1
|
He X, Wen X, He PM, Liang D, Yang L, Ran Y, Zhang Z. Diminished Diversities and Clonally Expanded Sequences of T-Cell Receptors in Patients with Chronic Spontaneous Urticaria. Immunotargets Ther 2024; 13:661-671. [PMID: 39659518 PMCID: PMC11628316 DOI: 10.2147/itt.s481361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Studies establish a link between autoimmune factors and chronic spontaneous urticaria (CSU). T cells are crucial in immune-mediated diseases like CSU, and T-cell receptor (TCR) diversity could be pivotal in autoimmune responses. The clinical relevance of TCR variations in CSU is unknown, but understanding them may offer insights into CSU's pathogenesis and treatment. Methods This cross-sectional study included 132 chronic urticaria (CU) patients versus 100 age-matched healthy donors (HD), with subgroup analyses on CU type, angioedema, allergic comorbidities, and anti-IgE therapy efficacy. Peripheral TCRβ repertoires were analyzed by high-throughput sequencing. Results CSU patients showed reduced TCR diversity (lower D50) and increased large clone proportions than HD. Moreover, TCR diversity in CSU patients was significantly lower than in those with Chronic Inducible Urticaria (ClndU). There were also differences in variable (V) and joining (J) gene usage between CU and HD groups as well as CSU and ClndU groups. However, in subgroup analyses regarding angioedema, allergic comorbidities, and the efficacy of anti-IgE treatment, no significant differences were found in TCR diversity or large TCRβ clones. Notably, patients with treatment relapse or poor response to anti-IgE therapy had a higher proportion of positively charged CDR3. Additionally, age affected TCR diversity, but TIgE value, EOS counts, CU duration, and UAS7 score did not associate significantly with D50. Conclusion CSU patients exhibit reduced TCR diversity and increased large clone proportions, indicating abnormal T cell activation. The TCR diversity differences and distinct V and J gene usage between CSU and ClndU may indicate different mechanisms in T lymphocyte-associated immune responses for these two subtypes of CU. The higher positive charge in CDR3 of relapsed or poorly responsive patients to anti-IGE treatment may indicate more antigen charge involvement. These findings provide new insights into the pathogenesis of CSU and potential future treatments.
Collapse
Affiliation(s)
- Xian He
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Allergy, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| | - Xueping Wen
- Chengdu ExAb Biotechnology, LTD, Chengdu, People’s Republic of China
| | - Peng Ming He
- Chengdu ExAb Biotechnology, LTD, Chengdu, People’s Republic of China
| | - Dan Liang
- Department of Allergy, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| | - Lihong Yang
- Department of Allergy, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhixin Zhang
- Chengdu ExAb Biotechnology, LTD, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Shen J, Senes F, Wen X, Monti P, Lin S, Pinna C, Murtas A, Podda L, Muntone G, Tidore G, Arru C, Sanna L, Contini S, Virdis P, Sechi LA, Fozza C. Pomalidomide in patients with multiple myeloma: potential impact on the reconstitution of a functional T-cell immunity. Immunol Res 2024; 72:1470-1478. [PMID: 39316338 PMCID: PMC11618177 DOI: 10.1007/s12026-024-09546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Pomalidomide, a third-generation oral immunomodulatory drug, exhibits efficacy in patients with relapsed multiple myeloma or those refractory to bortezomib and lenalidomide (RRMM). METHODS In this clinical context, we employed flow cytometry and CDR3 spectratyping to monitor the dynamics of the T-cell repertoire during Pomalidomide treatment, aiming to investigate its potential to reverse the immunological abnormalities characteristic of RRMM. RESULTS By flow cytometry at baseline we found a significant decrease in CD4 + frequency in MM patients, while CD8 + frequency were significantly higher in patients when compared to controls. Most T cell populations remained stable across all time points, except for CD4 + frequency, which notably decreased from t1 to subsequent assessments. Our investigation revealed as most relevant finding the notable increase in CD4 + expansions and the growing prevalence of patients manifesting these expansions. This pattern is even more evident in patients receiving their treatment until t3 and therefore still responding to treatment with Pomalidomide. We also conducted a comparison of spectratyping data before and after treatment, substantially demonstrating a relatively stable pattern throughout the course of Pomalidomide treatment. CONCLUSIONS These observations imply that Pomalidomide treatment influences the T-cell repertoire, particularly in the CD4 + subpopulation during the later stages of treatment, raising speculation about the potential involvement of these lymphocyte expansions in mechanisms related to antitumor immunity.
Collapse
Affiliation(s)
- Jiaxin Shen
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, 515031, Shantou, P. R. China
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Francesca Senes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Xiaofen Wen
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, 515031, Shantou, P. R. China
| | - Patrizia Monti
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Shaoze Lin
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, 515031, Shantou, P. R. China
| | - Claudia Pinna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Andrea Murtas
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Luigi Podda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Giuseppina Muntone
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Gianni Tidore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Claudia Arru
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Luca Sanna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Salvatore Contini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Patrizia Virdis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | | | - Claudio Fozza
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy.
| |
Collapse
|
3
|
Gavil NV, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity 2024; 57:1734-1751. [PMID: 39142275 PMCID: PMC11529779 DOI: 10.1016/j.immuni.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.
Collapse
Affiliation(s)
- Noah Veis Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Katarina Cheng
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Shirane Y, Fujii Y, Ono A, Nakahara H, Hayes CN, Miura R, Murakami S, Sakamoto N, Uchikawa S, Fujino H, Nakahara T, Murakami E, Yamauchi M, Miki D, Kawaoka T, Arihiro K, Tsuge M, Oka S. Peripheral T Cell Subpopulations as a Potential Surrogate Biomarker during Atezolizumab plus Bevacizumab Treatment for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1328. [PMID: 38611007 PMCID: PMC11011052 DOI: 10.3390/cancers16071328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The therapeutic benefits of the immunotherapeutic combination of atezolizumab and bevacizumab (Atez/Bev) in hepatocellular carcinoma (HCC) vary. Therapeutic biomarkers might help improve outcomes for HCC patients receiving Atez/Bev therapy. The role of systemic immune profiles in HCC progression also remains unclear. This study aimed to evaluate the status and dynamics of peripheral T cell subpopulations in HCC patients receiving Atez/Bev treatment and to explore biomarkers predictive of a therapeutic response. We enrolled 83 unresectable advanced HCC patients who commenced Atez/Bev treatment at our hospital between October 2020 and June 2022. Peripheral T cell subpopulations in peripheral blood mononuclear cells at baseline and 3 weeks post-treatment were investigated using flow cytometry and compared with those in control samples from 18 healthy individuals. We retrospectively analyzed the association between peripheral T cell subpopulation profiles and clinical outcomes. Baseline peripheral T cell subpopulations could be profiled in 70 patients with sufficient cell counts, among whom 3-week subpopulations could be evaluated in 51 patients. Multivariate analysis showed that a high baseline proportion of CD8+ central memory T (TCM) cells was independently associated with longer progression-free survival (PFS). Further, overall survival (OS) was significantly prolonged in patients with increased CD8+ effector memory T (TEM) cell proportions. In conclusion, TCM proportion at baseline might be a good indicator of the efficacy of Atez/Bev therapy. Furthermore, observation of increasing TEM proportions might be an early predictor of the potential clinical benefits of treatment.
Collapse
Affiliation(s)
- Yuki Shirane
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Yasutoshi Fujii
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Hikaru Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Clair Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Ryoichi Miura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Serami Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Naoya Sakamoto
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan;
| | - Shinsuke Uchikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Hatsue Fujino
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Takashi Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Masami Yamauchi
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Daiki Miki
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| |
Collapse
|
5
|
Wu J, Yu Y, Zhang S, Zhang P, Yu S, Li W, Wang Y, Li Q, Lu B, Chen L, Luo C, Peng H, Liu T, Cui Y. Clinical significance of peripheral T-cell receptor repertoire profiling and individualized nomograms in patients with gastrointestinal cancer treated with anti-programmed death 1 antibody. Transl Gastroenterol Hepatol 2024; 9:5. [PMID: 38317746 PMCID: PMC10838612 DOI: 10.21037/tgh-23-61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/26/2023] [Indexed: 02/07/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have significant clinical benefit for a subset of patients with gastrointestinal cancers (GICs) including esophageal cancer, gastric cancer and colorectal cancer. However, it is difficult to predict which patients will respond favorably to immune checkpoint blockade therapy. Thus, this study was initiated to determine if peripheral T-cell receptor (TCR) repertoire profiling could predict the clinical efficacy of anti-programmed death 1 (PD-1) treatment. Methods Blood samples from 31 patients with GICs were collected before anti-PD-1 antibody treatment initiation. The clinical significance of the combinatorial diversity evenness of the TCR repertoire [the diversity evenness 50 (DE50), with high values corresponding to less clonality and higher TCR diversity] from peripheral blood mononuclear cells (PBMCs) was evaluated in all the enrolled patients. A highly predictive nomogram was set up based on peripheral TCR repertoire profiling. The performance of the nomogram was assessed by receiver operating characteristic (ROC) curve, concordance index (C-index), and calibration curves, and decision curve analysis (DCA) was used to assess its clinical applicability. Results Compared to non-responders [progression disease (PD)], the DE50 scores were significantly higher in responders [stable disease (SD) and partial response (PR)] (P=0.018). Patients with a high DE50 score showed better progression-free survival (PFS) than those with a low DE50 score (P=0.0022). The multivariable Cox regression demonstrated that high DE50 and low platelet-lymphocyte ratio (PLR) were significant independent predictors for better PFS when treated with anti-PD-1 antibody. Furthermore, a highly predictive nomogram was set up based on peripheral TCR repertoire profiling. The area under the curves (AUCs) of this system at 3-, 6- and 12-month PFS reached 0.825, 0.802, and 0.954, respectively. The nomogram had a C-index of 0.768 [95% confidence interval (CI): 0.658-0.879]. Meanwhile, the calibration curves also demonstrated the reliability and stability of the model. Conclusions High DE50 scores were predictive of a favorable response and longer PFS to anti-PD-1 treatment in GIC patients. The nomogram based on TCR repertoire profiling was a reliable and practical tool, which could provide risk assessment and clinical decision-making for individualized treatment of patients.
Collapse
Affiliation(s)
- Jing Wu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shilong Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Binbin Lu
- Shanghai Dunwill Medical Technology Co., Ltd., Shanghai, China
| | - Limeng Chen
- Shanghai Dunwill Medical Technology Co., Ltd., Shanghai, China
| | - Chonglin Luo
- Shanghai Dunwill Medical Technology Co., Ltd., Shanghai, China
| | - Haixiang Peng
- Shanghai Dunwill Medical Technology Co., Ltd., Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Cao Y, Wang J, Hou W, Ding Y, Zhu Y, Zheng J, Huang Q, Cao Z, Xie R, Wei Q, Qin H. Colorectal cancer-associated T cell receptor repertoire abnormalities are linked to gut microbiome shifts and somatic cell mutations. Gut Microbes 2023; 15:2263934. [PMID: 37795995 PMCID: PMC10557533 DOI: 10.1080/19490976.2023.2263934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRβ repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRβ clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jifeng Wang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yefei Zhu
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qiongyi Huang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhan Cao
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
7
|
Rainey MA, Allen CT, Craveiro M. Egress of resident memory T cells from tissue with neoadjuvant immunotherapy: Implications for systemic anti-tumor immunity. Oral Oncol 2023; 146:106570. [PMID: 37738775 PMCID: PMC10591905 DOI: 10.1016/j.oraloncology.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-β and how targeting TGF-β signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Magdalena A Rainey
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institutes of Health, 9000 Rockville Pike, Building 10, Room 7N240C, Bethesda, MD 20892, USA.
