1
|
Ge Y, Jiang L, Yang C, Dong Q, Tang C, Xu Y, Zhong X. Interactions between tumor-associated macrophages and regulated cell death: therapeutic implications in immuno-oncology. Front Oncol 2024; 14:1449696. [PMID: 39575419 PMCID: PMC11578871 DOI: 10.3389/fonc.2024.1449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in sculpting the tumor microenvironment and influencing cancer progression, particularly through their interactions with various forms of regulated cell death (RCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis. This review examines the interplay between TAMs and these RCD pathways, exploring the mechanisms through which they interact to promote tumor growth and advancement. We examine the underlying mechanisms of these intricate interactions, emphasizing their importance in cancer progression and treatment. Moreover, we present potential therapeutic strategies for targeting TAMs and manipulating RCD to enhance anti-tumor responses. These strategies encompass reprogramming TAMs, inhibiting their recruitment, and selectively eliminating them to enhance anti-tumor functions, alongside modulating RCD pathways to amplify immune responses. These insights offer a novel perspective on tumor biology and provide a foundation for the development of more efficacious cancer therapies.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengwu Tang
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Sezginer O, Unver N. Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization. Inflamm Res 2024; 73:1411-1423. [PMID: 38935134 PMCID: PMC11349836 DOI: 10.1007/s00011-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alternatively activated macrophage (M2) polarization can result in one of four subtypes based on cytokines and signaling pathways associated with macrophage activation: M2a, M2b, M2c, and M2d macrophages. The majority of M2 subtypes are anti-inflammatory and pro-angiogenic, secreting growth factors (VEGF, PDGF) and matrix metalloproteinases (MMP2, MMP9) which boost tumor growth, metastasis, and invasion. M2-polarized macrophages are associated with immune suppressor cells harboring Myeloid derived suppressor cells, Regulatory T cells (Tregs), Regulatory B cells as well as alternatively activated (N2) neutrophils. Treg cells selectively support the metabolic stability, mitochondrial integrity, and survival rate of M2-like TAMs in an indirect environment. Also, the contribution of Breg cells influences macrophage polarization towards the M2 direction. TAM is activated when TAN levels in the tumor microenvironment are insufficient or vice versa, suggesting that macrophage and its polarization are fine-tuned. Understanding the functions of immune suppressive cells, mediators, and signaling pathways involved with M2 polarization will allow us to identify potential strategies for targeting the TAM repolarization phenotype for innovative immunotherapy approaches. In this review, we have highlighted the critical factors for M2 macrophage polarization, differential cytokine/chemokine profiles of M1 and M2 macrophage subtypes, and other immune cells' impact on the polarization within the immunosuppressive niche.
Collapse
Affiliation(s)
- Onurcan Sezginer
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Nese Unver
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
3
|
Zhao Y, Ni Q, Zhang W, Yu S. Progress in reeducating tumor-associated macrophages in tumor microenvironment. Discov Oncol 2024; 15:312. [PMID: 39060648 PMCID: PMC11282027 DOI: 10.1007/s12672-024-01186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Malignant tumor, one of the most threatening diseases to human health, has been comprehensively treated with surgery, radiotherapy, chemotherapy and targeted therapy, but the prognosis has not always been ideal. In the past decade, immunotherapy has shown increased efficacy in tumor treatment; however, for immunotherapy to achieve its fullest potential, obstacles are to be conquered, among which tumor microenvironment (TME) has been widely investigated. In remodeling the tumor immune microenvironment to inhibit tumor progression, macrophages, as the most abundant innate immune population, play an irreplaceable role in the immune response. Therefore, how to remodel TME and alter the recruitment and polarization status of tumor-associated macrophages (TAM) has been of wide interest. In this context, nanoparticles, photodynamic therapy and other therapeutic approaches capable of affecting macrophage polarization have emerged. In this paper, we categorize and organize the existing means and methods for reprogramming TAM to provide ideas for clinical application of novel tumor-related therapies.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Qianyang Ni
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Weijian Zhang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Suyang Yu
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China.
