1
|
Vacca P, Bilotta MT, Moretta L, Tumino N. Myeloid-derived suppressor cells: Identification and function. Methods Cell Biol 2024; 190:151-169. [PMID: 39515878 DOI: 10.1016/bs.mcb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells that play a regulatory role in immune responses and inflammation. They can have both positive and negative effects on various diseases, including cancer, infections, sepsis, and trauma. MDSCs inhibit immune cells by releasing immunosuppressive factors and can be categorized as monocytic (M) or polymorphonuclear (PMN) cell lineages. Most MDSCs are PMN-MDSC and are found in the peripheral blood (PB) and in the tissue microenvironment of tumor and inflamed patients, where they can directly inhibit immune cell activity and promote tumor progression. Various markers have been suggested for their identification, but in order to be defined as MDSC, their inhibitory capacity has to be certified. In this article, we summarize the identification and functional protocol for characterizing MDSCs, focusing on PMN-MDSC.
Collapse
Affiliation(s)
- Paola Vacca
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Nicola Tumino
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Azimi H, Jafari A, Maralani M, Davoodi H. The role of histamine and its receptors in breast cancer: from pathology to therapeutic targets. Med Oncol 2024; 41:190. [PMID: 38951252 DOI: 10.1007/s12032-024-02437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Breast cancer is the most common malignancy in women, and despite the development of new treatment methods and the decreasing mortality rate in recent years, one of the clinical problems in breast cancer treatment is chronic inflammation in the tumor microenvironment. Histamine, an inflammatory mediator, is produced by tumor cells and can induce chronic inflammation and the growth of some tumors by recruiting inflammatory cells. It can also affect tumor physiopathology, antitumor treatment efficiency, and patient survival. Antihistamines, as histamine receptor antagonists, play a role in modulating the effects of these receptors in tumor cells and can affect some treatment methods for breast cancer therapy; in this review, we investigate the role of histamine, its receptors, and antihistamines in breast cancer pathology and treatment methods.
Collapse
Affiliation(s)
- Hossein Azimi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Afifeh Jafari
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahafarin Maralani
- Postdoctoral Fellow Atlantic Cancer Research Institute (ACRI) Dr.Georges-L.Dumont University Hospital Centre, Moncton, NewBrunswick, Canada
| | - Homa Davoodi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Postdoctoral Fellow Atlantic Cancer Research Institute (ACRI) Dr.Georges-L.Dumont University Hospital Centre, Moncton, NewBrunswick, Canada.
| |
Collapse
|
3
|
Gonçalves IV, Pinheiro-Rosa N, Torres L, Oliveira MDA, Rapozo Guimarães G, Leite CDS, Ortega JM, Lopes MTP, Faria AMC, Martins MLB, Felicori LF. Dynamic changes in B cell subpopulations in response to triple-negative breast cancer development. Sci Rep 2024; 14:11576. [PMID: 38773133 PMCID: PMC11109097 DOI: 10.1038/s41598-024-60243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/19/2024] [Indexed: 05/23/2024] Open
Abstract
Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.
Collapse
Affiliation(s)
- Igor Visconte Gonçalves
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Pinheiro-Rosa
- NYU Grossman School of Medicine, NYU Langone Health, New York University, 550 1st Ave, New York, NY, 10016, USA
| | - Lícia Torres
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana de Almeida Oliveira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela Rapozo Guimarães
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Christiana da Silva Leite
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Miriam Teresa Paz Lopes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana Lima Boroni Martins
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
4
|
Mohamad NA, Galarza TE, Martín GA. H2 antihistamines: May be useful for combination therapies in cancer? Biochem Pharmacol 2024; 223:116164. [PMID: 38531422 DOI: 10.1016/j.bcp.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.
Collapse
Affiliation(s)
- Nora A Mohamad
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Tamara E Galarza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Li C, Wang S, Ma X, Wang T, Lu R, Jia X, Leng Z, Kong X, Zhang J, Li L. Ranitidine as an adjuvant regulates macrophage polarization and activates CTLs through the PI3K-Akt2 signaling pathway. Int Immunopharmacol 2023; 116:109729. [PMID: 37800555 DOI: 10.1016/j.intimp.2023.109729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
Adjuvants are an indispensable component of vaccines, but there are few adjuvants for human vaccines. H2 receptor blockers, inhibiting gastric acid secretion, have immune enhancement effects. Ranitidine (RAN) is a water-soluble H2 receptor blocker, and whether it has an immune-enhancing effect is still unknown. In this study, flow cytometry, western blotting, and immunofluorescence methods were used to analyze whether RAN could activate macrophage polarization to the M1 phenotype in vivo and in vitro. Here, we found that the M1 inflammatory cytokine levels and surface markers in RAW264.7 cells were upregulated by NF-κB activation, possibly through the PI3K-Akt2 signaling pathway, after RAN treatment. Endocytic function was also enhanced by feedback regulation of Akt2/GSK3β/Dynmin1 signaling. Furthermore, to evaluate the adjuvant function of RAN, we used OVA plus RAN as a vaccine to inhibit the growth of B16-OVA tumors in mice. We also found that in the RAN adjuvant group, macrophage polarization to M1, Th1 cell differentiation, and cytotoxic T lymphocyte (CTL) activation were significantly upregulated. The tumor growth of mice was inhibited, and the survival rate of mice was significantly improved. This study provides new evidence for the mechanism by which RAN activates the immune response and is expected to provide a new strategy for the research and development of tumor vaccine adjuvants.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Xiaoran Ma
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Tiantian Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ran Lu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xihui Jia
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhe Leng
- Department of Gynecology, Qingdao Women and Children's Hospital, Qingdao 266000, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266071, China
| | - Jinyu Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
6
|
Tumino N, Fiore PF, Pelosi A, Moretta L, Vacca P. Myeloid derived suppressor cells in tumor microenvironment: Interaction with innate lymphoid cells. Semin Immunol 2022; 61-64:101668. [PMID: 36370673 DOI: 10.1016/j.smim.2022.101668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.