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Awad MM, Govindan R, Balogh KN, Spigel DR, Garon EB, Bushway ME, Poran A, Sheen JH, Kohler V, Esaulova E, Srouji J, Ramesh S, Vyasamneni R, Karki B, Sciuto TE, Sethi H, Dong JZ, Moles MA, Manson K, Rooney MS, Khondker ZS, DeMario M, Gaynor RB, Srinivasan L. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell 2022; 40:1010-1026.e11. [PMID: 36027916 DOI: 10.1016/j.ccell.2022.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
Neoantigens arising from mutations in tumor DNA provide targets for immune-based therapy. Here, we report the clinical and immune data from a Phase Ib clinical trial of a personalized neoantigen-vaccine NEO-PV-01 in combination with pemetrexed, carboplatin, and pembrolizumab as first-line therapy for advanced non-squamous non-small cell lung cancer (NSCLC). This analysis of 38 patients treated with the regimen demonstrated no treatment-related serious adverse events. Multiple parameters including baseline tumor immune infiltration and on-treatment circulating tumor DNA levels were highly correlated with clinical response. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination. Epitope spread to non-vaccinating neoantigens, including responses to KRAS G12C and G12V mutations, were detected post-vaccination. Neoantigen-specific CD4+ T cells generated post-vaccination revealed effector and cytotoxic phenotypes with increased CD4+ T cell infiltration in the post-vaccine tumor biopsy. Collectively, these data support the safety and immunogenicity of this regimen in advanced non-squamous NSCLC.
Collapse
Affiliation(s)
- Mark M Awad
- Dana Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Edward B Garon
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | - Binisha Karki
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhuo Y, Yang X, Shuai P, Yang L, Wen X, Zhong X, Yang S, Xu S, Liu Y, Zhang Z. Evaluation and comparison of adaptive immunity through analyzing the diversities and clonalities of T-cell receptor repertoires in the peripheral blood. Front Immunol 2022; 13:916430. [PMID: 36159829 PMCID: PMC9493076 DOI: 10.3389/fimmu.2022.916430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The adaptive immune system plays an important role in defending against different kinds of diseases, including infection and cancer. There has been a longtime need for a simple method to quantitatively evaluate the potency of adaptive immunity in our bodies. The tremendously diversified T-cell receptor (TCR) repertoires are the foundation of the adaptive immune system. In this study, we analyzed the expressed TCRβ repertoires in the peripheral blood of 582 healthy donors and 60 cancer patients. The TCR repertoire in each individual is different, with different usages of TCR Vβ and Jβ genes. Importantly, the TCR diversity and clonality change along with age and disease situation. Most elder individuals and cancer patients have elevated numbers of large TCRβ clones and reduced numbers of shared common clones, and thus, they have very low TCR diversity index (D50) values. These results reveal the alteration of the expressed TCRβ repertoire with aging and oncogenesis, and thus, we hypothesize that the TCR diversity and clonality in the peripheral blood might be used to evaluate and compare the adaptive immunities among different individuals in clinical practice.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangliang Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueping Wen
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Xuemei Zhong
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shihan Yang
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shaoxian Xu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| | - Zhixin Zhang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| |
Collapse
|
10
|
Mark M, Reich-Zeliger S, Greenstein E, Reshef D, Madi A, Chain B, Friedman N. A hierarchy of selection pressures determines the organization of the T cell receptor repertoire. Front Immunol 2022; 13:939394. [PMID: 35967295 PMCID: PMC9372880 DOI: 10.3389/fimmu.2022.939394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
We systematically examine the receptor repertoire in T cell subsets in young, adult, and LCMV-infected mice. Somatic recombination generates diversity, resulting in the limited overlap between nucleotide sequences of different repertoires even within the same individual. However, statistical features of the repertoire, quantified by the V gene and CDR3 k-mer frequency distributions, are highly conserved. A hierarchy of immunological processes drives the evolution of this structure. Intra-thymic divergence of CD4+ and CD8+ lineages imposes subtle but dominant differences observed across repertoires of all subpopulations in both young and adult mice. Differentiation from naive through memory to effector phenotype imposes an additional gradient of repertoire diversification, which is further influenced by age in a complex and lineage-dependent manner. The distinct repertoire of CD4+ regulatory T cells is more similar to naive cells in young mice and to effectors in adults. Finally, we describe divergent (naive and memory) and convergent (CD8+ effector) evolution of the repertoire following acute infection with LCMV. This study presents a quantitative framework that captures the structure of the repertoire in terms of its fundamental statistical properties and describes how this structure evolves as individual T cells differentiate, migrate and mature in response to antigen exposure.
Collapse
Affiliation(s)
- Michal Mark
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Michal Mark, ; Benny Chain,
| | | | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Madi
- Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
| | - Benny Chain
- Department of Computer Science, University College London, UCL, London, United Kingdom
- *Correspondence: Michal Mark, ; Benny Chain,
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Aran A, Garrigós L, Curigliano G, Cortés J, Martí M. Evaluation of the TCR Repertoire as a Predictive and Prognostic Biomarker in Cancer: Diversity or Clonality? Cancers (Basel) 2022; 14:cancers14071771. [PMID: 35406543 PMCID: PMC8996954 DOI: 10.3390/cancers14071771] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The TCR is the T cell antigen receptor, and it is responsible of the T cell activation, through the HLA-antigen complex recognition. Studying the TCR repertoire in patients with cancer can help to better understand the anti-tumoural responses and it has been suggested to have predictive and or/prognostic values, both for the disease and in response to treatments. The aim of this review is to summarize TCR repertoire studies performed in patients with cancer found in the literature, thoroughly analyse the different factors that can be involved in shaping the TCR repertoire, and draw the current conclusions in this field, especially focusing on whether the TCR diversity—or its opposite, the clonality—can be used as predictors or prognostic biomarkers of the disease. Abstract T cells play a vital role in the anti-tumoural response, and the presence of tumour-infiltrating lymphocytes has shown to be directly correlated with a good prognosis in several cancer types. Nevertheless, some patients presenting tumour-infiltrating lymphocytes do not have favourable outcomes. The TCR determines the specificities of T cells, so the analysis of the TCR repertoire has been recently considered to be a potential biomarker for patients’ progression and response to therapies with immune checkpoint inhibitors. The TCR repertoire is one of the multiple elements comprising the immune system and is conditioned by several factors, including tissue type, tumour mutational burden, and patients’ immunogenetics. Its study is crucial to understanding the anti-tumoural response, how to beneficially modulate the immune response with current or new treatments, and how to better predict the prognosis. Here, we present a critical review including essential studies on TCR repertoire conducted in patients with cancer with the aim to draw the current conclusions and try to elucidate whether it is better to encounter higher clonality with few TCRs at higher frequencies, or higher diversity with many different TCRs at lower frequencies.
Collapse
Affiliation(s)
- Andrea Aran
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
| | - Laia Garrigós
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milano, Italy;
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milano, Italy
| | - Javier Cortés
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-935812409
| |
Collapse
|
12
|
Song Q, Yang B, Sheng W, Zhou Z, Zhang T, Qin B, Ji L, Li P, Wang D, Zhang X, Sun S, Zhang G, Zhao X, Gan Q, Xiong Q, Guan Y, Xia X, Yi X, Chen X, Guo W, Jiao S. Safety and efficacy of mutant neoantigen-specific T-cell treatment combined anti-PD-1 therapy in stage IV solid tumors. Immunotherapy 2022; 14:553-565. [PMID: 35321561 DOI: 10.2217/imt-2021-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: This trial explored the safety and efficacy of neoantigen-specific T cells (Nas-Ts) combined with anti-PD-1 (Nas-T + anti-PD-1). Patients & methods: This non-randomized trial recruited participants with solid tumors treated with at least two prior systemic treatment lines. For comparison, 1:1-matched controls who received anti-PD-1 alone were recruited. The primary end point was safety. Results: 15 participants were enrolled in the Nas-T + anti-PD-1 group, the objective response rate was 33.3%, and the disease control rate was 93.3%. The median progression-free survival was significantly different between the Nas-T + anti-PD-1 and control groups (13.8 vs 4.2 months; p = 0.024), but no difference in overall survival was found (p = 0.126). The most common adverse events were maculopapular skin reaction (53.3%), rash (53.3%), hepatotoxicity (53.3%) and fever (53.3%) in the Nas-T + anti-PD-1 group. No serious safety issues were experienced. Conclusion: Nas-Ts combined with anti-PD-1 could be more effective than anti-PD-1 alone in prolonging progression-free survival, with good safety.
Collapse
Affiliation(s)
- Qi Song
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Yang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Sheng
- Department of Tissue Repair & Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| | - Zishan Zhou
- Beijing DCTY Biotech Co., Ltd, Beijing, China
| | | | - Boyu Qin
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | | | - Dan Wang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shengjie Sun
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guoqing Zhang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiao Zhao
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quan Gan
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | - Wei Guo
- BeiGene Co., Ltd, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Chen YT, Hsu HC, Lee YS, Liu H, Tan BCM, Chin CY, Chang IYF, Yang CY. Longitudinal High-Throughput Sequencing of the T-Cell Receptor Repertoire Reveals Dynamic Change and Prognostic Significance of Peripheral Blood TCR Diversity in Metastatic Colorectal Cancer During Chemotherapy. Front Immunol 2022; 12:743448. [PMID: 35095836 PMCID: PMC8789675 DOI: 10.3389/fimmu.2021.743448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality and morbidity. Despite advances in chemotherapy and targeted therapy, unsustainable clinical benefit was noted due to recurrence and therapy resistance. The immune status of the cancer patient may affect the effectiveness of disease treatments. The dynamic change in the T-cell receptor (TCR) repertoire might be a clinical parameter for monitoring treatment responses. In this study, we aimed to determine the characteristics and clinical significance of the TCR repertoire in patients with unresectable metastatic colorectal cancer (mCRC). Herein, we comprehensively profile 103 peripheral blood samples from 20 healthy controls and 16 CRC patients with a follow-up of 98 to 452 days to identify hypervariable rearrangements of the TCRα and TCRβ repertoires using high-throughput sequencing. We found that TCRα repertoires, TCRβ repertoires, and CDR3 clonotypes were altered in mCRC patients compared with healthy controls. The diversity of TCR repertoires and CDR3 clonotypes decreased in most mCRC patients after therapy. Furthermore, compared with baseline TCR diversity, patients whose TCR diversity dropped considerably during therapy had better treatment responses, including lower CEA and CA19-9 levels and smaller tumor sizes. TCR baseline diversity was also significantly associated with partial response (PR) status (odds ratio: 5.29, p = 0.04). In conclusion, the present study demonstrated the association between dynamic changes in TCR diversity during chemotherapy and clinical outcomes as well as the potential utility of the TCR repertoire in predicting the prognosis of cancer treatment.
