geel
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Stephanie Cheung
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.,Developmental Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Chow BY. Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation. Photochem Photobiol Sci 2020; 19:353-361. [PMID: 32048687 PMCID: PMC7141788 DOI: 10.1039/c9pp00434c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/03/2020] [Indexed: 01/01/2023]
Abstract
We report the construction of a single-component optogenetic Rac1 (opto-Rac1) to control actin polymerization by dynamic membrane recruitment. Opto-Rac1 is a fusion of wildtype human Rac1 small GTPase to the C-terminal region of BcLOV4, a LOV (light-oxygen-voltage) photoreceptor that rapidly binds the plasma membrane upon blue-light activation via a direct electrostatic interaction with anionic membrane phospholipids. Translocation of the fused wildtype Rac1 effector permits its activation by GEFs (guanine nucleotide exchange factors) and consequent actin polymerization and lamellipodia formation, unlike in existing single-chain systems that operate by allosteric photo-switching of constitutively active Rac1 or the heterodimerization-based (i.e. two-component) membrane recruitment of a Rac1-activating GEF. Opto-Rac1 induction of lamellipodia formation was spatially restricted to the patterned illumination field and was efficient, requiring sparse stimulation duty ratios of ∼1-2% (at the sensitivity threshold for flavin photocycling) to cause significant changes in cell morphology. This work exemplifies how the discovery of LOV proteins of distinct signal transmission modes can beget new classes of optogenetic tools for controlling cellular function.
Collapse
Affiliation(s)
- Erin E Berlew
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Ivan A Kuznetsov
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Keisuke Yamada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Photodimerization systems for regulating protein-protein interactions with light. Curr Opin Struct Biol 2019; 57:1-8. [PMID: 30818200 DOI: 10.1016/j.sbi.2019.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Abstract
Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
Collapse
|