Collapse
Affiliation(s)
- Nicola Tumino
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
7
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
8
|
Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules 2021; 11:biom11081232. [PMID: 34439898 PMCID: PMC8392479 DOI: 10.3390/biom11081232] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
High levels of histamine and histamine receptors (HRs), including H1R~H4R, are found in many different types of tumor cells and cells in the tumor microenvironment, suggesting their involvement in tumor progression. This review summarizes the latest evidence demonstrating the pathophysiological roles of histamine and its cognate receptors in cancer biology. We also discuss the novel therapeutic approaches of selective HR ligands and their potential prognostic values in cancer treatment. Briefly, histamine is highly implicated in cancer development, growth, and metastasis through interactions with distinct HRs. It also regulates the infiltration of immune cells into the tumor sites, exerting an immunomodulatory function. Moreover, the effects of various HR ligands, including H1R antagonists, H2R antagonists, and H4R agonists, on tumor progression in many different cancer types are described. Interestingly, the expression levels of HR subtypes may serve as prognostic biomarkers in several cancers. Taken together, HRs are promising targets for cancer treatment, and HR ligands may offer novel therapeutic potential, alone or in combination with conventional therapy. However, due to the complexity of the pathophysiological roles of histamine and HRs in cancer biology, further studies are warranted before HR ligands can be introduced into clinical settings.
Collapse
|
9
|
Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 2021; 18:1085-1095. [PMID: 33785843 PMCID: PMC8093220 DOI: 10.1038/s41423-021-00655-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/07/2021] [Indexed: 02/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has achieved successful outcomes against hematological malignancies and provided a new impetus for treating solid tumors. However, the efficacy of CAR-T cells for solid tumors remains unsatisfactory. The tumor microenvironment has an important role in interfering with and inhibiting the effector function of immune cells, among which upregulated inhibitory checkpoint receptors, soluble suppressive cytokines, altered chemokine expression profiles, aberrant vasculature, complicated stromal composition, hypoxia and abnormal tumor metabolism are major immunosuppressive mechanisms. In this review, we summarize the inhibitory factors that affect the function of CAR-T cells in tumor microenvironment and discuss approaches to improve CAR-T cell efficacy for solid tumor treatment by targeting those barriers.
Collapse
|
10
|
Meghnem D, Oldford SA, Haidl ID, Barrett L, Marshall JS. Histamine receptor 2 blockade selectively impacts B and T cells in healthy subjects. Sci Rep 2021; 11:9405. [PMID: 33931709 PMCID: PMC8087813 DOI: 10.1038/s41598-021-88829-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Histamine receptor 2 (H2R) blockade is commonly used in patients with gastric, duodenal ulcers or gastroesophageal reflux disease. Beyond the gastrointestinal tract, H2R is expressed by multiple immune cells, yet little is known about the immunomodulatory effects of such treatment. Clinical reports have associated H2R blockade with leukopenia, neutropenia, and myelosuppression, and has been shown to provide clinical benefit in certain cancer settings. To systematically assess effects of H2R blockade on key immune parameters, a single-center, single-arm clinical study was conducted in 29 healthy subjects. Subjects received daily high dose ranitidine for 6 weeks. Peripheral blood immunophenotyping and mediator analysis were performed at baseline, 3 and 6 weeks into treatment, and 12 weeks after treatment cessation. Ranitidine was well-tolerated, and no drug related adverse events were observed. Ranitidine had no effect on number of neutrophils, basophils or eosinophils. However, ranitidine decreased numbers of B cells and IL-2Rα (CD25) expressing T cells that remained lower even after treatment cessation. Reduced serum levels of IL-2 were also observed and remained low after treatment. These observations highlight a previously unrecognised immunomodulatory sustained impact of H2R blockade. Therefore, the immune impacts of H2R blockade may require greater consideration in the context of vaccination and immunotherapy.