| |
Collapse
|
4
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
5
|
Jeong B, Pahan K. IL-12p40 Monomer: A Potential Player in Macrophage Regulation. IMMUNO 2024; 4:77-90. [PMID: 38435456 PMCID: PMC10907066 DOI: 10.3390/immuno4010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Macrophages are myeloid phagocytic leukocytes whose functions are to protect against infections, mediate T-cell responses, and maintain tissue homeostasis. IL-12p40 monomer is a cytokine that is largely produced by macrophages, and it has, for the longest time, been considered a largely non-functional cytokine of the IL-12 family. However, new research has emerged that demonstrates that this p40 monomer may play a bigger role in shaping immune environments. To shed light on the specific effects of p40 monomer on macrophages and their surrounding environment, we showed, through cell culture studies, qPCR, ELISA, and immunofluorescence analyses, that the direct administration of recombinant p40 monomer to RAW 264.7 cells and primary lung macrophages stimulated the production of both pro-inflammatory (TNFα) and anti-inflammatory (IL-10) signals. Accordingly, p40 monomer prevented the full pro-inflammatory effects of LPS, and the neutralization of p40 monomer by mAb a3-3a stimulated the pro-inflammatory effects of LPS. Furthermore, we demonstrated that the intranasal administration of p40 monomer upregulated TNFα+IL-10+ macrophages in vivo in the lungs of mice. Collectively, these results indicate an important immunoregulatory function of p40 monomer in the upregulation of both pro- and anti-inflammatory molecules in macrophages.
Collapse
Affiliation(s)
- Brian Jeong
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T, Sa G. Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol 2023; 14:1295257. [PMID: 38035101 PMCID: PMC10687432 DOI: 10.3389/fimmu.2023.1295257] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer progression is primarily caused by interactions between transformed cells and the components of the tumor microenvironment (TME). TAMs (tumor-associated macrophages) make up the majority of the invading immune components, which are further categorized as anti-tumor M1 and pro-tumor M2 subtypes. While M1 is known to have anti-cancer properties, M2 is recognized to extend a protective role to the tumor. As a result, the tumor manipulates the TME in such a way that it induces macrophage infiltration and M1 to M2 switching bias to secure its survival. This M2-TAM bias in the TME promotes cancer cell proliferation, neoangiogenesis, lymphangiogenesis, epithelial-to-mesenchymal transition, matrix remodeling for metastatic support, and TME manipulation to an immunosuppressive state. TAMs additionally promote the emergence of cancer stem cells (CSCs), which are known for their ability to originate, metastasize, and relapse into tumors. CSCs also help M2-TAM by revealing immune escape and survival strategies during the initiation and relapse phases. This review describes the reasons for immunotherapy failure and, thereby, devises better strategies to impair the tumor-TAM crosstalk. This study will shed light on the understudied TAM-mediated tumor progression and address the much-needed holistic approach to anti-cancer therapy, which encompasses targeting cancer cells, CSCs, and TAMs all at the same time.
Collapse
Affiliation(s)
- Udit Basak
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
7
|
Liu Y, Xue M, Han Y, Li Y, Xiao B, Wang W, Yu J, Ye X. Exosomes from M2c macrophages alleviate intervertebral disc degeneration by promoting synthesis of the extracellular matrix via MiR-124/CILP/TGF-β. Bioeng Transl Med 2023; 8:e10500. [PMID: 38023721 PMCID: PMC10658595 DOI: 10.1002/btm2.10500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Immuno-inflammation is highly associated with anabolic and catabolic dysregulation of the extracellular matrix (ECM) in the nucleus pulposus (NP), which dramatically propels intervertebral disc degeneration (IVDD). With the characteristics of tissue remodeling and regeneration, M2c macrophages have attracted great attention in research on immune modulation that rebuilds degenerated tissues. Therefore, we first demonstrated the facilitating effects of M2c macrophages on ECM anabolism of the NP in vitro. We subsequently found that exosomes from M2c macrophages (M2c-Exoss) mediated their metabolic rebalancing effects on the ECM. To determine whether M2c-Exoss served as positive agents protecting the ECM in IVDD, we constructed an M2c-Exos-loaded hyaluronic acid hydrogel (M2c-Exos@HA hydrogel) and implanted it into the degenerated caudal disc of rats. The results of MRI and histological staining indicated that the M2c-Exos@HA hydrogel alleviated IVDD in vivo in the long term. To elucidate the underlying molecular mechanism, we performed 4D label-free proteomics to screen dysregulated proteins in NPs treated with M2c-Exoss. Cartilage intermediate layer protein (CILP) was the key protein responsible for the rebalancing effects of M2c-Exoss on ECM metabolism in the NP. With prediction and verification using luciferase assays and rescue experiments, miR-124-3p was identified as the upstream regulator in M2c-Exoss that regulated CILP and consequently enhanced the activity of the TGF-β/smad3 pathway. In conclusion, we demonstrated ameliorating effects of M2c-Exoss on the imbalance of ECM metabolism in IVDD via the miR-124/CILP/TGF-β regulatory axis, which provides a promising theoretical basis for the application of M2c macrophages and their exosomes in the treatment of IVDD.