Collapse
Affiliation(s)
- Yi-Tung Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yin Chin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
14
|
Simonetti FR, Zhang H, Soroosh GP, Duan J, Rhodehouse K, Hill AL, Beg SA, McCormick K, Raymond HE, Nobles CL, Everett JK, Kwon KJ, White JA, Lai J, Margolick JB, Hoh R, Deeks SG, Bushman FD, Siliciano JD, Siliciano RF. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Invest 2021; 131:145254. [PMID: 33301425 DOI: 10.1172/jci145254] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Garshasb P Soroosh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hayley E Raymond
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, Wan Y. Mapping the spatial distribution of T cells in repertoire dimension. Mol Immunol 2021; 138:161-171. [PMID: 34428621 DOI: 10.1016/j.molimm.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 01/13/2023]
Abstract
T cells mediate adaptive immunity in diverse anatomic compartments through recognition of specific antigens via unique T cell receptor (TCR) structures. However, little is known about the spatial distribution of an organism's TCR repertoire. Here, using high-throughput TCR sequencing (TCRseq), we investigated the TCR repertoires of sixteen tissues in healthy C57B/L6 mice. We found that TCR repertoires generally classified into three categories (lymph nodes, non-lymph node tissues and small intestine) based on sequence similarity. Clonal distribution and diversity analyses showed that small intestine compartment had a more skewed repertoire as compared to lymph nodes and non-lymph node tissues. However, analysis of TRBV and TRBJ gene usage across tissue compartments, as well as comparison of CDR3 length distributions, showed no significant tissue-dependent differences. Interestingly, analysis of clonotype sharing between mice showed that although non-redundant public clonotypes were found more easily in lymph nodes, small intestinal CD4 + T cells harbored more abundant public clonotypes. These findings under healthy physiological conditions offer an important reference dataset, which may contribute to our ability to better manipulate T cell responses against infection and vaccination.
Collapse
Affiliation(s)
- Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Yu Wang
- Zunyi Medical University, Zunyi, 563003, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, 518036, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China; School of Big Data & Software Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
16
|
Zhang Y, Zhu Y, Wang J, Xu Y, Wang Z, Liu Y, Di X, Feng L, Zhang Y. A comprehensive model based on temporal dynamics of peripheral T cell repertoire for predicting post-treatment distant metastasis of nasopharyngeal carcinoma. Cancer Immunol Immunother 2021; 71:675-688. [PMID: 34342668 DOI: 10.1007/s00262-021-03016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Many nasopharyngeal carcinoma (NPC) patients develop distant metastases after treatment, leading to poor outcomes. To date, there are no peripheral biomarkers suitable for all NPC patients to predict distant metastasis. Hence, we purposed to develop a noninvasive comprehensive model for predicting post-treatment distant metastasis of all NPC. Since T-cell receptor β chain (TCRB) repertoire has achieved prognostic prediction in many cancers, the clinical characteristics and parameters of TCRB repertoire of 71 cases of peripheral blood samples (pairwise pre-treatment and post-treatment samples from 40 NPC patients who without (nM, n = 21) or with (M, n = 19) post-treatment distant metastasis) were collected. The least absolute shrinkage and selection operator algorithm was used to construct a distant metastasis prediction model. In terms of TCRB repertoire parameters, the diversity of TCRB repertoire was significantly decreased in M group after treatment but not in nM group. Ascending TCRB diversity and higher similarity between pre- and post-treatment samples showed better distant metastasis-free survival (DMFS). The similarity still had robust DMFS prediction in patients with reduced TCRB diversity. More importantly, the 5-factor comprehensive model consisting of basic clinical characteristics and TCRB repertoire indices showed a higher prognostic accuracy than any one individual factor in DMFS predicting. In conclusion, treatment had different effects on the composition of TCRB repertoire in patients without and with post-treatment distant metastasis. The dynamics of TCRB diversity, the similarity of TCRB repertoires, and combinations of these factors with basic clinical characteristics could serve as noninvasive DMFS predictors for all NPC patients.
Collapse
Affiliation(s)
- Yajing Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Zhu
- Department of Blood Transfusion, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Zekun Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Yang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
| |
Collapse
|
17
|
Zhao P, Hou K, Zhong Z, Guo S, Yang S, Xia X. Quantitative characterization of the T cell receptor repertoires of human immunized by rabies virus vaccine. Hum Vaccin Immunother 2021; 17:2530-2537. [PMID: 33823121 PMCID: PMC8475554 DOI: 10.1080/21645515.2021.1893575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
Cellular immunity is crucial for an efficient host immune response against rabies virus (RABV) infection. But the T cell receptor (TCR) repertoire in human after RABV vaccine immunization remained unclear. In this study, we conducted high-throughput sequencing of TCR β chain complementarity determining region 3(CDR3) repertoires in 4 healthy volunteers before and after immunization with RABV vaccine. Our data showed that RABV vaccination changed the TCR diversity and the usage of V/J gene segments, as well as V-J pairing. The high-frequency clonotypes that altered after vaccination were identified. These results may provide us with new insights into T cell receptor condition after RABV vaccination.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- CONTACT Pingsen Zhao ; Head & Professor, Department of Laboratory Medicine, Yuebei People’s Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan512025, P. R. China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Sharula Guo
- Department of Infection Control, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Songtao Yang
- Academy of Military Medical Sciences, Institute of Military Veterinary, Changchun, China
| | - Xianzhu Xia
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Academy of Military Medical Sciences, Institute of Military Veterinary, Changchun, China
| |
Collapse
|
18
|
Wang G, Mudgal P, Wang L, Shuen TWH, Wu H, Alexander PB, Wang WW, Wan Y, Toh HC, Wang XF, Li QJ. TCR repertoire characteristics predict clinical response to adoptive CTL therapy against nasopharyngeal carcinoma. Oncoimmunology 2021; 10:1955545. [PMID: 34377592 PMCID: PMC8331028 DOI: 10.1080/2162402x.2021.1955545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The past decade has witnessed the gradual and steady progress of adoptive T cell therapy in treating various types of cancer. In combination with gemcitabine and carboplatin chemotherapy, we previously conducted a clinical trial, NCT00690872, to treat Epstein-Barr virus (EBV)-positive nasopharyngeal carcinoma (NPC) patients with autologous EBV-expanded cytotoxic T lymphocytes (CTLs). While achieving a 2-year overall survival rate of 62.9%, this trial failed to induce an anti-tumor response in a sizable fraction of patients. Thus, the identification of benchmarks capable of evaluating CTL products and predicting clinical immunotherapeutic efficacy remains an urgent need. We conducted T cell receptor (TCR) repertoire sequencing to assess EBV-expanded infusion-ready CTL products. To depict the overall repertoire landscape, we evaluated the individual repertoire diversity by Shannon entropy, and, compared the inter-patient CDR3 similarity to estimate T cells expanded by common antigens. With a recently developed bioinformatics algorithm, termed Motif Analysis, we made a machine-learning prediction of structural regions within the CDR3 of TCRβ that associate with CTL therapy prognosis. We found that long term survivors, defined as patients surviving longer than two years, had a higher CTL repertoire diversity with reduced inter-patient similarity. Furthermore, TCR Motif Analysis identified 11 structural motifs distinguishing long term survivors from short term survivors. Specifically, two motifs with a high area under the curve (AUC) values were identified as potential predictive benchmarks for efficacious CTL production. Together, these results reveal that the presence of diverse TCR sequences containing a common core motif set is associated with a favorable response to CTL immunotherapy against EBV-positive NPC.
Collapse
Affiliation(s)
- Guoping Wang
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | | | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | | | | | | | - Who-Whong Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Xiao-Fan Wang
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Christian LS, Wang L, Lim B, Deng D, Wu H, Wang XF, Li QJ. Resident memory T cells in tumor-distant tissues fortify against metastasis formation. Cell Rep 2021; 35:109118. [PMID: 33979626 PMCID: PMC8204287 DOI: 10.1016/j.celrep.2021.109118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 10/27/2022] Open
Abstract
As a critical machinery for rapid pathogen removal, resident memory T cells (TRMs) are locally generated after the initial encounter. However, their development accompanying tumorigenesis remains elusive. Using a murine breast cancer model, we show that TRMs develop in the tumor, the contralateral mammary mucosa, and the pre-metastatic lung. Single-cell RNA sequencing of TRMs reveals two phenotypically distinct populations representing their active versus quiescent phases. These TRMs in different tissue compartments share the same TCR clonotypes and transcriptomes with a subset of intratumoral effector/effector memory T cells (TEff/EMs), indicating their developmental ontogeny. Furthermore, CXCL16 is highly produced by tumor cells and CXCR6- TEff/EMs are the major subset preferentially egressing the tumor to form distant TRMs. Functionally, releasing CXCR6 retention in the primary tumor amplifies tumor-derived TRMs in the lung and leads to superior protection against metastases. This immunologic fortification suggests a potential strategy to prevent metastasis in clinical oncology.
