1
|
Schipani M, Rivolta GM, Margiotta-Casaluci G, Mahmoud AM, Al Essa W, Gaidano G, Bruna R. New Frontiers in Monoclonal Antibodies for Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2023; 16:187. [PMID: 38201614 PMCID: PMC10778309 DOI: 10.3390/cancers16010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma. Approximately 60% of patients are cured with R-CHOP as a frontline treatment, while the remaining patients experience primary refractory or relapsed disease (R/R). The prognosis for R/R DLBCL patients who are neither eligible for autologous stem-cell transplantations nor CAR-T-cell treatment is poor, representing an important unmet need. Monoclonal antibodies (mAbs) have dramatically improved therapeutic options in anti-cancer strategies, offering new opportunities to overcome chemo-refractoriness in this challenging disease, even in cases of primary non-responder DLBCL. Several novel mAbs, characterized by different mechanisms of action and targets, are now available for R/R DLBCL. Unbound mAbs induce an immune response against cancer cells, triggering different mechanisms, including antibody-dependent cellular cytotoxicity (ADCC), activation of antibody-dependent cell-mediated phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC). Antibody-drug conjugates (ADCs) and radioimmunotherapy (RIT), respectively, deliver a cytotoxic payload or a beta-emitter radionuclide to the targeted cells and nearby bystanders. Bispecific T-cell engagers (BiTes) and immune checkpoint inhibitors (ICIs) redirect and enhance the immune response against tumor cells. Here, we review therapeutic strategies based on monoclonal antibodies for R/R DLBCL.
Collapse
Affiliation(s)
| | | | | | | | | | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (M.S.); (G.M.R.); (G.M.-C.); (A.M.M.); (W.A.E.); (R.B.)
| | | |
Collapse
|
2
|
Jain N, Mamgain M, Chowdhury SM, Jindal U, Sharma I, Sehgal L, Epperla N. Beyond Bruton's tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody-drug conjugates, CAR T-cells, and novel agents. J Hematol Oncol 2023; 16:99. [PMID: 37626420 PMCID: PMC10463717 DOI: 10.1186/s13045-023-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mantle cell lymphoma is a B cell non-Hodgkin lymphoma (NHL), representing 2-6% of all NHLs and characterized by overexpression of cyclin D1. The last decade has seen the development of many novel treatment approaches in MCL, most notably the class of Bruton's tyrosine kinase inhibitors (BTKi). BTKi has shown excellent outcomes for patients with relapsed or refractory MCL and is now being studied in the first-line setting. However, patients eventually progress on BTKi due to the development of resistance. Additionally, there is an alteration in the tumor microenvironment in these patients with varying biological and therapeutic implications. Hence, it is necessary to explore novel therapeutic strategies that can be effective in those who progressed on BTKi or potentially circumvent resistance. In this review, we provide a brief overview of BTKi, then discuss the various mechanisms of BTK resistance including the role of genetic alteration, cancer stem cells, tumor microenvironment, and adaptive reprogramming bypassing the effect of BTK inhibition, and then provide a comprehensive review of current and emerging therapeutic options beyond BTKi including novel agents, CAR T cells, bispecific antibodies, and antibody-drug conjugates.
Collapse
Affiliation(s)
- Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Mamgain
- Department of Medical Oncology and Hematology, All India Institute of Medical Sciences, Rishikesh, India
| | - Sayan Mullick Chowdhury
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Udita Jindal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Isha Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Lalit Sehgal
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Narendranath Epperla
- The Ohio State University Comprehensive Cancer Center, Suite 7198, 2121 Kenny Rd, Columbus, OH, 43221, USA.
| |
Collapse
|
3
|
Visweshwar N, Rico JF, Killeen R, Manoharan A. Harnessing the Immune System: An Effective Way to Manage Diffuse Large B-Cell Lymphoma. J Hematol 2023; 12:145-160. [PMID: 37692863 PMCID: PMC10482611 DOI: 10.14740/jh1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 09/12/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogenous hematological disorder with malignant potential controlled by immunological characteristics of the tumor microenvironment. Rapid breakthrough in the molecular pathways has made immunological approaches the main anchor in the management of DLBCL, with or without chemotherapeutic agents. Rituximab was the first monoclonal antibody approved for the treatment of DLBCL. Following rituximab that transformed the therapeutic landscape, other novel immunological agents including chimeric antigen T-cell therapy have reshaped the management of relapsed/refractory DLBCL. However, resistance and refractory state remain a challenge in the management of DLBCL. For this literature review, we screened articles from Medline, Embase, Cochrane databases and the European/North American guidelines from March 2010 through October 2022 for DLBCL. Here we discuss immunological agents that will significantly affect future treatment of this aggressive type of lymphoma.