Collapse
Affiliation(s)
- Yi Liu
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Mintao Xue
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Yaguang Han
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Yucai Li
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Bing Xiao
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Weiheng Wang
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Jiangming Yu
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xiaojian Ye
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| |
Collapse
|
8
|
Kiseleva V, Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective. Int Immunopharmacol 2023; 122:110583. [PMID: 37423155 DOI: 10.1016/j.intimp.2023.110583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Macrophages as innate immune cells with great plasticity are of great interest for cell therapy. There are two main macrophage populations - pro- and anti-inflammatory cells also known as M1 and M2. High potential in cancer research contributed to the in-depth study of the molecular processes leading to the polarization of macrophages into the M1 phenotype, and much less attention has been paid to anti-inflammatory M2 macrophages, which can be successfully used in cell therapy of inflammatory diseases. This review describes ontogenesis of macrophages, main functions of pro- and and-inflammatory cells and four M2 subpopulations characterized by different functionalities. Data on agents (cytokines, microRNAs, drugs, plant extracts) that may induce M2 polarization through the changes in microenvironment, metabolism, and efferocytosis are summarized. Finally, recent attempts at stable macrophage polarization using genetic modifications are described. This review may be helpful for researchers concerned with the problem of M2 macrophage polarization and potential use of these anti-inflammatory cells for the purposes of regenerative medicine.
Collapse
Affiliation(s)
- Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia.
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia, Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Zhang Q, Sioud M. Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting. Int J Mol Sci 2023; 24:7493. [PMID: 37108657 PMCID: PMC10138703 DOI: 10.3390/ijms24087493] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Among the innate immune cells recruited to the tumor site, macrophages are the most abundant cell population and are present at all stages of tumor progression. They undergo M1/M2 polarization in response to signals derived from TME. M1 macrophages suppress tumor growth, while their M2 counterparts exert pro-tumoral effects by promoting tumor growth, angiogenesis, metastasis, and resistance to current therapies. Several subsets of the M2 phenotype have been observed, often denoted as M2a, M2b, M2c, and M2d. These are induced by different stimuli and differ in phenotypes as well as functions. In this review, we discuss the key features of each M2 subset, their implications in cancers, and highlight the strategies that are being developed to harness TAMs for cancer treatment.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
10
|
Nwasike C, Purr E, Nagi JS, Mahler GJ, Doiron AL. Incorporation of Targeting Biomolecule Improves Interpolymer Complex-Superparamagnetic Iron Oxide Nanoparticles Attachment to and Activation of T 2 MR Signals in M2 Macrophages. Int J Nanomedicine 2023; 18:473-487. [PMID: 36718192 PMCID: PMC9884053 DOI: 10.2147/ijn.s392567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Introduction Inflammatory diseases are the leading cause of death in the world, accounting for 3 out of 5 deaths. Despite the abundance of diagnostic tools for detection, most screening and diagnostic methods are indirect and insufficient as they are unable to reliably discriminate between high-risk or low-risk stages of inflammatory diseases. Previously, we showed that the selective activation of interpolymer complexed superparamagnetic iron oxide nanoparticles (IPC-SPIOs) under oxidative conditions can be detected by a change in T2 magnetic resonance (MR) contrast. In this work, IPC-SPIOs were further modified by incorporating mannose as a targeting biomolecule to enhance nanoparticle delivery to M2 macrophages at inflammatory sites. Methods Uncoated SPIOs were synthesized via coprecipitation from a mixture of FeCl2 and FeCl3, PEGylated by adsorbing PEG 300 kDa (40 mg/mL in water) to SPIOs (3 mg/mL in water) over 24 hours, and complexed by mixing 0.25 mg/mL aqueous poly(gallol) with 2 mg/mL PEG-SPIOs and adding 1 M of phosphate buffer in a 9:9:2 ratio. Mannose-PEG attachment was accomplished conducting a second complexation of mannose-PEG to IPC-SPIOs. M2 macrophages were treated with 150, 100, and 75 µg/mL of IPC-SPIOs and mannose-IPC-SPIOs to investigate activation of T2 MRI signals. Results and Discussion Surface modification resulted in a slight reduction in ROS scavenging capacity; however, nanoparticle uptake by M2 macrophages increased by over 50%. The higher uptake did not cause a reduction in cellular viability. In fact, mannose-IPC-SPIOs induced significant T2 MR contrast in M2 macrophages compared to IPC-SPIOs and nanoparticles exposed to M1 macrophages. M2 macrophages activated over 30% of mannose-IPC-SPIOs after 6 hours of exposure compared to M1 macrophages and untargeted M2 macrophages. These findings demonstrated that mannose-IPC-SPIOs specifically targeted M2 macrophages and scavenged cellular ROS to activate T2 MR signal, which can be used to detect inflammation.