Collapse
Affiliation(s)
- Dihia Meghnem
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Sharon A Oldford
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada.,Senescence, Aging, Infection and Immunity Laboratory, Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Infectious Diseases, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Ian D Haidl
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Lisa Barrett
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada.,Senescence, Aging, Infection and Immunity Laboratory, Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Infectious Diseases, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada. .,Division of Infectious Diseases, Nova Scotia Health Authority, Halifax, NS, Canada.
| |
Collapse
|
11
|
Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells 2021; 10:cells10050986. [PMID: 33922465 PMCID: PMC8146516 DOI: 10.3390/cells10050986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are important sentinel cells in host defense against infection and major effector cells in allergic disease. The role of these cells in cancer settings has been widely debated. The diverse range of mast cell functions in both immunity and tissue remodeling events, such as angiogenesis, provides multiple opportunities for mast cells to modify the tumor microenvironment. In this review, we consider both skin and breast cancer settings to address the controversy surrounding the importance of mast cells in the host response to tumors. We specifically address the key mediators produced by mast cells which impact tumor development. The role of environmental challenges in modifying mast cell responses and opportunities to modify mast cell responses to enhance anti-tumor immunity are also considered. While the mast cell's role in many cancer contexts is complicated and poorly understood, the activities of these tissue resident and radioresistant cells can provide important opportunities to enhance anti-cancer responses and limit cancer development.
Collapse
|
12
|
Hegazy SK, El-Haggar SM, Alhassanin SA, El-Berri EI. Comparative randomized trial evaluating the effect of proton pump inhibitor versus histamine 2 receptor antagonist as an adjuvant therapy in diffuse large B-cell lymphoma. Med Oncol 2021; 38:4. [PMID: 33394214 DOI: 10.1007/s12032-020-01452-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
The development of drug resistance remains the major obstacle to clinical efficacy of cancer chemotherapy. Consequently, finding new therapeutic options for cancerous patients is an urgent need. Sixty newly diagnosed diffuse large B-cell lymphoma (DLBCL) patients were recruited from Clinical Oncology Department, Faculty of Medicine, Menoufia University, Egypt prospectively randomized to three groups (n = 20 for each group). Group one (control group) received R-CHOP standard chemotherapy {Rituximab, Cyclophosphamide, Hydroxyldaunorubicin (Doxorubicin)®, Vincristine (oncovin)®, prednisolone in the first five days of cycle}, group two received lansoprazole (LAN) 60 mg p.o. bid for only one week before starting each of cycle + R-CHOP and group three received famotidine (FAM) 40 mg p.o. once daily one week before cycle and continues daily through the cycle + R-CHOP for six cycles. Blood samples were obtained for biochemical analysis of transforming growth factor-β (TGF-β), Basic fibroblast growth factor (bFGF), interleukin-9 (IL-9), nuclear factor-kappa B (NF-κB) and Caspase 3 before and after six cycles of therapy. The obtained data showed that LAN and FAM resulted in significant decrease in (LDH, TGF-β, bFGF and IL-9, respectively) and significant increase in (Caspase-3). In addition, LAN produced a significant elevation in the response rate compared to the control group or the FAM group. Both LAN and FAM as adjuvant therapy represents a promising anticancer strategy in DLBCL by modulation of malignancy homeostasis mechanisms and boosting chemotherapy antitumor effects without further toxicity. In addition, LAN has a synergetic effect in improving the response rate.Trial registration Clinical Trial.gov Identifier: NCT0364707.
Collapse
Affiliation(s)
- Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| | - Suzan A Alhassanin
- Oncology and Nuclear Medicine Department, Faculty of Medicine, Menoufia University, Yassin Abdel Ghaffar St-from Gamal Abdel Anasar St, Shibin Elkom, Menoufia, 32511, Egypt
| | - Eman I El-Berri
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt.
| |
Collapse
|
13
|
Le Naour A, Rossary A, Vasson MP. EO771, is it a well-characterized cell line for mouse mammary cancer model? Limit and uncertainty. Cancer Med 2020; 9:8074-8085. [PMID: 33026171 PMCID: PMC7643677 DOI: 10.1002/cam4.3295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Among mouse mammary tumor models, syngeneic cell lines present an advantage for the study of immune response. However, few of these models are well characterized. The tumor line EO771 is derived from spontaneous breast cancer of C57BL/6 mice. These cells are widely used but are referenced under different names: EO771, EO 771, and E0771. The characteristics of the EO771 cells are well described but some data are contradictory. This cell line presents the great interest of developing an immunocompetent neoplastic model using an orthotopic implantation reflecting the mammary tumors encountered in breast cancer patients. This review presents the phenotype characteristics of EO771 and its sensitivity to nutrients and different therapies such as radiotherapy, chemotherapy, hormone therapy, and immunotherapy.