Collapse
Affiliation(s)
- Laura S Christian
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan Lim
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dachuan Deng
- TCRCure (TianKeYa) Biopharma, Ltd., Durham, NC 27701, USA
| | - Haiyang Wu
- TCRCure (TianKeYa) Biopharma, Ltd., Durham, NC 27701, USA
| | - Xiao-Fan Wang
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Wu L, Zhu J, Rudqvist NP, Welsh J, Lee P, Liao Z, Xu T, Jiang M, Zhu X, Pan X, Li P, Zhou Z, He X, Yin R, Feng J. T-Cell Receptor Profiling and Prognosis After Stereotactic Body Radiation Therapy For Stage I Non-Small-Cell Lung Cancer. Front Immunol 2021; 12:719285. [PMID: 34733273 PMCID: PMC8559517 DOI: 10.3389/fimmu.2021.719285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is known to influence immune function, including T cell receptor (TCR) repertoire. We evaluated the TCR repertoire before and after stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer (NSCLC) and explored correlations between TCR indexes and distant failure after SBRT. TCR repertoires were analyzed in peripheral blood mononuclear cells (PBMCs) collected before and after SBRT from 19 patients. TCR combinational diversity in V and J genes was assessed with multiplex PCR of genomic DNA from PBMCs and tested for associations with clinical response. All patients received definitive SBRT to a biologically effective dose of >=100 Gy. The number of unique TCR clones was decreased after SBRT versus before, but clonality and the Shannon Entropy did not change. Four patients (21%) developed distant metastases after SBRT (median 7 months); those patients had lower Shannon Entropy in post-SBRT samples than patients without metastasis. Patients with a low change in Shannon Entropy from before to after SBRT [(post-SBRT Shannon Entropy minus baseline Shannon)/(baseline Shannon) * 100] had poorer metastasis-free survival than those with high change in Shannon Entropy (P<0.001). Frequencies in V/J gene fragment expression in the TCR β chain were also different for patients with or without metastases (two V fragments in baseline samples and 2 J and 9 V fragments in post-treatment samples). This comprehensive analysis of immune status before and after SBRT showed that quantitative assessments of TCRs can help evaluate prognosis in early-stage NSCLC.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Female
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/radiotherapy
- Male
- Middle Aged
- Neoplasm Staging
- Positron Emission Tomography Computed Tomography
- Prognosis
- ROC Curve
- Radiosurgery
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Tomography, X-Ray Computed
- V(D)J Recombination
Collapse
Affiliation(s)
- Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Nils-Petter Rudqvist
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James Welsh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Percy Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ting Xu
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ming Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangzhi Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Pansong Li
- Department of Scientific Research, Geneplus-Beijing Institute, Beijing, China
| | - Zhipeng Zhou
- Department of Scientific Research, Geneplus-Beijing Institute, Beijing, China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xia He, ; Rong Yin, ; Jifeng Feng,
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Biobank of Clinical Resources, Nanjing, China
- *Correspondence: Xia He, ; Rong Yin, ; Jifeng Feng,
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xia He, ; Rong Yin, ; Jifeng Feng,
| |
Collapse
|
21
|
Bortone DS, Woodcock MG, Parker JS, Vincent BG. Improved T-cell Receptor Diversity Estimates Associate with Survival and Response to Anti-PD-1 Therapy. Cancer Immunol Res 2021; 9:103-112. [PMID: 33177107 DOI: 10.1158/2326-6066.cir-20-0398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
T-cell receptor (TCR) repertoire profiling has emerged as a powerful tool for biological discovery and biomarker development in cancer immunology and immunotherapy. A key statistic derived from repertoire profiling data is diversity, which summarizes the frequency distribution of TCRs within a mixed population. Despite the growing use of TCR diversity metrics in clinical trial correlative studies in oncology, their accuracy has not been validated using published ground-truth datasets. Here, we reported the performance characteristics of methods for TCR repertoire profiling from RNA-sequencing data, showed undersampling as a prominent source of bias in diversity estimates, and derived a model via statistical learning that attenuates bias to produce corrected diversity estimates. This modeled diversity improved discrimination in The Cancer Genome Atlas data and associated with survival and treatment response in patients with melanoma treated with anti-PD-1 therapy, where the commonly used diversity normalizations did not. These findings have the potential to increase our understanding of the tumor immune microenvironment and improve the accuracy of predictions of patient responses to immunotherapy.
Collapse
Affiliation(s)
- Dante S Bortone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Division of Hematology/Oncology, Department of Medicine, UNC School of Medicine, Chapel Hill, North Carolina
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, North Carolina
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Division of Hematology/Oncology, Department of Medicine, UNC School of Medicine, Chapel Hill, North Carolina
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, North Carolina
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Poran A, Scherer J, Bushway ME, Besada R, Balogh KN, Wanamaker A, Williams RG, Prabhakara J, Ott PA, Hu-Lieskovan S, Khondker ZS, Gaynor RB, Rooney MS, Srinivasan L. Combined TCR Repertoire Profiles and Blood Cell Phenotypes Predict Melanoma Patient Response to Personalized Neoantigen Therapy plus Anti-PD-1. CELL REPORTS MEDICINE 2020; 1:100141. [PMID: 33294862 PMCID: PMC7691446 DOI: 10.1016/j.xcrm.2020.100141] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 01/15/2023]
Abstract
T cells use highly diverse receptors (TCRs) to identify tumor cells presenting neoantigens arising from genetic mutations and establish anti-tumor activity. Immunotherapy harnessing neoantigen-specific T cells to target tumors has emerged as a promising clinical approach. To assess whether a comprehensive peripheral mononuclear blood cell analysis predicts responses to a personalized neoantigen cancer vaccine combined with anti-PD-1 therapy, we characterize the TCR repertoires and T and B cell frequencies in 21 patients with metastatic melanoma who received this regimen. TCR-α/β-chain sequencing reveals that prolonged progression-free survival (PFS) is strongly associated with increased clonal baseline TCR repertoires and longitudinal repertoire stability. Furthermore, the frequencies of antigen-experienced T and B cells in the peripheral blood correlate with repertoire characteristics. Analysis of these baseline immune features enables prediction of PFS following treatment. This method offers a pragmatic clinical approach to assess patients’ immune state and to direct therapeutic decision making. Pre-treatment blood-based factors predict response to immunotherapy TCR repertoire clonality and stability associate with improved clinical outcomes Baseline T and B cell memory phenotypes associate with improved clinical outcomes Combined baseline TCR repertoire and PBMC phenotypes predict immunotherapy response
Collapse
Affiliation(s)
- Asaf Poran
- Neon Therapeutics/BioNTech US, Cambridge, MA, USA
- Corresponding author
| | | | | | - Rana Besada
- Neon Therapeutics/BioNTech US, Cambridge, MA, USA
| | | | | | | | | | - Patrick A. Ott
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Siwen Hu-Lieskovan
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
23
|
Souter MNT, Eckle SBG. Biased MAIT TCR Usage Poised for Limited Antigen Diversity? Front Immunol 2020; 11:1845. [PMID: 33013835 PMCID: PMC7461848 DOI: 10.3389/fimmu.2020.01845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize the evolutionarily conserved major histocompatibility complex (MHC) class I-like antigen-presenting molecule known as MHC class I related protein 1 (MR1). Since their rise from obscurity in the early 1990s, the study of MAIT cells has grown substantially, accelerating our fundamental understanding of these cells and their possible roles in immunity. In the context of recent advances, we review here the relationship between MR1, antigen, and TCR usage among MAIT and other MR1-reactive T cells and provide a speculative discussion.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Hanson AL, Nel HJ, Bradbury L, Phipps J, Thomas R, Lê Cao KA, Kenna TJ, Brown MA. Altered Repertoire Diversity and Disease-Associated Clonal Expansions Revealed by T Cell Receptor Immunosequencing in Ankylosing Spondylitis Patients. Arthritis Rheumatol 2020; 72:1289-1302. [PMID: 32162785 DOI: 10.1002/art.41252] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is a common spondyloarthropathy primarily affecting the axial skeleton and strongly associated with HLA-B*27 carriage. Genetic evidence implicates both autoinflammatory processes and autoimmunity against an HLA-B*27-restricted autoantigen in immunopathology. In addition to articular symptoms, up to 70% of AS patients present with concurrent bowel inflammation, suggesting that adverse interactions between a genetically primed host immune system and the gut microbiome contribute to the disease. Accordingly, this study aimed to characterize adaptive immune responses to antigenic stimuli in AS. METHODS The peripheral CD4 and CD8 T cell receptor (TCR) repertoire was profiled in AS patients (n = 47) and HLA-B*27-matched healthy controls (n = 38). Repertoire diversity was estimated using the Normalized Shannon Diversity Entropy (NSDE) index, and univariate and multivariate statistical analyses were performed to characterize AS-associated clonal signatures. Furthermore, T cell proliferation and cytokine production in response to immunogenic antigen exposure were investigated in vitro in peripheral blood mononuclear cells from AS patients (n = 19) and HLA-B*27-matched healthy controls (n = 14). RESULTS Based on the NSDE measure of sample diversity across CD4 and CD8 T cell repertoires, AS patients showed increased TCR diversity compared to healthy controls (for CD4 T cells, P = 7.8 × 10-6 ; for CD8 T cells, P = 9.3 × 10-4 ), which was attributed to a significant reduction in the magnitude of peripheral T cell expansions globally. Upon in vitro stimulation, fewer T cells from AS patients than from healthy controls expressed interferon-γ (for CD8 T cells, P = 0.03) and tumor necrosis factor (for CD4 T cells, P = 0.01; for CD8 T cells, P = 0.002). In addition, the CD8 TCR signature was altered in HLA-B*27+ AS patients compared to healthy controls, with significantly expanded Epstein-Barr virus-specific clonotypes (P = 0.03) and cytomegalovirus-specific clonotypes (P = 0.02). HLA-B*27+ AS patients also showed an increased incidence of "public" CD8 TCRs, representing identical clonotypes emerging in response to common antigen encounters, including homologous clonotypes matching those previously isolated from individuals with bacterial-induced reactive arthritis. CONCLUSION The dynamics of peripheral T cell responses in AS patients are altered, suggesting that differential antigen exposure and disrupted adaptive immunity are underlying features of the disease.
Collapse
Affiliation(s)
- Aimee L Hanson
- University of Queensland, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- University of Queensland, Brisbane, Queensland, Australia
| | - Linda Bradbury
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Julie Phipps
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Ranjeny Thomas
- University of Queensland, Brisbane, Queensland, Australia
| | | | - Tony J Kenna
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia, and Guy's and St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, King's College London, UK
| |
Collapse
|
25
|
Liu S, Zhong Z, Zhong W, Weng R, Liu J, Gu X, Chen Y. Comprehensive analysis of T-cell receptor repertoire in patients with acute coronary syndrome by high-throughput sequencing. BMC Cardiovasc Disord 2020; 20:253. [PMID: 32460698 PMCID: PMC7254720 DOI: 10.1186/s12872-020-01538-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/18/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND This study aims to investigate the T-cell receptor (TCR) repertoire in patients with acute coronary syndrome (ACS). METHODS The TCR repertoires of 9 unstable angina patients (UA), 14 acute myocardial infarction patients (AMI) and 9 normal coronary artery (NCA) patients were profiled using high-throughput sequencing (HTS). The clonal diversity of the TCR repertoires in different groups was analyzed, as well as the frequencies of variable (V), diversity (D) and joining(J) gene segments. RESULTS ACS patients including UA and AMI, showed reduced TCRβ diversity than NCA patients. ACS patients presented higher levels of clonal expansion. The clonotype overlap of complementarity determining region 3(CDR3) was significantly varied between different groups. A total of 10 V genes and 1 J gene were differently utilized between ACS and NCA patients. We identified some shared CDR3 amino acid sequences that were presented in ACS but not in NCA patients. CONCLUSIONS This study revealed the distinct TCR repertoires in patients with ACS and demonstrated the presence of disease associated T-cell clonotypes. These findings suggested a role of T cells in ACS and provided a new way to explore the mechanisms of ACS.
Collapse
Affiliation(s)
- Sudong Liu
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, P. R. China. .,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, P. R. China.