Collapse
Affiliation(s)
- Chukwuazam Nwasike
- Department of Biomedical Engineering, Binghamton University (SUNY), Binghamton, NY, USA
| | - Erin Purr
- Department of Biomedical Engineering, Binghamton University (SUNY), Binghamton, NY, USA
| | - Jaspreet Singh Nagi
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University (SUNY), Binghamton, NY, USA
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, USA,Correspondence: Amber L Doiron, Email
| |
Collapse
|
11
|
代 东, 李 博, 李 明, 程 磊. [Research Progress on the Interaction Between Microorganisms and Macrophages and Their Role in the Mediation of the Onset and Development of Oral Cancer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:27-32. [PMID: 36647639 PMCID: PMC10409038 DOI: 10.12182/20230160205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 01/18/2023]
Abstract
Oral squamous cell carcinoma is the sixth most common malignant tumor in the world, and the clinical treatment effect is not satisfactory. Because of the special nature of its location, oral cancer is inextricably linked with a wide variety of microorganisms, and its pathogenesis and development are also extremely susceptible to microbial regulation. In addition, the mediating role of the immune system is also indispensable to the course of tumor pathogenesis and development, especially tumor-associated macrophages, which amplify the regulatory role of microorganisms, and in turn regulate the microbial population components--two complementary effects that jointly exacerbate oral cancer. Herein, we summarized the existing research on the relationship between microorganisms and macrophages, as well as the regulatory role of microorganisms and macrophages in the pathogenesis and development of oral cancer. We also discussed the current status of and gaps in research on the relationship between microorganisms and macrophages and oral cancer. Both microorganisms and macrophages are considered promising indicators for prognosis, showing potentials to be used as new therapeutic targets. Despite some research interest in the role of microorganisms and macrophages in oral cancer, very few studies have linked them to oral precancerous lesions, and the mutual regulatory relationship between microorganisms and macrophages remains unclear. Therefore, in-depth exploration of the relationship network of microorganisms, macrophages and oral cancer is expected to provide more possibilities for the early diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- 东跃 代
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 博磊 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 明云 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 磊 程
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Guo Y, Tsai HI, Zhang L, Zhu H. Mitochondrial DNA on Tumor-Associated Macrophages Polarization and Immunity. Cancers (Basel) 2022; 14:1452. [PMID: 35326602 PMCID: PMC8946090 DOI: 10.3390/cancers14061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
As the richest immune cells in most tumor microenvironments (TMEs), tumor-associated macrophages (TAMs) play an important role in tumor development and treatment sensitivity. The phenotypes and functions of TAMs vary according to their sources and tumor progression. Different TAM phenotypes display distinct behaviors in terms of tumor immunity and are regulated by intracellular and exogenous molecules. Additionally, dysfunctional and oxidatively stressed mitochondrial-derived mitochondrial DNA (mtDNA) plays an important role in remodeling the phenotypes and functions of TAMs. This article reviews the interactions between mtDNA and TAMs in the TME and further discusses the influence of their performance on tumor genesis and development.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| |
Collapse
|
13
|
Effect of naturally derived surgical hemostatic materials on the proliferation of A549 human lung adenocarcinoma cells. Mater Today Bio 2022; 14:100233. [PMID: 35280330 PMCID: PMC8913356 DOI: 10.1016/j.mtbio.2022.100233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022]
Abstract
Hemostatic materials are generally applied in surgical operations for cancer, but their effects on the growth and recurrence of tumors are unclear. Herein, three commonly used naturally derived hemostatic materials, gelatin sponge, Surgicel (oxidized regenerated cellulose), and biopaper (mixture of sodium hyaluronate and carboxymethyl chitosan), were cocultured with A549 human lung adenocarcinoma cells in vitro. Furthermore, the performance of hemostatic materials and the tumorigenicity of the materials with A549 cells were observed after subcutaneous implantation into BALB/c mice. The in vitro results showed that biopaper was dissolved quickly, with the highest cell numbers at 2 and 4 days of culture. Gelatin sponges retained their structure and elicited the least cell infiltration during the 2- to 10-day culture. Surgicel partially dissolved and supported cell growth over time. The in vivo results showed that biopaper degraded rapidly and elicited an acute Th1 lymphocyte reaction at 3 days after implantation, which was decreased at 7 days after implantation. The gelatin sponge resisted degradation and evoked a hybrid M1/M2 macrophage reaction at 7–21 days after implantation, and a protumor M2d subset was confirmed. Surgicel resisted early degradation and caused obvious antitumor M2a macrophage reactions. Mice subjected to subcutaneous implantation of A549 cells and hemostatic materials in the gelatin sponge group had the largest tumor volumes and the shortest overall survival (OS), while the Surgicel and the biopaper group had the smallest volumes and the longest OS. Therefore, although gelatin sponges exhibited cytotoxicity to A549 cells in vitro, they promoted the growth of A549 cells in vivo, which was related to chronic M2d macrophage reaction. Surgicel and biopaper inhibited A549 cell growth in vivo, which is associated with chronic M2a macrophage reaction or acute Th1 lymphocyte reaction. The gelatin sponge, Surgicel and biopaper had different effects on A549 cell growth and proliferation. Biopaper degraded rapidly in vivo and elicited an antitumor Th1 lymphocyte reaction at acute inflammatory phase. The gelatin sponge resisted degradation and evoked a protumor M2d macrophage reactions. Surgicel resisted early degradation and caused obvious antitumor M2a macrophage reactions.