Collapse
Affiliation(s)
- Augustin Le Naour
- UMR 1019 Human Nutrition Unit, ECREIN team, University of Clermont Auvergne, INRAE, CRNH-Auvergne, Clermont-Ferrand, France
| | - Adrien Rossary
- UMR 1019 Human Nutrition Unit, ECREIN team, University of Clermont Auvergne, INRAE, CRNH-Auvergne, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- UMR 1019 Human Nutrition Unit, ECREIN team, University of Clermont Auvergne, INRAE, CRNH-Auvergne, Clermont-Ferrand, France.,Department of Nutrition, Gabriel Montpied University Hospital, Jean Perrin Cancer Centre, Clermont-Ferrand, France
| |
Collapse
|
14
|
Kramer ED, Abrams SI. Granulocytic Myeloid-Derived Suppressor Cells as Negative Regulators of Anticancer Immunity. Front Immunol 2020; 11:1963. [PMID: 32983128 PMCID: PMC7481329 DOI: 10.3389/fimmu.2020.01963] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
The immune system plays a critical role in cancer progression and response to therapy. However, the immune system can be compromised during the neoplastic process. Notably, the myeloid lineage, which gives rise to granulocytic cells, including neutrophils, is a well-recognized target of tumor-mediated immune suppression. Ordinarily, granulocytic cells are integral for host defense, but in neoplasia the normal process of granulocyte differentiation (i.e., granulopoiesis) can be impaired leading instead to the formation of granulocytic (or PMN)-myeloid-derived suppressor cells (MDSCs). Such cells comprise various stages of myeloid differentiation and are defined functionally by their highly pro-tumorigenic and immune suppressive activities. Thus, considerable interest has been devoted to impeding the negative contributions of PMN-MDSCs to the antitumor response. Understanding their biology has the potential to unveil novel therapeutic opportunities to hamper PMN-MDSC production in the bone marrow, their mobilization, or their effector functions within the tumor microenvironment and, therefore, bolster anticancer therapies that require a competent myeloid compartment. In this review, we will highlight mechanisms by which the neoplastic process skews granulopoiesis to produce PMN-MDSCs, summarize mechanisms by which they execute their pro-tumorigenic activities and, lastly, underscore strategies to obstruct their role as negative regulators of antitumor immunity.
Collapse
Affiliation(s)
- Elliot D Kramer
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
15
|
Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Sci Rep 2020; 10:13343. [PMID: 32770025 PMCID: PMC7414122 DOI: 10.1038/s41598-020-70231-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive subtype of breast cancer but paradoxically associated with increased tumor-infiltrating leukocytes. The molecular and cellular mechanisms underlying TNBC immunobiology are incompletely understood. Interleukin (IL)-17A is a pro-inflammatory cytokine that has both pro- and anti-tumor effects and found in 40-80% of TNBC samples. We report here that IL-17A mRNA and protein are detectable in some human TNBC cell lines and further upregulated by IL-23 and LPS stimulation. Furthermore, the impact of tumor-derived IL-17A in host immune response and tumor growth was examined using murine TNBC 4T1 mammary carcinoma cells transduced with an adenoviral vector expressing IL-17A (AdIL-17A) or control vector (Addl). Compared to Addl-transduction, AdIL-17A-transduction enhanced 4T1 tumor growth and lung metastasis in vivo, which was associated with a marked expansion of myeloid-derived suppressor cells (MDSCs). However, AdIL-17A-transduction also induced strong organ-specific and time-dependent immune activation indicated by dynamic changes of NK cells, B cells, CD4, and CD8 T cells in peripheral blood, lung, and tumor site, as well as the plasma levels of IFNγ. Such findings highlight that tumor-associated IL-17A induces concurrent immune activation and immune suppression. Administration of anti-Gr1 or anti-G-CSF antibody effectively depleted MDSCs in vivo, markedly reducing the growth of AdIL-17A-transduced 4T1 tumors, and eliminating lung metastasis. Collectively, our study demonstrates that MDSC depletion is an effective and practical approach for treating IL-17A-enriched mammary carcinomas.