Collapse
Affiliation(s)
- Nathan Visweshwar
- Department of Hematology, University of South Florida, Tampa, FL, USA
| | - Juan Felipe Rico
- Department of Pediatrics, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Robert Killeen
- Department of Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Arumugam Manoharan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
4
|
Câmara AB, Brandão IA. The Non-Hodgkin Lymphoma Treatment and Side Effects: A Systematic Review and Meta-Analysis. Recent Pat Anticancer Drug Discov 2023; 19:PRA-EPUB-128894. [PMID: 36650656 DOI: 10.2174/1574892818666230117151757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This paper aims to review studies regarding side effects found during Non-Hodgkin Lymphoma treatment, to suggest the drug class most associated with these effects, as well as the most prevalent side effect grade. METHODS This review is registered in PROSPERO (IDCRD42022295774) and followed the PICOS strategy and PRISMA guidelines. The search was carried out in the databases PubMed/MEDLINE, Scientific Electronic Library Online, and DOAJ. Medical Subject Headings Terms were used and quantitative studies with conclusive results regarding side effects during the non-Hodgkin lymphoma treatment were selected. Patent information was obtained from google patents. RESULTS Monoclonal antibodies were the main drug class associated with side effects during NHL therapy. The combination of Rituximab (Rituxan®; patent EP1616572B) and iInotuzumab (Besponsa®; patent EP1504035B3) was associated with a higher incidence of thrombocytopenia (p<0.05), while the combination of Rituximab and Venetoclax (Venclexta®; patent CN107089981A) was associated with a higher incidence of neutropenia (p<0.05) when compared to Bendamustine combinations (Treanda ™; patent US20130253025A1). Meta-analysis revealed a high prevalence of grade 3-4 neutropenia and thrombocytopenia in men. Finally, Americans and Canadians experienced a higher prevalence of these side effects, when compared to others nationalities (p<0.05). CONCLUSION Patents regarding the use of monoclonal antibodies in NHL treatment were published in the last year. Monoclonal antibodies associated with neutropenia (grade 3-4) and thrombocytopenia, especially in North American men treated for NHL, and with an average age of 62 years demonstrated importance in this study.
Collapse
Affiliation(s)
- Alice Barros Câmara
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte
| | - Igor Augusto Brandão
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte
| |
Collapse
|
5
|
Strüßmann T, Wäsch R, Scherer F, Mutter JA, Pfeifer D, Bartsch I, Giesler S, Graziani G, Duyster J, Finke J, Marks R. A patient with refractory high-grade B-cell lymphoma and rapid progression under CAR-T-cell therapy was successfully salvaged with inotuzumab- ozogamicin. Leuk Lymphoma 2022; 63:2260-2262. [DOI: 10.1080/10428194.2022.2074991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- T. Strüßmann
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R. Wäsch
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F. Scherer
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J. A. Mutter
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - D. Pfeifer
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - I. Bartsch
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - S. Giesler
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - G. Graziani
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J. Duyster
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J. Finke
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R. Marks
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Papageorgiou SG, Thomopoulos TP, Liaskas A, Vassilakopoulos TP. Monoclonal Antibodies in the Treatment of Diffuse Large B-Cell Lymphoma: Moving beyond Rituximab. Cancers (Basel) 2022; 14:1917. [PMID: 35454825 PMCID: PMC9026383 DOI: 10.3390/cancers14081917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Although rituximab has revolutionized the treatment of diffuse large B-cell lymphoma (DLBCL), a significant proportion of patients experience refractory disease or relapse early after the end of treatment. The lack of effective treatment options in the relapsed/refractory (R/R) setting had made the prognosis of these patients dismal. The initial enthusiasm for novel anti-CD20 antibodies had been short-lived as they failed to prove their superiority to rituximab. Therefore, research has focused on developing novel agents with a unique mechanism of action. Among them, two antibody-drug conjugates, namely polatuzumab vedotin (PolaV) and loncastuximab tesirine, along with tafasitamab, an anti-CD19 bioengineered antibody, have been approved for the treatment of R/R DLBCL. Whereas PolaV has been FDA and EMA approved, EMA has not approved loncastuximab tesirine and tafasitamab yet. Results from randomized trials, as well as real-life data for PolaV have been promising. Novel agents as bispecific antibodies bridging CD3 on T-cells to CD20 have shown very promising results in clinical trials and are expected to gain approval for treatment of R/R DLBCL soon. As the therapeutic armamentarium against DLBCL is expanding, an improvement in survival of patients with R/R and higher cure rates might soon become evident.