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizho, 514031, P. R. China.,Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, P. R. China
| | - Wei Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizho, 514031, P. R. China.,Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, P. R. China
| | - Ruiqiang Weng
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, P. R. China
| | - Jing Liu
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, P. R. China
| | - Xiaodong Gu
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, P. R. China
| | - Yongyu Chen
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, P. R. China
| |
Collapse
|
26
|
Multiple sevoflurane exposures don't disturb the T-cell receptor repertoire in infant rhesus monkeys' thymus. Life Sci 2020; 248:117457. [PMID: 32092334 DOI: 10.1016/j.lfs.2020.117457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS Multiple surgical procedures and anesthesia increase the risk of the development in children. However, the influence of such exposures on the developing childhood immunity organs is rarely reported. MATERIALS AND METHODS High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) from rhesus monkeys' thymus was performed to investigate whether anesthetics could induce de novo antigen recognition via TCR or TCR development impairments. KEY FINDINGS No significant difference between sevoflurane and control groups regarding VJ gene combinations and diversity of V and J gene was seen, nor was there an obvious change in similar average number of Complementarity Determining Region 3 (CDR3) aa clonotypes. Our analysis of Rank abundance, Gini coefficient, Simpson index, Normalized Shannon Diversity Entropy (NSDE), Morisita-Horn Similarity Index (MHSI) and Bhattacharyya Distance (BD) indicated there is no difference in TCR diversity and similarity. SIGNIFICANCE These results suggest early events in thymic T cell development and repertoire generation are not abnormality after multiple sevoflurane exposure during childhood. The stabilization of the immune repertoires suggested the safety of sevoflurane in host immune response in children.
Collapse
|
27
|
Robins E, Zheng M, Ni Q, Liu S, Liang C, Zhang B, Guo J, Zhuang Y, He YW, Zhu P, Wan Y, Li QJ. Conversion of effector CD4 + T cells to a CD8 + MHC II-recognizing lineage. Cell Mol Immunol 2020; 18:150-161. [PMID: 32066854 DOI: 10.1038/s41423-019-0347-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
CD4+ and CD8+ T cells are dichotomous lineages in adaptive immunity. While conventionally viewed as distinct fates that are fixed after thymic development, accumulating evidence indicates that these two populations can exhibit significant lineage plasticity, particularly upon TCR-mediated activation. We define a novel CD4-CD8αβ+ MHC II-recognizing population generated by lineage conversion from effector CD4+ T cells. CD4-CD8αβ+ effector T cells downregulated the expression of T helper cell-associated costimulatory molecules and increased the expression of cytotoxic T lymphocyte-associated cytotoxic molecules. This shift in functional potential corresponded with a CD8+-lineage skewed transcriptional profile. TCRβ repertoire sequencing and in vivo genetic lineage tracing in acutely infected wild-type mice demonstrated that CD4-CD8αβ+ effector T cells arise from fundamental lineage reprogramming of bona fide effector CD4+ T cells. Impairing autophagy via functional deletion of the initiating kinase Vps34 or the downstream enzyme Atg7 enhanced the generation of this cell population. These findings suggest that effector CD4+ T cells can exhibit a previously unreported degree of skewing towards the CD8+ T cell lineage, which may point towards a novel direction for HIV vaccine design.
Collapse
Affiliation(s)
- Elizabeth Robins
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.,Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ming Zheng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Qingshan Ni
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Siqi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chen Liang
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jian Guo
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ping Zhu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
28
|
Sun J, Bai H, Wang Z, Duan J, Li J, Guo R, Wang J. Pegylated recombinant human granulocyte colony-stimulating factor regulates the immune status of patients with small cell lung cancer. Thorac Cancer 2020; 11:713-722. [PMID: 32020764 PMCID: PMC7049512 DOI: 10.1111/1759-7714.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive disease involving immunodeficiency for which chemotherapy is the standard treatment. Pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) is widely used for primary or secondary prophylaxis of febrile neutropenia (FN) in chemotherapy. However, whether PEG-rhG-CSF influences immune cells, such as lymphocytes, remains unclear. METHODS A total of 17 treatment-naïve SCLC patients were prospectively enrolled and divided into the PEG-rhG-CSF and control groups according to their FN risk. Longitudinal sampling of peripheral blood was performed before, after and 4-6 days after the first cycle of chemotherapy. Flow cytometry was used to assess lymphocyte subsets, including CD3+ T, CD4+ T, CD8+ T, NK, and B cells. The diversity and clonality of the T-cell receptor (TCR) repertoire was analyzed by next-generation sequencing. RESULTS In the PEG-rhG-CSF group, the proportions of CD3+ T and CD4+ T cells had increased significantly (P = 0.002, P = 0.020, respectively), whereas there was no increase in CD8+ T cells. Further, TCR diversity increased (P = 0.009) and clonality decreased (P = 0.004) significantly after PEG-rhG-CSF treatment. However, these factors showed opposite trends before and after chemotherapy. Vβ and Jβ gene fragment types, which determine TCR diversity, were significantly amplified in the PEG-rhG-CSF group. The change in TCR diversity was significantly correlated with changes in the CD3+ T or CD4+ T cell proportions, but not the CD8+ T cell proportion. CONCLUSIONS PEG-rhG-CSF regulates the immune status of SCLC patients; CD4+ T cells may be the main effector cells involved in this process. These findings may optimize the treatment of SCLC. KEY POINTS PEG-rhG-CSF regulates SCLC immunity. PEG-rhG-CSF increased CD3+ T and CD4+ T cell proportions. PEG-rhG-CSF increased TCR diversity and decreased clonality in peripheral blood. Change in TCR diversity were correlated with CD3+ T or CD4+ T changes.
Collapse
Affiliation(s)
- Jing Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Research and Development, Geneplus-Beijing, Beijing, China
| | - Ruimin Guo
- Medical Department, China Shijiazhuang Pharmaceutical Group Co., Ltd. (CSPC), Shijiazhuang, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Cowell LG. The Diagnostic, Prognostic, and Therapeutic Potential of Adaptive Immune Receptor Repertoire Profiling in Cancer. Cancer Res 2019; 80:643-654. [PMID: 31888887 DOI: 10.1158/0008-5472.can-19-1457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Lymphocytes play a critical role in antitumor immune responses. They are directly targeted by some therapies, and the composition and spatial organization of intratumor T-cell populations is prognostic in some cancer types. A better understanding of lymphocyte population dynamics over the course of disease and in response to therapy is urgently needed to guide therapy decisions and to develop new therapy targets. Deep sequencing of the repertoire of antigen receptor-encoding genes expressed in a lymphocyte population has become a widely used approach for profiling the population's immune status. Lymphocyte antigen receptor repertoire deep sequencing data can be used to assess the clonal richness and diversity of lymphocyte populations; to track clone members over time, between tissues, and across lymphocyte subsets; to detect clonal expansion; and to detect the recruitment of new clones into a tissue. Repertoire sequencing is thus a critical complement to other methods of lymphocyte and immune profiling in cancer. This review describes the current state of knowledge based on repertoire sequencing studies conducted on human cancer patients, with a focus on studies of the T-cell receptor beta chain locus. The review then outlines important questions left unanswered and suggests future directions for the field.
Collapse
Affiliation(s)
- Lindsay G Cowell
- Department of Population and Data Sciences, Department of Immunology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
30
|
Wang L, Zhang P, Li J, Lu H, Peng L, Ling J, Zhang X, Zeng X, Zhao Y, Zhang W. High-throughput sequencing of CD4 + T cell repertoire reveals disease-specific signatures in IgG4-related disease. Arthritis Res Ther 2019; 21:295. [PMID: 31856905 PMCID: PMC6923942 DOI: 10.1186/s13075-019-2069-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Background CD4+ T cells play critical roles in the pathogenesis of IgG4-related disease (IgG4-RD). The aim of this study was to investigate the TCR repertoire of peripheral blood CD4+ T cells in IgG4-RD. Methods The peripheral blood was collected from six healthy controls and eight IgG4-RD patients. TCR β-chain libraries of CD4+ T cells were constructed by 5′-rapid amplification of cDNA ends (5′-RACE) and sequenced by Illumina Miseq platform. The relative similarity of TCR repertoires between samples was evaluated according to the total frequencies of shared clonotypes (metric F), correlation of frequencies of shared clonotypes (metric R), and total number of shared clonotypes (metric D). Results The clonal expansion and diversity of CD4+ T cell repertoire were comparable between healthy controls and IgG4-RD patients, while the proportion of expanded and coding degenerated clones, as an indicator of antigen-driven clonal expansion, was significantly higher in IgG4-RD patients. There was no significant difference in TRBV and TRBJ gene usage between healthy controls and IgG4-RD patients. The complementarity determining region 3 (CDR3) length distribution was skewed towards longer fragments in IgG4-RD. Visualization of relative similarity of TCR repertoires by multi-dimensional scaling analysis showed that TCR repertoires of IgG4-RD patients were separated from that of healthy controls in F and D metrics. We identified 11 IgG4-RD-specific CDR3 amino acid sequences that were expanded in at least 2 IgG4-RD patients, while not detected in healthy controls. According to TCR clonotype networks constructed by connecting all the CDR3 sequences with a Levenshtein distance of 1, 3 IgG4-RD-specific clusters were identified. We annotated the TCR sequences with known antigen specificity according to McPAS-TCR database and found that the frequencies of TCR sequences associated with each disease or immune function were comparable between healthy controls and IgG4-RD patients. Conclusion According to our study of CD4+ T cells from eight IgG4-RD patients, TCR repertoires of IgG4-RD patients were different from that of healthy controls in the proportion of expanded and coding degenerated clones and CDR3 length distribution. In addition, IgG4-RD-specific TCR sequences and clusters were identified in our study.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China.,Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Panpan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Jieqiong Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Hui Lu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Jing Ling
- Tsinghua University School of Medicine, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China.