Collapse
|
16
|
Liu Y, Wang L, Liu J, Xie X, Hu H, Luo F. Anticancer Effects of ACT001 via NF-κB Suppression in Murine Triple-Negative Breast Cancer Cell Line 4T1. Cancer Manag Res 2020; 12:5131-5139. [PMID: 32617021 PMCID: PMC7326172 DOI: 10.2147/cmar.s244748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE ACT001 is a novel sesquiterpene lactone derivative with anticancer effects, including the reversal of tamoxifen resistance in estrogen receptor-positive breast cancer cells. However, few studies have investigated the anticancer effects of ACT001 in triple-negative breast cancer (TNBC), a highly aggressive cancer with a poor prognosis. This study aimed to investigate the effects of ACT001 on TNBC and the potential mechanism underlying these effects. MATERIALS AND METHODS The anticancer effects of ACT001 on the murine TNBC cell line 4T1 were evaluated by Cell Counting Kit-8 assay, animal experiments, TUNEL staining, flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay, and Western blotting analysis. RESULTS ACT001 induced apoptosis in 4T1 cells by upregulating B cell lymphoma 2-associated X protein expression. Moreover, ACT001 markedly decreased levels of secretory granulocyte-macrophage colony stimulating factor (GM-CSF) in 4T1 tumors, decreased the number of myeloid-derived suppressor cells (MDSCs), and reduced angiogenesis. Furthermore, GM-CSF promoted angiogenesis and the proliferation of MDSCs in a dose-dependent manner. Finally, ACT001 suppressed phospho-NF-κB and IκB-α levels in 4T1 cells, thereby further decreasing GM-CSF levels. CONCLUSION Our results suggest that ACT001 exerts its anticancer effects by inducing apoptosis in murine TNBC cell line 4T1 and regulates the tumor microenvironment by attenuating angiogenesis and accumulation of MDSCs in 4T1 tumors. The underlying mechanism may involve the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Yanyang Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Li Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Xiaoxiao Xie
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Haoyue Hu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| |
Collapse
|
17
|
Luker AJ, Graham LJ, Smith TM, Camarena C, Zellner MP, Gilmer JJS, Damle SR, Conrad DH, Bear HD, Martin RK. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol 2020; 21:8. [PMID: 32106810 PMCID: PMC7045411 DOI: 10.1186/s12865-020-0337-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background Myeloid derived suppressor cells (MDSCs) present a significant obstacle to cancer immunotherapy because they dampen anti-tumor cytotoxic T cell responses. Previous groups, including our own, have reported on the myelo-depletive effects of certain chemotherapy agents. We have shown previously that decitabine increased tumor cell Class I and tumor antigen expression, increased ability of tumor cells to stimulate T lymphocytes, depleted tumor-induced MDSC in vivo and augmented immunotherapy of a murine mammary carcinoma. Results In this study, we expand upon this observation by testing a next-generation DNA methyltransferase inhibitor (DNMTi), guadecitabine, which has increased stability in the circulation. Using the 4 T1 murine mammary carcinoma model, in BALB/cJ female mice, we found that guadecitabine significantly reduces tumor burden in a T cell-dependent manner by preventing excessive myeloid proliferation and systemic accumulation of MDSC. The remaining MDSC were shifted to an antigen-presenting phenotype. Building upon our previous publication, we show that guadecitabine enhances the therapeutic effect of adoptively transferred antigen-experienced lymphocytes to diminish tumor growth and improve overall survival. We also show guadecitabine’s versatility with similar tumor reduction and augmentation of immunotherapy in the C57BL/6 J E0771 murine breast cancer model. Conclusions Guadecitabine depleted and altered MDSC, inhibited growth of two different murine mammary carcinomas in vivo, and augmented immunotherapeutic efficacy. Based on these findings, we believe the immune-modulatory effects of guadecitabine can help rescue anti-tumor immune response and contribute to the overall effectiveness of current cancer immunotherapies.
Collapse
Affiliation(s)
- Andrea J Luker
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Laura J Graham
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Timothy M Smith
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Carmen Camarena
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Matt P Zellner
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Jamie-Jean S Gilmer
- Department of Biology, College of Humanities and Sciences, VCU, Richmond, VA, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Harry D Bear
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA.,Division of Surgical Oncology, Department of Surgery, VCU, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA. .,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA.
| |
Collapse
|
18
|
Massari NA, Nicoud MB, Medina VA. Histamine receptors and cancer pharmacology: an update. Br J Pharmacol 2020; 177:516-538. [PMID: 30414378 PMCID: PMC7012953 DOI: 10.1111/bph.14535] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
In the present review, we will discuss the recent advances in the understanding of the role of histamine and histamine receptors in cancer biology. The controversial role of the histaminergic system in different neoplasias including gastric, colorectal, oesophageal, oral, pancreatic, liver, lung, skin, blood and breast cancers will be reviewed. The expression of histamine receptor subtypes, with special emphasis on the histamine H4 receptor, in different cell lines and human tumours, the signal transduction pathways and the associated biological responses as well as the in vivo treatment of experimental tumours with pharmacological ligands will be described. The presented evidence demonstrates that histamine regulates cancer-associated biological processes during cancer development in multiple cell types, including neoplastic cells and cells in the tumour micro-environment. The outcome will depend on tumour cell type, the level of expression of histamine receptors, signal transduction associated with these receptors, tumour micro-environment and histamine metabolism, reinforcing the complexity of cancer disease. Findings show the pivotal role of H4 receptors in the development and progression of many types of cancers, and considering its immunomodulatory properties, the H4 receptor appears to be the most promising molecular therapeutic target for cancer treatment within the histamine receptor family. Furthermore, the H4 receptor is differentially expressed in tumours compared with normal tissues, and in most cancer types in which data are available, H4 receptor expression is associated with clinicopathological characteristics, suggesting that H4 receptors might represent a novel cancer biomarker. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Noelia A Massari
- Department of Immunology, School of Natural and Health SciencesNational University of Patagonia San Juan BoscoComodoro RivadaviaArgentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Laboratory of Radioisotopes, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
| |
Collapse
|
19
|
Zwickl H, Zwickl-Traxler E, Pecherstorfer M. Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Front Oncol 2019; 9:1409. [PMID: 31921666 PMCID: PMC6933599 DOI: 10.3389/fonc.2019.01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia1. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.