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Hematology Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, School of Medicine, National and Kapodistrian University of Athens, University General Hospital “Attikon”, 18120 Athens, Greece; (S.G.P.); (T.P.T.)
| | - Thomas P. Thomopoulos
- Hematology Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, School of Medicine, National and Kapodistrian University of Athens, University General Hospital “Attikon”, 18120 Athens, Greece; (S.G.P.); (T.P.T.)
| | - Athanasios Liaskas
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| | - Theodoros P. Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| |
Collapse
|
7
|
Sheyi R, de la Torre BG, Albericio F. Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics 2022; 14:pharmaceutics14020396. [PMID: 35214128 PMCID: PMC8874516 DOI: 10.3390/pharmaceutics14020396] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
As one of the major therapeutic options for cancer treatment, chemotherapy has limited selectivity against cancer cells. Consequently, this therapeutic strategy offers a small therapeutic window with potentially high toxicity and thus limited efficacy of doses that can be tolerated by patients. Antibody-drug conjugates (ADCs) are an emerging class of anti-cancer therapeutic drugs that can deliver highly cytotoxic molecules directly to cancer cells. To date, twelve ADCs have received market approval, with several others in clinical stages. ADCs have become a powerful class of therapeutic agents in oncology and hematology. ADCs consist of recombinant monoclonal antibodies that are covalently bound to cytotoxic chemicals via synthetic linkers. The linker has a key role in ADC outcomes because its characteristics substantially impact the therapeutic index efficacy and pharmacokinetics of these drugs. Stable linkers and ADCs can maintain antibody concentration in blood circulation, and they do not release the cytotoxic drug before it reaches its target, thus resulting in minimum off-target effects. The linkers used in ADC development can be classified as cleavable and non-cleavable. The former, in turn, can be grouped into three types: hydrazone, disulfide, or peptide linkers. In this review, we highlight the various linkers used in ADC development and their design strategy, release mechanisms, and future perspectives.
Collapse
Affiliation(s)
- Rotimi Sheyi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Beatriz G. de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| |
Collapse
|
8
|
Pirosa MC, Zhang L, Hitz F, Novak U, Hess D, Terrot T, Pascale M, Mazzucchelli L, Bertoni F, Cavalli F, Zucca E, Stathis A. A phase I trial of inotuzumab ozogamicin in combination with temsirolimus in patients with relapsed or refractory CD22-positive B-cell non-Hodgkin lymphomas. Leuk Lymphoma 2021; 63:117-123. [PMID: 34407735 DOI: 10.1080/10428194.2021.1966780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This phase I trial evaluated the safety, tolerability, and preliminary activity of inotuzumab ozogamicin in combination with temsirolimus in patients with relapsed/refractory CD22 positive B-cell non-Hodgkin lymphomas. Nineteen patients received at least one dose of both study drugs. Dose-limiting toxicities consisted of thrombocytopenia, hypertriglyceridemia, oral mucositis, clinical deterioration, and the inability to receive at least three doses of temsirolimus during cycle 1. The most common grade ≥3 treatment-related adverse events were thrombocytopenia (n = 8), neutropenia (n = 5), and two patients each hyperphosphatemia, lymphopenia, and hypertriglyceridemia. The recommended phase II dose was inotuzumab ozogamicin 0.8 mg/m2 on day 1 in combination with temsirolimus 10 mg on days 8, 15, and 22 every 28 days. Among 18 patients evaluable, seven (39%) with follicular lymphoma had a partial remission. This drug combination is not possible within a therapeutically useful range of doses due to toxicities. Antitumor activity was observed in heavily pretreated patients (ClinicalTrials.gov, Identifier NCT01535989).