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China.
| |
Collapse
|
31
|
Smolle E, Leithner K, Olschewski H. Oncogene addiction and tumor mutational burden in non-small-cell lung cancer: Clinical significance and limitations. Thorac Cancer 2019; 11:205-215. [PMID: 31799812 PMCID: PMC6997016 DOI: 10.1111/1759-7714.13246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022] Open
Abstract
Lung cancer incidence has increased worldwide over the past decades, with non-small cell lung cancer (NSCLC) accounting for the vast majority (85%) of lung cancer specimens. It is estimated that lung cancer causes about 1.7 million global deaths per year worldwide. Multiple trials have been carried out, with the aim of finding new effective treatment options. Lately, special focus has been placed on immune checkpoint (PD1/PD-L1) inhibitors which impact the tumor immune microenvironment. Tumor mutational burden (TMB) has been found to predict response to immune checkpoint inhibitors. Conversely, recent studies have weakened the significance of TMB as a predictor of response to therapy and survival. In this review article, we discuss the significance of TMB, as well as possible limitations. Furthermore, we give a concise overview of mutations frequently found in NSCLC, and discuss the significance of oncogene addiction in lung cancer as an essential driver of tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Elisabeth Smolle
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
32
|
Wang X, Zhang B, Yang Y, Zhu J, Cheng S, Mao Y, Feng L, Xiao T. Characterization of Distinct T Cell Receptor Repertoires in Tumor and Distant Non-tumor Tissues from Lung Cancer Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:287-296. [PMID: 31479759 PMCID: PMC6818398 DOI: 10.1016/j.gpb.2018.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023]
Abstract
T cells and T cell receptors (TCRs) play pivotal roles in adaptive immune responses against tumors. The development of next-generation sequencing technologies has enabled the analysis of the TCRβ repertoire usage. Given the scarce investigations on the TCR repertoire in lung cancer tissues, in this study, we analyzed TCRβ repertoires in lung cancer tissues and the matched distant non-tumor lung tissues (normal lung tissues) from 15 lung cancer patients. Based on our results, the general distribution of T cell clones was similar between cancer tissues and normal lung tissues; however, the proportion of highly expanded clones was significantly higher in normal lung tissues than in cancer tissues (0.021% ± 0.002% vs. 0.016% ± 0.001%, P = 0.0054, Wilcoxon signed rank test). In addition, a significantly higher TCR diversity was observed in cancer tissues than in normal lung tissues (431.37 ± 305.96 vs. 166.20 ± 101.58, P = 0.0075, Mann-Whitney U test). Moreover, younger patients had a significantly higher TCR diversity than older patients (640.7 ± 295.3 vs. 291.8 ± 233.6, P = 0.036, Mann-Whitney U test), and the higher TCR diversity in tumors was significantly associated with worse cancer outcomes. Thus, we provided a comprehensive comparison of the TCR repertoires between cancer tissues and matched normal lung tissues and demonstrated the presence of distinct T cell immune microenvironments in lung cancer patients.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Botao Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yikun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yousheng Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
33
|
TCR repertoire and CDR3 motif analyses depict the role of αβ T cells in Ankylosing spondylitis. EBioMedicine 2019; 47:414-426. [PMID: 31477563 PMCID: PMC6796593 DOI: 10.1016/j.ebiom.2019.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Ankylosing spondylitis (AS) is a chronic inflammatory disease with worldwide high prevalence. Although AS is strongly associated with HLA-B27 MHC-I antigen presentation, the role played by αβ T cells in AS remains elusive. Methods Utilizing TCRβ repertoire sequencing and bioinformatics tools developed in house, we analyzed overall TCR repertoire structures and antigen-recognizing CDR3 motifs in AS patients with different disease activities. Findings We found that disease progression is associated with both CD4+ and CD8+ T cell oligo-clonal expansion, which suggests that αβ T cell activation may mediate AS disease progression. By developing a bioinformatics platform to dissect antigen-specific responses, we discovered a cell population consisting of both CD4+ and CD8+ T cells expressing identical TCRs, herein termed CD4/8 T cells. CD4/8 clonotypes were highly enriched in the spondyloarthritic joint fluid of patients, and their expansion correlated with the activity of disease. Interpretation These results provide evidence on the T cell clone side to reveal the potential role of CD4/8 T cells in the etiology of AS development.
Collapse
|
34
|
Zhuang Y, Zhang C, Wu Q, Zhang J, Ye Z, Qian Q. Application of immune repertoire sequencing in cancer immunotherapy. Int Immunopharmacol 2019; 74:105688. [PMID: 31276974 DOI: 10.1016/j.intimp.2019.105688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/05/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
With the prominent breakthrough in the field of tumor immunology, diverse cancer immunotherapies have attracted great attention in the last decade. The immune checkpoint inhibitors, adoptive cell therapies, and therapeutic cancer vaccines have already achieved impressive clinical success. However, the fact that only a small subset of patients with specific tumor types can benefit from these treatments limits the application of cancer immunotherapy. To seek out the molecular mechanisms behind this challenge and to select cancer precision medicine for different individuals, researchers apply the immune repertoire sequencing (IRS) to evaluate genetic responses of each patient to current immunotherapies. This review summarizes the technical advances and recent applications of IRS in cancer immunotherapy, indicates the limitations of this technique, and predicts future perspectives both in basic studies and clinical trials.
Collapse
Affiliation(s)
- Yuan Zhuang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Changzheng Zhang
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| | - Qiong Wu
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Jing Zhang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Zhenlong Ye
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Cell Therapy Research Institute, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China.
| | - Qijun Qian
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Cell Therapy Research Institute, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China.
| |
Collapse
|
35
|
Deng W, Xu C, Liu A, van Rossum PS, Deng W, Liao Z, Koong AC, Mohan R, Lin SH. The relationship of lymphocyte recovery and prognosis of esophageal cancer patients with severe radiation-induced lymphopenia after chemoradiation therapy. Radiother Oncol 2019; 133:9-15. [DOI: 10.1016/j.radonc.2018.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
|
36
|
Jiang N, Schonnesen AA, Ma KY. Ushering in Integrated T Cell Repertoire Profiling in Cancer. Trends Cancer 2019; 5:85-94. [PMID: 30755308 PMCID: PMC6544389 DOI: 10.1016/j.trecan.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022]
Abstract
Advances in immune profiling techniques have dramatically changed the cancer immunotherapy and monitoring landscape. High-throughput protein and gene expression technologies have paved the way for the discovery of therapeutic targets and biomarkers, and have made monitoring therapeutic response possible through the ability to independently assay the phenotype, specificity, exhaustion status, and lineage of single T cells. Although valuable insights into response profiling have been gained with current technologies, it has become evident that single-method profiling is insufficient to accurately capture an antitumor T cell response. We discuss and propose new methods that combine multiple axes of analysis to provide a comprehensive analysis of T cell repertoire in the fight against cancer.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; LIVESTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA.
| | - Alexandra A Schonnesen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ke-Yue Ma
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
37
|
Liu YY, Yang QF, Yang JS, Cao RB, Liang JY, Liu YT, Zeng YL, Chen S, Xia XF, Zhang K, Liu L. Characteristics and prognostic significance of profiling the peripheral blood T-cell receptor repertoire in patients with advanced lung cancer. Int J Cancer 2019; 145:1423-1431. [PMID: 30664810 DOI: 10.1002/ijc.32145] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Lung cancer is one of the greatest threats to human health, and is initially detected and attacked by the immune system through tumor-reactive T cells. The aim of this study was to determine the basic characteristics and clinical significance of the peripheral blood T-cell receptor (TCR) repertoire in patients with advanced lung cancer. To comprehensively profile the TCR repertoire, high-throughput sequencing was used to identify hypervariable rearrangements of complementarity determining region 3 (CDR3) of the TCR β chain in peripheral blood samples from 64 advanced lung cancer patients and 31 healthy controls. We found that the TCR repertoire differed substantially between lung cancer patients and healthy controls in terms of CDR3 clonotype, diversity, V/J segment usage, and sequence. Specifically, baseline diversity correlated with several clinical characteristics, and high diversity reflected a better immune status. Dynamic detection of the TCR repertoire during anticancer treatment was useful for prognosis. Both increased diversity and high overlap rate between the pre- and post-treatment TCR repertoires indicated clinical benefit. Combination of the diversity and overlap rate was used to categorize patients into immune improved or immune worsened groups and demonstrated enhanced prognostic significance. In conclusion, TCR repertoire analysis served as a useful indicator of disease development and prognosis in advanced lung cancer and may be utilized to direct future immunotherapy.
Collapse
Affiliation(s)
- Yang-Yang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Fan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Song Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru-Bo Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yan Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Lan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Geneplus-Beijing Institute, Beijing, China
| | | | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Wendel BS, Del Alcazar D, He C, Del Río-Estrada PM, Aiamkitsumrit B, Ablanedo-Terrazas Y, Hernandez SM, Ma KY, Betts MR, Pulido L, Huang J, Gimotty PA, Reyes-Terán G, Jiang N, Su LF. The receptor repertoire and functional profile of follicular T cells in HIV-infected lymph nodes. Sci Immunol 2019; 3:3/22/eaan8884. [PMID: 29626170 DOI: 10.1126/sciimmunol.aan8884] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/29/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
Follicular helper CD4+ T cells (TFH) play an integral role in promoting B cell differentiation and affinity maturation. Whereas TFH cell frequencies are increased in lymph nodes (LNs) from individuals infected with HIV, humoral immunity remains impaired during chronic HIV infection. Whether HIV inhibits TFH responses in LNs remains unclear. Advances in this area have been limited by the difficulty of accessing human lymphoid tissues. Here, we combined high-dimensional mass cytometry with T cell receptor repertoire sequencing to interrogate the composition of TFH cells in primary human LNs. We found evidence for intact antigen-driven clonal expansion of TFH cells and selective utilization of specific complementarity-determining region 3 (CDR3) motifs during chronic HIV infection, but the resulting TFH cells acquired an activation-related TFH cell signature characterized by interleukin-21 (IL-21) dominance. These IL-21+ TFH cells contained an oligoclonal HIV-reactive population that preferentially accumulated in patients with severe HIV infection and was associated with aberrant B cell distribution in the same LN. These data indicate that TFH cells remain capable of responding to HIV antigens during chronic HIV infection but become functionally skewed and oligoclonally restricted under persistent antigen stimulation.
Collapse
Affiliation(s)
- Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Del Alcazar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Perla M Del Río-Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Benjamas Aiamkitsumrit
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Stefany M Hernandez
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ke-Yue Ma
- Institute for Cellular and Molecular Biology, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Betts
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Pulido
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA. .,Institute for Cellular and Molecular Biology, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura F Su
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Ostmeyer J, Christley S, Toby IT, Cowell LG. Biophysicochemical Motifs in T-cell Receptor Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and Adjacent Healthy Tissue. Cancer Res 2019; 79:1671-1680. [PMID: 30622114 DOI: 10.1158/0008-5472.can-18-2292] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
Abstract
Immune repertoire deep sequencing allows comprehensive characterization of antigen receptor-encoding genes in a lymphocyte population. We hypothesized that this method could enable a novel approach to diagnose disease by identifying antigen receptor sequence patterns associated with clinical phenotypes. In this study, we developed statistical classifiers of T-cell receptor (TCR) repertoires that distinguish tumor tissue from patient-matched healthy tissue of the same organ. The basis of both classifiers was a biophysicochemical motif in the complementarity determining region 3 (CDR3) of TCRβ chains. To develop each classifier, we extracted 4-mers from every TCRβ CDR3 and represented each 4-mer using biophysicochemical features of its amino acid sequence combined with quantification of 4-mer (or receptor) abundance. This representation was scored using a logistic regression model. Unlike typical logistic regression, the classifier is fitted and validated under the requirement that at least 1 positively labeled 4-mer appears in every tumor repertoire and no positively labeled 4-mers appear in healthy tissue repertoires. We applied our method to publicly available data in which tumor and adjacent healthy tissue were collected from each patient. Using a patient-holdout cross-validation, our method achieved classification accuracy of 93% and 94% for colorectal and breast cancer, respectively. The parameter values for each classifier revealed distinct biophysicochemical properties for tumor-associated 4-mers within each cancer type. We propose that such motifs might be used to develop novel immune-based cancer screening assays. SIGNIFICANCE: This study presents a novel computational approach to identify T-cell repertoire differences between normal and tumor tissue.See related commentary by Zoete and Coukos, p. 1299.