Collapse
Affiliation(s)
- Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Elisabeth Zwickl-Traxler
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Martin Pecherstorfer
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| |
Collapse
|
20
|
Synergy Between Low Dose Metronomic Chemotherapy and the pH-centered Approach Against Cancer. Int J Mol Sci 2019; 20:ijms20215438. [PMID: 31683667 PMCID: PMC6862380 DOI: 10.3390/ijms20215438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Low dose metronomic chemotherapy (MC) is becoming a mainstream treatment for cancer in veterinary medicine. Its mechanism of action is anti-angiogenesis by lowering vascular endothelial growth factor (VEGF) and increasing trombospondin-1 (TSP1). It has also been adopted as a compassionate treatment in very advanced human cancer. However, one of the main limitations of this therapy is its short-term effectiveness: 6 to 12 months, after which resistance develops. pH-centered cancer treatment (pHT) has been proposed as a complementary therapy in cancer, but it has not been adopted or tested as a mainstream protocol, in spite of existing evidence of its advantages and benefits. Many of the factors directly or indirectly involved in MC and anti-angiogenic treatment resistance are appropriately antagonized by pHT. This led to the testing of an association between these two treatments. Preliminary evidence indicates that the association of MC and pHT has the ability to reduce anti-angiogenic treatment limitations and develop synergistic anti-cancer effects. This review will describe each of these treatments and will analyze the fundamentals of their synergy.
Collapse
|
21
|
Jafarzadeh A, Nemati M, Khorramdelazad H, Hassan ZM. Immunomodulatory properties of cimetidine: Its therapeutic potentials for treatment of immune-related diseases. Int Immunopharmacol 2019; 70:156-166. [PMID: 30802678 DOI: 10.1016/j.intimp.2019.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
Histamine exerts potent modulatory impacts on the cells of innate- [including neutrophils, monocytes, macrophages, dendritic cells (DCs), natural killer (NK) cells and NKT cells] and adaptive immunity (such as Th1-, Th2-, Th17-, regulatory T-, CD8+ cytotoxic T cells, and B cells) through binding to histamine receptor 2 (H2R). Cimetidine, as an H2R antagonist, reverses the histamine-mediated immunosuppression, as it has powerful stimulatory effects on the effector functions of neutrophils, monocytes, macrophages, DCs, NK cells, NKT cells, Th1-, Th2-, Th17-, and CD8+ cytotoxic T cells. However, cimetidine reduces the regulatory/suppressor T cell-mediated immunosuppression. Experimentally, cimetidine potentiate some immunologic activities in vitro and in vivo. The therapeutic potentials of cimetidine as an immunomodulatory agent were also investigated in a number of human diseases (such as cancers, viral warts, allergic disorders, burn, and bone resorption) and vaccination. This review aimed to provide a concise summary regarding the impacts of cimetidine on the immune system and highlight the cellular mechanisms of action and the immunomodulatory effects of this drug in various diseases to give novel insights regarding the therapeutic potentials of this drug for treatment of immune-related disorders. The review encourages more investigations to consider the immunomodulatory characteristic of cimetidine for managing of immune-related disorders.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossain Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
22
|
Rogers D, Vila-Leahey A, Pessôa AC, Oldford S, Marignani PA, Marshall JS. Ranitidine Inhibition of Breast Tumor Growth Is B Cell Dependent and Associated With an Enhanced Antitumor Antibody Response. Front Immunol 2018; 9:1894. [PMID: 30158936 PMCID: PMC6104125 DOI: 10.3389/fimmu.2018.01894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Background The histamine receptor 2 antagonist ranitidine is a commonly used, non-prescription, medication. It limits the development, growth, and metastasis of breast cancers in mouse models of disease. In this study, we examined the role of B cells in this response, the impact of ranitidine on the development of antitumor antibodies and subpopulations of natural killer cells using murine breast cancer models. Methods Peripheral blood granulocyte populations were assessed in both E0771-GFP and 4T1 orthotopic tumor-bearing mice by evaluation of stained blood smears. Antibody responses were assessed both in terms of the levels of anti-GFP antibodies detected by enzyme-linked immunosorbent assay and also by antibody binding to the surface of tumor cells evaluated by flow cytometry. B cell and NK cell populations were examined in the draining lymph nodes and spleens of tumor-bearing animals, by flow cytometry with and without ranitidine treatment. Results Oral ranitidine treatment was not associated with changes in peripheral blood granulocyte populations in tumor-bearing mice. However, ranitidine treatment was associated with the development of enhanced antitumor antibody responses. This was not limited to the tumor setting since ranitidine-treated mice immunized with ovalbumin also demonstrated increased IgG antibody responses. Analysis of B cell populations indicated that while B1 cell populations remained unchanged there was a significant decrease in B2 cells in the tumor-draining inguinal lymph nodes. Notably, ranitidine did not significantly inhibit primary tumor growth in B cell-deficient animals. Examination of NK cell populations revealed a significant decrease in the proportion of intermediately functionally mature NK cells populations (CD27+CD11b−) in ranitidine-treated tumor-bearing mice compared with untreated tumor-bearing controls. Conclusion These data demonstrate an important role for B cells in the enhanced antitumor immune response that occurs in response to ranitidine treatment. Our findings are consistent with a model, whereby ranitidine reduces tumor-associated immune suppression allowing for the development of more effective antitumor responses mediated by B cells which may include the participation of NK cells. These data underline the importance of considering widely used histamine receptor antagonists as modulators of antitumor immunity to breast cancer.