Collapse
Affiliation(s)
- Maria C Pirosa
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Lu Zhang
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Felicitas Hitz
- Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dagmar Hess
- Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Tatiana Terrot
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Mariarosa Pascale
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | | | - Francesco Bertoni
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Franco Cavalli
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
9
|
Hashmi H, Darwin A, Nishihori T. Therapeutic roles of antibody drug conjugates (ADCs) in relapsed/refractory lymphomas. Hematol Oncol Stem Cell Ther 2021; 16:21-34. [PMID: 36634275 DOI: 10.1016/j.hemonc.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 01/18/2023] Open
Abstract
Relapsed or refractory lymphoma is commonly treated with combination chemoimmunotherapy and cellular immunotherapy. Modest response rates and associated toxicities are obstacles to achieving durable remission using traditional cytotoxic chemotherapy, especially in frail patients with advanced disease. Antibody drug conjugates represent a new class of novel targeted agents with significant improvement in therapeutic efficacy in the treatment of lymphomas. Several of these agents, which offer improved targeting, greater potency, and better therapeutic index over traditional chemotherapy, are changing the treatment landscape for lymphomas and other hematological malignancies. Despite the therapeutic potential of these agents, the delivery and release of cytotoxic agents to malignant cells through the combination of a monoclonal antibody, payload, and linker represents a complex design challenge. This article reviews the clinical data on currently available antibody drug conjugates and the ongoing development of novel antibody drug conjugates. Antibody drug conjugates constitute an important armamentarium for treatment of lymphomas and their evolving roles in the treatment spectrum are discussed.
Collapse
Affiliation(s)
- Hamza Hashmi
- Division of Hematology/Oncology, Medical University of South Carolina, United States
| | - Alicia Darwin
- University of South Florida, Morsani College of Medicine, United States
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, United States
| |
Collapse
|
10
|
Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: Combining targeting ability with cytotoxicity effectively. Cancer Med 2021; 10:4677-4696. [PMID: 34165267 PMCID: PMC8290258 DOI: 10.1002/cam4.4052] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Traditional cancer therapy has many disadvantages such as low selectivity and high toxicity of chemotherapy, as well as insufficient efficacy of targeted therapy. To enhance the cytotoxic effect and targeting ability, while reducing the toxicity of antitumor drugs, an antibody drug conjugate (ADC) was developed to deliver small molecular cytotoxic payloads directly to tumor cells by binding to specific antibodies via linkers. Method By reviewing published literature and the current progress of ADCs, we aimed to summarize the basic characteristics, clinical progress, and challenges of ADCs to provide a reference for clinical practice and further research. Results ADC is a conjugate composed of three fundamental components, including monoclonal antibodies, cytotoxic payloads, and stable linkers. The mechanisms of ADC including the classical internalization pathway, antitumor activity of antibodies, bystander effect, and non‐internalizing mechanism. With the development of new drugs and advances in technology, various ADCs have achieved clinical efficacy. To date, nine ADCs have received US Food and Drug Administration (FDA) approval in the field of hematologic tumors and solid tumors, which have become routine clinical treatments. Conclusion ADC has changed traditional treatment patterns for cancer patients, which enable the same treatment for pancreatic cancer patients and promote individualized precision treatment. Further exploration of indications could focus on early‐stage cancer patients and combined therapy settings. Besides, the mechanisms of drug resistance, manufacturing techniques, optimized treatment regimens, and appropriate patient selection remain the major topics.