Collapse
Affiliation(s)
- Jared Ostmeyer
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Scott Christley
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Inimary T Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
40
|
Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, Cheng JN, Sun H, Guan Y, Xia X, Yang L, Yi X, Wan YY, Wang H, He J, Futreal PA, Li QJ, Zhu B. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun 2018; 9:5361. [PMID: 30560866 PMCID: PMC6299138 DOI: 10.1038/s41467-018-07767-w] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 11/23/2018] [Indexed: 12/26/2022] Open
Abstract
Combining whole exome sequencing, transcriptome profiling, and T cell repertoire analysis, we investigate the spatial features of surgically-removed biopsies from multiple loci in tumor masses of 15 patients with non-small cell lung cancer (NSCLC). This revealed that the immune microenvironment has high spatial heterogeneity such that intratumoral regional variation is as large as inter-personal variation. While the local total mutational burden (TMB) is associated with local T-cell clonal expansion, local anti-tumor cytotoxicity does not directly correlate with neoantigen abundance. Together, these findings caution against that immunological signatures can be predicted solely from TMB or microenvironmental analysis from a single locus biopsy.
Collapse
Affiliation(s)
- Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
| | - Wei Wu
- Department of Cardiothorathic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuqi Wang
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Peter B Alexander
- Department of Immunology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Chengdu Sun
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
| | - Zhihua Gong
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
| | - Jia-Nan Cheng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400038, China
| | - Huaibo Sun
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing, 102206, China
- Houston Methodist Research Institute, Houston, 77030, TX, USA
| | - Ling Yang
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Yisong Y Wan
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, USA
| | - Haidong Wang
- Department of Cardiothorathic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ji He
- GeneCast Biotechnology Co., Ltd, Beijing, 102206, China
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, 27710, NC, USA.
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400038, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
41
|
Cui JH, Lin KR, Yuan SH, Jin YB, Chen XP, Su XK, Jiang J, Pan YM, Mao SL, Mao XF, Luo W. TCR Repertoire as a Novel Indicator for Immune Monitoring and Prognosis Assessment of Patients With Cervical Cancer. Front Immunol 2018; 9:2729. [PMID: 30524447 PMCID: PMC6262070 DOI: 10.3389/fimmu.2018.02729] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence that deep sequencing-based T cell repertoire can sever as a biomarker of immune response in cancer patients; however, the characteristics of T cell repertoire including diversity and similarity, as well as its prognostic significance in patients with cervical cancer (CC) remain unknown. In this study, we applied a high throughput T cell receptor (TCR) sequencing method to characterize the T cell repertoires of peripheral blood samples from 25 CC patients, 30 cervical intraepithelial neoplasia (CIN) patients and 20 healthy women for understanding the immune alterations during the cervix carcinogenesis. In addition, we also explored the signatures of TCR repertoires in the cervical tumor tissues and paired sentinel lymph nodes from 16 CC patients and their potential value in predicting the prognosis of patients. Our results revealed that the diversity of circulating TCR repertoire gradually decreased during the cervix carcinogenesis and progression, but the circulating TCR repertoires in CC patients were more similar to CIN patients than healthy women. Interestingly, several clonotypes uniquely detected in CC patients tended to share similar CDR3 motifs, which differed from those observed in CIN patients. In addition, the TCR repertoire diversity in sentinel lymphatic nodes from CC patients was higher than in tumor tissues. More importantly, less clonotypes in TCR repertoire of sentinel lymphatic node was associated with the poor prognosis of the patients. Overall, our findings suggested that TCR repertoire might be a potential indicator of immune monitoring and a biomarker for predicting the prognosis of CC patients. Although functional studies of T cell populations are clearly required, this study have expanded our understanding of T cell immunity during the development of CC and provided an experimental basis for further studies on its pathogenesis and immunotherapy.
Collapse
Affiliation(s)
- Jin-Huan Cui
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Kai-Rong Lin
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Song-Hua Yuan
- Department of Gynecology, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Ya-Bin Jin
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Xiang-Ping Chen
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Xi-Kang Su
- Department of Clinical Laboratory, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Jun Jiang
- Department of Abdominothoracic Radiotherapy, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Ying-Ming Pan
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Shao-Long Mao
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Xiao-Fan Mao
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| |
Collapse
|
42
|
Jin YB, Luo W, Zhang GY, Lin KR, Cui JH, Chen XP, Pan YM, Mao XF, Tang J, Wang YJ. TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. Cancer Immunol Immunother 2018; 67:1719-1730. [PMID: 30155576 PMCID: PMC11028245 DOI: 10.1007/s00262-018-2237-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022]
Abstract
The T-cell immune responses in nasopharyngeal carcinoma patients have been extensively investigated recently for designing adoptive immunotherapy or immune checkpoint blockade therapy. However, the distribution characteristics of T cells associated with NPC pathogenesis are largely unknown. We performed deep sequencing for TCR repertoire profiling on matched tumor/adjacent normal tissue from 15 NPC patients and peripheral blood from 39 NPC patients, 39 patients with other nasopharyngeal diseases, and 33 healthy controls. We found that a lower diversity of TCR repertoire in tumors than paired tissues or a low similarity between the paired tissues was associated with a poor prognosis in NPC. A more diverse TCR repertoire was identified in the peripheral blood of NPC patients relative to the controls; this was related to a significant decrease in the proportion of high-frequency TCR clones in NPC. Higher diversity in peripheral blood of NPC patients was associated with a worse prognosis. Due to the peculiarity of the Vβ gene usage patterns in the peripheral blood of NPC patients, 15 Vβ genes were selected to distinguish NPC patients from controls by the least absolute shrinkage and selection operator analysis. We identified 11 clonotypes shared by tumors and peripheral blood samples from different NPC patients, defined as "NPC-associated" that might have value in adoptive immunotherapy. In conclusion, we here report the systematic and overall characteristics of the TCR repertoire in tumors, adjacent normal tissues, and peripheral blood of NPC patients. The data obtained may be relevant to future clinical studies in the setting of immunotherapy for NPC patients.
Collapse
Affiliation(s)
- Ya-Bin Jin
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Wei Luo
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
| | - Guo-Yi Zhang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Cancer Center, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China
| | - Kai-Rong Lin
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Jin-Huan Cui
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Xiang-Ping Chen
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Ying-Ming Pan
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Xiao-Fan Mao
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Jun Tang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Otolaryngology Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China
| | - Yue-Jian Wang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
- Otolaryngology Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
43
|
Kansy BA, Shayan G, Jie HB, Gibson SP, Lei YL, Brandau S, Lang S, Schmitt NC, Ding F, Lin Y, Ferris RL. T cell receptor richness in peripheral blood increases after cetuximab therapy and correlates with therapeutic response. Oncoimmunology 2018; 7:e1494112. [PMID: 30377562 PMCID: PMC6205044 DOI: 10.1080/2162402x.2018.1494112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
The role of T cell receptor (TCR) signaling for adaptive immune responses is essential. The ability to respond to a broad spectrum of tumor antigens requires an adaptive selection of various TCR. So far, little is known about the role of TCR richness and clonality in the cellular immune response to head and neck cancer (HNC), though the Endothelial Growth Factor Receptor (EGFR)-specific CD8+ T cell response can be enhanced by cetuximab therapy. Therefore, we investigated differences in TCR sequences between human papillomavirus (HPV)+ and HPV- HNC patients, as well as differences in TCR sequence characteristics between T cells of peripheral blood mononuclear cells (PBMC) and tumor infiltrating lymphocytes (TIL). Additionally, we were able to investigate the TCR richness and clonality in samples pre- and post- treatment in a prospective clinical trial of neoadjuvant cetuximab. Interestingly, HPV+ and HPV- HNSCC did not significantly differ in the extent of TCR clonality and richness in PBMC or TIL. However, neoadjuvant cetuximab treatment increased the number of unique TCR sequences in PBMC (p = 0.0003), which was more prominent in the clinical responder patients compared to non-responders (p = 0.04). A trend toward TCR gene focusing was observed in TIL (p = 0.1) post-treatment. Thus, an increase in richness of TCR sequences in the periphery with a focusing at the tumor site is associated with an improved treatment response, suggesting an influence of peripheral quantity and intratumoral quality on adaptive immunity in cetuximab treated patients.
Collapse
Affiliation(s)
- Benjamin A Kansy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Gulidanna Shayan
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hyun-Bae Jie
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra P Gibson
- Cancer Immunology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yu L Lei
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Periodontics and Oral Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Nicole C Schmitt
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yan Lin
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany.,Cancer Immunology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Faghih Z, Deihimi S, Talei A, Ghaderi A, Erfani N. Analysis of T cell receptor repertoire based on Vβ chain in patients with breast cancer. Cancer Biomark 2018; 22:733-745. [DOI: 10.3233/cbm-181295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safoora Deihimi
- Perelman School of Medicine, University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA, USA
| | - Abdolrasoul Talei
- Breast Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Christley S, Scarborough W, Salinas E, Rounds WH, Toby IT, Fonner JM, Levin MK, Kim M, Mock SA, Jordan C, Ostmeyer J, Buntzman A, Rubelt F, Davila ML, Monson NL, Scheuermann RH, Cowell LG. VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements. Front Immunol 2018; 9:976. [PMID: 29867956 PMCID: PMC5953328 DOI: 10.3389/fimmu.2018.00976] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
Background Recent technological advances in immune repertoire sequencing have created tremendous potential for advancing our understanding of adaptive immune response dynamics in various states of health and disease. Immune repertoire sequencing produces large, highly complex data sets, however, which require specialized methods and software tools for their effective analysis and interpretation. Results VDJServer is a cloud-based analysis portal for immune repertoire sequence data that provide access to a suite of tools for a complete analysis workflow, including modules for preprocessing and quality control of sequence reads, V(D)J gene segment assignment, repertoire characterization, and repertoire comparison. VDJServer also provides sophisticated visualizations for exploratory analysis. It is accessible through a standard web browser via a graphical user interface designed for use by immunologists, clinicians, and bioinformatics researchers. VDJServer provides a data commons for public sharing of repertoire sequencing data, as well as private sharing of data between users. We describe the main functionality and architecture of VDJServer and demonstrate its capabilities with use cases from cancer immunology and autoimmunity. Conclusion VDJServer provides a complete analysis suite for human and mouse T-cell and B-cell receptor repertoire sequencing data. The combination of its user-friendly interface and high-performance computing allows large immune repertoire sequencing projects to be analyzed with no programming or software installation required. VDJServer is a web-accessible cloud platform that provides access through a graphical user interface to a data management infrastructure, a collection of analysis tools covering all steps in an analysis, and an infrastructure for sharing data along with workflows, results, and computational provenance. VDJServer is a free, publicly available, and open-source licensed resource.