Collapse
Affiliation(s)
- Dakota Rogers
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ava Vila-Leahey
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ana Clara Pessôa
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sharon Oldford
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola A Marignani
- Department Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Toor SM, Elkord E. Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer. Immunol Cell Biol 2018; 96:888-897. [PMID: 29635843 DOI: 10.1111/imcb.12054] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
Immune evasion is a characteristic of most human malignancies and is induced via various mechanisms. Immunosuppressive cells, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), are key mediators in assisting tumors to escape immune surveillance. Expansion of MDSC, Treg and elevated levels of immune checkpoints (IC) are frequently detected in the tumor microenvironment and periphery of cancer patients. Various therapeutic agents have been shown to target MDSC and to block IC for inducing anti-tumor immunity and reversal of tumor immune escape. Importantly, some recent studies have shown that MDSC targeting improves the efficacy of IC blockade in cancer therapy. However, there is a pressing need to improve our understanding of the distinct role of these cells to develop combination therapy that attacks tumor cells from all frontiers to improve cancer therapeutics. Herein, we discuss the role of MDSC in cancer progression, interactions with IC in the context of anti-cancer immunity and the current therapeutic strategies to target MDSC and block IC in cancer.
Collapse
Affiliation(s)
- Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.,Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience 2018; 12:824. [PMID: 29743944 PMCID: PMC5931815 DOI: 10.3332/ecancer.2018.824] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Selective phosphodiesterase 5 inhibitors, including sildenafil, tadalafil and vardenafil, are widely-used in the treatment of erectile dysfunction and pulmonary arterial hypertension. They are also well-known as examples of successful drug repurposing in that they were initially developed for angina and only later developed for erectile dysfunction. However, these drugs may also be effective cancer treatments. A range of evidentiary sources are assessed in this paper and the case made that there is pre-clinical and clinical evidence that these drugs may offer clinical benefit in a range of cancers. In particular, evidence is presented that these drugs have potent immunomodulatory activity that warrants clinical study in combination with check-point inhibition.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium.,The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | | | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium
| | - Vikas P Sukhatme
- GlobalCures Inc., Newton, MA 02459, USA.,Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Enhancing anticancer activity through the combination of bioreducing agents and triterpenes. Future Med Chem 2018; 10:511-525. [PMID: 29424550 DOI: 10.4155/fmc-2017-0154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM Triterpenes are natural compounds, whose wide biological activity predestines them for application as promising new chemotherapeutics. In this paper, we report the results of our investigations into the substitution of oleanolic acid with aromatic and nitroaromatic moieties acting as bioreducing agents. RESULTS The process of reduction of nitro groups was investigated through cyclic voltammetry, UV-Vis and electron paramagnetic resonance spectroelectrochemistry. The cytotoxic activity against selected cancer cell lines was determined, showing a significant increase in cytotoxicity when the triterpene is equipped with a nitroaromatic moiety. CONCLUSION We believe this approach to the functionalization is promising in terms of enhancing anticancer activity. We also indicate electrochemical techniques as advantageous preclinical screening methods for the identification of cytotoxic agents.