Collapse
Affiliation(s)
- Wen-Qian Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Han-Fei Guo
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling-Yu Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Fei Zhang
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiu-Wei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Chu Y, Zhou X, Wang X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol 2021; 14:88. [PMID: 34090506 PMCID: PMC8180036 DOI: 10.1186/s13045-021-01097-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a promising class of immunotherapies with the potential to specifically target tumor cells and ameliorate the therapeutic index of cytotoxic drugs. ADCs comprise monoclonal antibodies, cytotoxic payloads with inherent antitumor activity, and specialized linkers connecting the two. In recent years, three ADCs, brentuximab vedotin, polatuzumab vedotin, and loncastuximab tesirine, have been approved and are already establishing their place in lymphoma treatment. As the efficacy and safety of ADCs have moved in synchrony with advances in their design, a plethora of novel ADCs have garnered growing interest as treatments. In this review, we provide an overview of the essential elements of ADC strategies in lymphoma and elucidate the up-to-date progress, current challenges, and novel targets of ADCs in this rapidly evolving field.
Collapse
Affiliation(s)
- Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
12
|
Morales ASR, Joy JK, Zbona DM. Administration sequence for multi-agent oncolytic regimens. J Oncol Pharm Pract 2020; 26:933-942. [DOI: 10.1177/1078155219895070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose The existence of a multitude of oncolytics regimens containing two or more agents (combination) outlines the need to define their most adequate sequence of administration. However, limited resources are currently available to specify a particular sequence, presenting challenges potentially impacting on patient safety, and Pharmacy & Infusion Nursing workflows. Methods A comprehensive literature search was performed leading to the compilation of a document containing drug administration sequencing instructions for our Nursing, Pharmacy, and Oncology providers to follow. Regimens prioritized in our literature review represented regimens selected as part of our approved Clinical Pathways, regimens inquiries from Pharmacy or Nursing, as well as less frequently used regimens. We stratified the regimens by tumor type and arranged them alphabetically by indication. Results A table was compiled containing all the supporting literature for the recommended drug administration sequences. If, in certain instances, no literature support was identified outlining rationale such as enhanced management of adverse effects, a specific institutional decision was made by our enterprise Medical Oncology Committee with recommendations from Pharmacy experts. The primary guiding principles for outlining our recommendations were the following: administration of vesicant agents first; administration of biologic agents first; administration of taxanes prior to platinum agents; and duration of infusion (shorter infusions prioritized). Conclusion This guideline is not exhaustive. The compilation provided here is intended to be utilized as guidance for oncolytics administration sequence. We will continue to review and incorporate treatment sequencing recommendations for additional regimens.
Collapse
Affiliation(s)
| | - Jamie K Joy
- Cancer Treatment Centers of America Global, Boca Raton, FL, USA
| | | |
Collapse
|
13
|
Amani N, Dorkoosh FA, Mobedi H. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies. Curr Drug Deliv 2020; 17:23-51. [DOI: 10.2174/1567201816666191121145109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
:Antibody drug conjugates (ADCs), as potent pharmaceutical trojan horses for cancer treatment, provide superior efficacy and specific targeting along with low risk of adverse reactions compared to traditional chemotherapeutics. In fact, the development of these agents combines the selective targeting capability of monoclonal antibody (mAb) with high cytotoxicity of chemotherapeutics for controlling the neoplastic mass growth. Different ADCs (more than 60 ADCs) in preclinical and clinical trials were introduced in this novel pharmaceutical field. Various design-based factors must be taken into account for improving the functionality of ADC technology, including selection of appropriate target antigen and high binding affinity of fragment (miniaturized ADCs) or full mAbs (preferentially use of humanized or fully human antibodies compared to murine and chimeric ones), use of bispecific antibodies for dual targeting effect, linker engineering and conjugation method efficacy to obtain more controlled drug to antibody ratio (DAR). Challenging issues affecting therapeutic efficacy and safety of ADCs, including bystander effect, on- and off-target toxicities, multi drug resistance (MDR) are also addressed. 4 FDA-approved ADCs in the market, including ADCETRIS ®, MYLOTARG®, BESPONSA ®, KADCYLA®. The goal of the current review is to evaluate the key parameters affecting ADCs development.