Collapse
Affiliation(s)
- Scott Christley
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Walter Scarborough
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, United States
| | - Eddie Salinas
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William H. Rounds
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Inimary T. Toby
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John M. Fonner
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, United States
| | | | - Min Kim
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen A. Mock
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, United States
| | - Christopher Jordan
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, United States
| | - Jared Ostmeyer
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adam Buntzman
- Bio5 Institute, University of Arizona, Tucson, AZ, United States
| | - Florian Rubelt
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States
| | - Marco L. Davila
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Nancy L. Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, CA, United States,Department of Pathology, University of California, San Diego, San Diego, CA, United States,La Jolla Institute for Allergy & Immunology, La Jolla, CA, United States
| | - Lindsay G. Cowell
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Lindsay G. Cowell,
| |
Collapse
|
46
|
Shi L, Zhang Y, Feng L, Wang L, Rong W, Wu F, Wu J, Zhang K, Cheng S. Multi-omics study revealing the complexity and spatial heterogeneity of tumor-infiltrating lymphocytes in primary liver carcinoma. Oncotarget 2018; 8:34844-34857. [PMID: 28422742 PMCID: PMC5471016 DOI: 10.18632/oncotarget.16758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 11/26/2022] Open
Abstract
Intratumoral heterogeneity has been revealed in primary liver carcinoma (PLC). However, spatial heterogeneity of tumor-infiltrating lymphocytes (TILs), which reflects one dimension of a tumor's spatial heterogeneity, and the relationship between TIL diversity, local immune response and mutation burden remain unexplored in PLC. Therefore, we performed immune repertoire sequencing, gene expression profiling analysis and whole-exome sequencing in parallel on five regions of each tumor and on matched adjacent normal tissues and peripheral blood from five PLC patients. A significantly higher cumulative frequency of the top 250 most abundant TIL clones was observed in tumors than in peripheral blood. Besides, overlap rates of T cell receptor (TCR) repertoire for intratumor comparisons, significant higher than those for tumor-adjacent normal tissue comparisons and tumor-blood comparisons, which provide evidence for antigen-driven clonal expansion in PLC. Analysis of the percentage of ubiquitous TCR sequences, regional frequencies of each clone and TIL diversity suggested TIL clones varying between distinct regions of the same tumor, which indicated weak TCR repertoire similarity within a single tumor. Furthermore, correlation analysis revealed that TIL diversity significantly correlated with the expression of immune response genes rather than the mutation load. We conclude that intratumoural T-cell clones are spatially heterogeneous, which can lead to underestimate the immune profile of PLC from a single biopsy sample and may present challenge to adoptive cell therapy using autologous TILs. TIL diversity provides a reasonable explanation for the degree of immune response, implied TIL diversity can serve as a surrogate marker to monitor the effect of immunotherapy.
Collapse
Affiliation(s)
- Lijun Shi
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
47
|
Wei M, Shen D, Mulmi Shrestha S, Liu J, Zhang J, Yin Y. The Progress of T Cell Immunity Related to Prognosis in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3201940. [PMID: 29682534 PMCID: PMC5848132 DOI: 10.1155/2018/3201940] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Gastric cancer is the fifth most common malignancy all over the world, and the factors that can affect progress and prognosis of the gastric cancer patients are various, such as TNM stages, invasive depth, and lymph node metastasis ratio. T cell immunity is important component of human immunity system and immunity responding to tumor and dysfunction or imbalance of T cell immunity will lead to serious outcomes for body. T cell immunity includes many different types of cells, CD4+ T cell, CD8+ T cell, memory cell, and so on, and each of them has special function on antitumor response or tumor immune escape which is revealed in lung cancer, colorectal cancer, breast cancer, ovarian cancer, and so on. But its correlation with gastric cancer is not clear. Our review was preformed to explore the relationship between the progress and prognosis of gastric cancer (GC) and T cell immunity. According to recent researches, T cell immunity may have an important role in the progress and prognosis of GCs, but its function is affected by location, category, related molecule, and interaction between the cells, and some effects still are controversial. More researches are needed to clarify this correlation.
Collapse
Affiliation(s)
- Ming Wei
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Duo Shen
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Sachin Mulmi Shrestha
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Juan Liu
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Junyi Zhang
- Department of Critical Care Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ying Yin
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
48
|
Ma KY, He C, Wendel BS, Williams CM, Xiao J, Yang H, Jiang N. Immune Repertoire Sequencing Using Molecular Identifiers Enables Accurate Clonality Discovery and Clone Size Quantification. Front Immunol 2018; 9:33. [PMID: 29467754 PMCID: PMC5808239 DOI: 10.3389/fimmu.2018.00033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022] Open
Abstract
Unique molecular identifiers (MIDs) have been demonstrated to effectively improve immune repertoire sequencing (IR-seq) accuracy, especially to identify somatic hypermutations in antibody repertoire sequencing. However, evaluating the sensitivity to detect rare T cells and the degree of clonal expansion in IR-seq has been difficult due to the lack of knowledge of T cell receptor (TCR) RNA molecule copy number and a generalized approach to estimate T cell clone size from TCR RNA molecule quantification. This limited the application of TCR repertoire sequencing (TCR-seq) in clinical settings, such as detecting minimal residual disease in lymphoid malignancies after treatment, evaluating effectiveness of vaccination and assessing degree of infection. Here, we describe using an MID Clustering-based IR-Seq (MIDCIRS) method to quantitatively study TCR RNA molecule copy number and clonality in T cells. First, we demonstrated the necessity of performing MID sub-clustering to eliminate erroneous sequences. Further, we showed that MIDCIRS enables a sensitive detection of a single cell in as many as one million naïve T cells and an accurate estimation of the degree of T cell clonal expression. The demonstrated accuracy, sensitivity, and wide dynamic range of MIDCIRS TCR-seq provide foundations for future applications in both basic research and clinical settings.
Collapse
Affiliation(s)
- Ke-Yue Ma
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Chad M Williams
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jun Xiao
- ImmuDX, LLC, Austin, TX, United States
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Xi'an, Shaanxi, China
| | - Ning Jiang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
49
|
Ostmeyer J, Christley S, Rounds WH, Toby I, Greenberg BM, Monson NL, Cowell LG. Statistical classifiers for diagnosing disease from immune repertoires: a case study using multiple sclerosis. BMC Bioinformatics 2017; 18:401. [PMID: 28882107 PMCID: PMC5588725 DOI: 10.1186/s12859-017-1814-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Background Deep sequencing of lymphocyte receptor repertoires has made it possible to comprehensively profile the clonal composition of lymphocyte populations. This opens the door for novel approaches to diagnose and prognosticate diseases with a driving immune component by identifying repertoire sequence patterns associated with clinical phenotypes. Indeed, recent studies support the feasibility of this, demonstrating an association between repertoire-level summary statistics (e.g., diversity) and patient outcomes for several diseases. In our own prior work, we have shown that six codons in VH4-containing genes in B cells from the cerebrospinal fluid of patients with relapsing remitting multiple sclerosis (RRMS) have higher replacement mutation frequencies than observed in healthy controls or patients with other neurological diseases. However, prior methods to date have been limited to focusing on repertoire-level summary statistics, ignoring the vast amounts of information in the millions of individual immune receptors comprising a repertoire. We have developed a novel method that addresses this limitation by using innovative approaches for accommodating the extraordinary sequence diversity of immune receptors and widely used machine learning approaches. We applied our method to RRMS, an autoimmune disease that is notoriously difficult to diagnose. Results We use the biochemical features encoded by the complementarity determining region 3 of each B cell receptor heavy chain in every patient repertoire as input to a detector function, which is fit to give the correct diagnosis for each patient using maximum likelihood optimization methods. The resulting statistical classifier assigns patients to one of two diagnosis categories, RRMS or other neurological disease, with 87% accuracy by leave-one-out cross-validation on training data (N = 23) and 72% accuracy on unused data from a separate study (N = 102). Conclusions Our method is the first to apply statistical learning to immune repertoires to aid disease diagnosis, learning repertoire-level labels from the set of individual immune repertoire sequences. This method produced a repertoire-based statistical classifier for diagnosing RRMS that provides a high degree of diagnostic capability, rivaling the accuracy of diagnosis by a clinical expert. Additionally, this method points to a diagnostic biochemical motif in the antibodies of RRMS patients, which may offer insight into the disease process. Electronic supplementary material The online version of this article (10.1186/s12859-017-1814-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jared Ostmeyer
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Scott Christley
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - William H Rounds
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Inimary Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9036, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9036, USA
| | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA.
| |
Collapse
|
50
|
Fang J, Li X, Ma D, Liu X, Chen Y, Wang Y, Lui VWY, Xia J, Cheng B, Wang Z. Prognostic significance of tumor infiltrating immune cells in oral squamous cell carcinoma. BMC Cancer 2017; 17:375. [PMID: 28549420 PMCID: PMC5446725 DOI: 10.1186/s12885-017-3317-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Background Prognostic factors aid in the stratification and treatment of cancer. This study evaluated prognostic importance of tumor infiltrating immune cell in patients with oral squamous cell carcinoma. Methods Profiles of infiltrating immune cells and clinicopathological data were available for 78 OSCC patients with a median follow-up of 48 months. The infiltrating intensity of CD8, CD4, T-bet, CD68 and CD57 positive cells were assessed by immunohistochemistry. Chi-square test was used to compare immune markers expression and clinicopathological parameters. Univariate and multivariate COX proportional hazard models were used to assess the prognostic discriminator power of immune cells. The predictive potential of immune cells for survival of OSCC patients was determined using ROC and AUC. Results The mean value of CD8, CD4, T-bet, CD68 and CD57 expression were 28.99, 62.06, 8.97, 21.25 and 15.75 cells per high-power field respectively. The patient cohort was separated into low and high expression groups by the mean value. Higher CD8 expression was associated with no regional lymph node metastasis (p = 0.033). Patients with more abundant stroma CD57+ cells showed no metastasis into regional lymph node (p = 0.005), and early clinical stage (p = 0.016). The univariate COX regression analyses showed that no lymph node involvement (p < 0.001), early clinical stage (TNM staging I/II vs III/IV, p = 0.007), higher CD8 and CD57 expression (p < 0.001) were all positively correlated with longer overall survival. Multivariate COX regression analysis showed that no lymph node involvement (p = 0.008), higher CD8 (p = 0.03) and CD57 (p < 0.001) expression could be independent prognostic indicators of better survival. None of CD4, T-bet or CD68 was associated with survival in ether univariate or multivariate analysis. ROC and AUC showed that the predictive accuracy of CD8 and CD57 were all superior compared with TNM staging. CD57 (AUC = 0.868; 95% CI, 0.785–0.950) and CD8 (AUC = 0.784; 95% CI, 0.680–0.889) both provided high predictive accuracy, of which, CD57 was the best predictor. Conclusion Tumor stroma CD57 and CD8 expression was associated with lymphnode status and independently predicts survival of OSCC patients. Our results suggest an active immune microenvironment in OSCC that may be targetable by immune drugs.
Collapse
Affiliation(s)
- Juan Fang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China
| | - Xiaoxu Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China
| | - Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China
| | - Xiangqi Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China
| | - Yichen Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China.
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Lingyuanwest Road, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|