Collapse
|
26
|
Jensen-Jarolim E, Bax HJ, Bianchini R, Crescioli S, Daniels-Wells TR, Dombrowicz D, Fiebiger E, Gould HJ, Irshad S, Janda J, Josephs DH, Levi-Schaffer F, O'Mahony L, Pellizzari G, Penichet ML, Redegeld F, Roth-Walter F, Singer J, Untersmayr E, Vangelista L, Karagiannis SN. AllergoOncology: Opposite outcomes of immune tolerance in allergy and cancer. Allergy 2018; 73:328-340. [PMID: 28921585 PMCID: PMC6038916 DOI: 10.1111/all.13311] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
Abstract
While desired for the cure of allergy, regulatory immune cell subsets and nonclassical Th2-biased inflammatory mediators in the tumour microenvironment can contribute to immune suppression and escape of tumours from immunological detection and clearance. A key aim in the cancer field is therefore to design interventions that can break immunological tolerance and halt cancer progression, whereas on the contrary allergen immunotherapy exactly aims to induce tolerance. In this position paper, we review insights on immune tolerance derived from allergy and from cancer inflammation, focusing on what is known about the roles of key immune cells and mediators. We propose that research in the field of AllergoOncology that aims to delineate these immunological mechanisms with juxtaposed clinical consequences in allergy and cancer may point to novel avenues for therapeutic interventions that stand to benefit both disciplines.
Collapse
Affiliation(s)
- E Jensen-Jarolim
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - H J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - R Bianchini
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - S Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - T R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D Dombrowicz
- INSERM, CHU Lille, European Genomic Institute of Diabetes, Institut Pasteur de Lille, U1011 - Recepteurs Nucleaires, Maladies Cardiovasculaires et Diabete, Universite de Lille, Lille, France
| | - E Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department Medicine Research, Childrens' University Hospital Boston, Boston, MA, USA
| | - H J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - S Irshad
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - J Janda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - D H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - F Levi-Schaffer
- Faculty of Medicine, Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - G Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - M L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - F Redegeld
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - F Roth-Walter
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - J Singer
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - E Untersmayr
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - L Vangelista
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
27
|
Papanagnou P, Stivarou T, Papageorgiou I, Papadopoulos GE, Pappas A. Marketed drugs used for the management of hypercholesterolemia as anticancer armament. Onco Targets Ther 2017; 10:4393-4411. [PMID: 28932124 PMCID: PMC5598753 DOI: 10.2147/ott.s140483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The design of novel pharmacologic agents as well as their approval for sale in markets all over the world is a tedious and pricey process. Inevitably, oncologic patients commonly experience unwanted effects of new anticancer drugs, while the acquisition of clinical experience for these drugs is largely based on doctor–patient partnership which is not always effective. The repositioning of marketed non-antineoplastic drugs that hopefully exhibit anticancer properties into the field of oncology is a challenging option that gains ground and attracts preclinical and clinical research in an effort to override all these hindrances and minimize the risk for reduced efficacy and/or personalized toxicity. This review aims to present the anticancer properties of drugs used for the management of hypercholesterolemia. A global view of the antitumorigenicity of all marketed antihypercholesterolemic drugs is of major importance, given that atherosclerosis, which is etiologically linked to hypercholesterolemia, is a leading worldwide cause of morbidity and mortality, while hypercholesterolemia and tumorigenesis are known to be interrelated. In vitro, in vivo and clinical literature data accumulated so far outline the mechanistic basis of the antitumor function of these agents and how they could find application at the clinical setting.
Collapse
Affiliation(s)
| | - Theodora Stivarou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
28
|
Redd PS, Ibrahim ML, Klement JD, Sharman SK, Paschall AV, Yang D, Nayak-Kapoor A, Liu K. SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Res 2017; 77:2834-2843. [PMID: 28381543 DOI: 10.1158/0008-5472.can-16-2238] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
Abstract
Inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) in myeloid cells that acts as a defense mechanism to suppress invading microorganisms or neoplastic cells. In tumor-bearing mice, elevated iNOS expression is a hallmark of myeloid-derived suppressor cells (MDSC). MDSCs use NO to nitrate both the T-cell receptor and STAT1, thus inhibiting T-cell activation and the antitumor immune response. The molecular mechanisms underlying iNOS expression and regulation in tumor-induced MDSCs are unknown. We report here that deficiency in IRF8 results in diminished iNOS expression in both mature CD11b+Gr1- and immature CD11b+Gr1+ myeloid cells in vivo Strikingly, although IRF8 was silenced in tumor-induced MDSCs, iNOS expression was significantly elevated in tumor-induced MDSCs, suggesting that the expression of iNOS is regulated by an IRF8-independent mechanism under pathologic conditions. Furthermore, tumor-induced MDSCs exhibited diminished STAT1 and NF-κB Rel protein levels, the essential inducers of iNOS in myeloid cells. Instead, tumor-induced MDSCs showed increased SETD1B expression as compared with their cellular equivalents in tumor-free mice. Chromatin immunoprecipitation revealed that H3K4me3, the target of SETD1B, was enriched at the nos2 promoter in tumor-induced MDSCs, and inhibition or silencing of SETD1B diminished iNOS expression in tumor-induced MDSCs. Our results show how tumor cells use the SETD1B-H3K4me3 epigenetic axis to bypass a normal role for IRF8 expression in activating iNOS expression in MDSCs when they are generated under pathologic conditions. Cancer Res; 77(11); 2834-43. ©2017 AACR.
Collapse
Affiliation(s)
- Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia. .,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|