Collapse
Affiliation(s)
- Nooshafarin Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mobedi
- Novel Drug Delivery Systems (NDDS) Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
14
|
Yu B, Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol Oncol 2019; 12:94. [PMID: 31500657 PMCID: PMC6734251 DOI: 10.1186/s13045-019-0786-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Antibody-drug conjugates (ADC) represent a distinct family of chemoimmunotherapy agents. ADCs are composed of monoclonal antibodies conjugated to cytotoxic payloads via specialized chemical linkers. ADCs therefore combine the immune therapy with targeted chemotherapy. Due to the distinct biomarkers associated with lymphocytes and plasma cells, ADCs have emerged as a promising treatment option for lymphoid malignancies and multiple myeloma. Several ADCs have been approved for clinical applications: brentuximab vedotin, inotuzumab ozogamicin, moxetumomab pasudotox, and polatuzumab vedotin. More novel ADCs are under clinical development. In this article, we summarized the general principles for ADC design, and updated novel ADCs under various stages of clinical trials for lymphoid malignancies and multiple myeloma.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, NY USA
| | - Delong Liu
- Department of Oncology, The First affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
| |
Collapse
|
15
|
Ma H, Sawas A. Combining Biology and Chemistry for a New Take on Chemotherapy: Antibody-Drug Conjugates in Hematologic Malignancies. Curr Hematol Malig Rep 2019; 13:555-569. [PMID: 30362019 DOI: 10.1007/s11899-018-0485-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW This review is about the antibody-drug conjugate (ADC), a form of drug delivery consisting of a monoclonal antibody, linker, and cytotoxic payload. We summarize the history of ADC development, highlighting the three FDA-approved ADCs currently available. RECENT FINDINGS Gemtuzumab ozogamicin is a CD33-targeted ADC linked to calicheamicin. It is approved for CD33+ AML in the first line or the relapsed or refractory (R/R) setting. Brentuximab vedotin is a CD30-targeted ADC bound to MMAE. It is approved for the treatment of certain R/R CD30+ lymphomas. Recently, it has been approved for first line therapy with chemotherapy in advanced HL. Inotuzumab ozogamicin is a CD22-directed ADC attached to calicheamicin indicated for the treatment of adults with R/R B cell precursor ALL. Three ADCs have been approved for the treatment of various hematologic malignancies. We discuss the pertinent human trials that led to FDA approval. We include our perspectives about drug resistance, toxicities, and future development.
Collapse
Affiliation(s)
- Helen Ma
- Columbia University Medical Center, New York, NY, 10032, USA
| | - Ahmed Sawas
- Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Abstract
Non-Hodgkin lymphomas (NHL) are a diverse group of diseases, encompassing mature B-cell, T-cell, and natural killer cell malignancies and ranging in behavior from indolent to highly aggressive. For many years, the traditional treatment of NHL centered on chemotherapy. However, the introduction of rituximab ushered in the era of immunotherapy for NHLs. This article reviews novel immune therapies that have been used for the treatment of NHL. The data supporting the use of rituximab have been reviewed extensively; this article focuses on novel immunotherapies other than rituximab that remain in use or are actively being studied in clinical trials.
Collapse
|
17
|
Aujla A, Aujla R, Liu D. Inotuzumab ozogamicin in clinical development for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Biomark Res 2019; 7:9. [PMID: 31011424 PMCID: PMC6458768 DOI: 10.1186/s40364-019-0160-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
B cell acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) frequently express CD19, CD20 and CD22 on the cell surfaces. Immunotherapeutic agents including antibodies and chimeric antigen receptor T cells are widely studied in clinical trials. Several antibody-drug conjugates (ADC) have been approved for clinical use (gemtuzumab ozogamicin in acute myeloid leukemia and brentuximab vedotin in Hodgkin lymphoma as well as CD30+ anaplastic large cell lymphoma). Inotuzumab ozogamicin (INO), a CD22 antibody conjugated with calicheamicin is one of the newest ADCs. INO has been approved for treatment of relapsed /refractory B cell precursor ALL. Multiple ongoing trials are evaluating its role in the relapsed /refractory B cell NHL. This review summarized recent development in INO applications for ALL and NHL.
Collapse
Affiliation(s)
- Amandeep Aujla
- 1Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Ravijot Aujla
- 2Punjab Institute of Medical Sciences, Jalandhar, Punjab 144006 India
| | - Delong Liu
- 1Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA.,3Department of Oncology, The First affiliated hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Hibma JE, Kantarjian HM, DeAngelo DJ, Boni JP. Effect of inotuzumab ozogamicin on the QT interval in patients with haematologic malignancies using QTc-concentration modelling. Br J Clin Pharmacol 2019; 85:590-600. [PMID: 30536405 DOI: 10.1111/bcp.13832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/23/2018] [Accepted: 11/23/2018] [Indexed: 11/28/2022] Open
Abstract
AIM The aim of this study was to characterize the effect of inotuzumab ozogamicin on QT interval in patients with B-cell malignancies. METHODS Data were pooled from three clinical studies including 250 patients (n = 2743) who received inotuzumab ozogamicin monotherapy. Patients with relapsed/refractory acute lymphoblastic leukaemia (NCT01564784 and NCT01363297) received 1.8 mg m-2 per cycle in divided doses (mean Cmax 371 ng ml-1 ; considered therapeutic) and patients with relapsed/refractory non-Hodgkin lymphoma (NCT00868608) received 1.8 mg m-2 per cycle as a single dose (mean Cmax 569 ng ml-1 ; considered supratherapeutic). Triplicate 12-lead electrocardiograms were performed at baseline and predefined time points postdose with paired pharmacokinetic collections. The exposure-response relationship between corrected QT interval (QTc: QT interval corrected using population-specific formula [QTcS] or QT interval corrected using Fridericia's formula [QTcF]) and inotuzumab ozogamicin concentration was characterized using a linear mixed-effects model, and simulations were performed using the final validated model. Full model development involved testing for covariates that may account for part of the identified variability. RESULTS QTc intervals had a small but positive correlation with inotuzumab ozogamicin concentration. Based on 1000 simulations, median (upper 95% CI) QTcS and QTcF changes from baseline were <10 ms at both therapeutic (2.70 ms [5.40 ms] and 2.53 ms [4.92 ms], respectively) and supratherapeutic (4.14 ms [8.28 ms] and 3.87 ms [7.54 ms], respectively) concentrations. CONCLUSIONS Inotuzumab ozogamicin (1.8 mg m-2 per cycle) is not predicted to pose a clinically significant safety risk for QT prolongation in patients with acute lymphoblastic leukaemia or non-Hodgkin lymphoma.
Collapse
Affiliation(s)
| | | | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
19
|
Investigational Antibody–Drug Conjugates for Treatment of B-lineage Malignancies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:452-468.e4. [DOI: 10.1016/j.clml.2018.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/01/2023]
|
20
|
Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 2018; 11:8. [PMID: 29329556 PMCID: PMC5767051 DOI: 10.1186/s13045-017-0552-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Malignant cells have the capacity to rapidly grow exponentially and spread in part by suppressing, evading, and exploiting the host immune system. Immunotherapy is a form of oncologic treatment directed towards enhancing the host immune system against cancer. In recent years, manipulation of immune checkpoints or pathways has emerged as an important and effective form of immunotherapy. Agents that target cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1) are the most widely studied and recognized. Immunotherapy, however, extends beyond immune checkpoint therapy by using new molecules such as chimeric monoclonal antibodies and antibody drug conjugates that target malignant cells and promote their destruction. Genetically modified T cells expressing chimeric antigen receptors are able to recognize specific antigens on cancer cells and subsequently activate the immune system. Native or genetically modified viruses with oncolytic activity are of great interest as, besides destroying malignant cells, they can increase anti-tumor activity in response to the release of new antigens and danger signals as a result of infection and tumor cell lysis. Vaccines are also being explored, either in the form of autologous or allogenic tumor peptide antigens, genetically modified dendritic cells that express tumor peptides, or even in the use of RNA, DNA, bacteria, or virus as vectors of specific tumor markers. Most of these agents are yet under development, but they promise to be important options to boost the host immune system to control and eliminate malignancy. In this review, we have provided detailed discussion of different forms of immunotherapy agents other than checkpoint-modifying drugs. The specific focus of this manuscript is to include first-in-human phase I and phase I/II clinical trials intended to allow the identification of those drugs that most likely will continue to develop and possibly join the immunotherapeutic arsenal in a near future.
Collapse
Affiliation(s)
| | - Aixa E Soyano
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Bhagirathbhai Dholaria
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Current address: Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Yanyan Lou
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|