Collapse
|
14
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021; 11:788365. [PMID: 34988021 PMCID: PMC8722774 DOI: 10.3389/fonc.2021.788365] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil M. O’Brien-Simpson
- Antimicrobial, Cancer Therapeutics and Vaccines (ACTV) Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Macrophages Impair TLR9 Agonist Antitumor Activity through Interacting with the Anti-PD-1 Antibody Fc Domain. Cancers (Basel) 2021; 13:cancers13164081. [PMID: 34439233 PMCID: PMC8391891 DOI: 10.3390/cancers13164081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary We evaluated the contribution of macrophages to the effect of combinatorial immunotherapeutic treatments based on TLR9 stimulation (with CpG-ODNs) and PD-1 blockade in an ovarian cancer preclinical model. We observed a strong reduction in the antitumor efficacy of a TLR9 agonist upon anti-PD-1 antibody administration. Specifically, we found that TLR9-stimulated macrophages, through interacting with the fragment crystallizable (Fc) domain of the anti-PD-1 antibody, acquire an immunoregulatory phenotype leading to dampening of CpG-ODN antitumor effect. Since the stimulation of macrophage TLRs can be achieved not only by synthetic agonists but also by molecules present in the tumor microenvironment, the data we are presenting may represent another possible mechanism of anti-PD-1 antibody therapy resistance. Indeed, it is possible that when delivered as a monotherapy, anti-PD-1 antibody Fc domain may interact with macrophages in which TLR signaling has already been triggered by endogenous ligands, mirroring the biological effects described in the present study. Abstract Background. A combination of TLR9 agonists and an anti-PD-1 antibody has been reported to be effective in immunocompetent mice but the role of innate immunity has not yet been completely elucidated. Therefore, we investigated the contribution of the innate immune system to this combinatorial immunotherapeutic regimens using an immunodeficient mouse model in which the effector functions of innate immunity can clearly emerge without any interference from T lymphocytes. Methods. Athymic mice xenografted with IGROV-1 human ovarian cells, reported to be sensitive to TLR9 agonist therapy, were treated with cytosine–guanine (CpG)-oligodeoxynucleotides (ODNs), an anti-PD-1 antibody or their combination. Results. We found that PD-1 blockade dampened CpG-ODN antitumor activity. In vitro studies indicated that the interaction between the anti-PD-1 antibody fragment crystallizable (Fc) domain and macrophage Fc receptors caused these immune cells to acquire an immunoregulatory phenotype, contributing to a decrease in the efficacy of CpG-ODNs. Accordingly, in vivo macrophage depletion abrogated the detrimental effect exerted by the anti-PD-1 antibody. Conclusion. Our data suggest that if TLR signaling is active in macrophages, coadministration of an anti-PD-1 antibody can reprogram these immune cells towards a polarization state able to negatively affect the immune response and eventually promote tumor growth.
Collapse
|
16
|
Okamoto N, Ohama H, Matsui M, Fukunishi S, Higuchi K, Asai A. Hepatic F4/80 + CD11b + CD68 - cells influence the antibacterial response in irradiated mice with sepsis by Enterococcus faecalis. J Leukoc Biol 2021; 109:943-952. [PMID: 33899953 DOI: 10.1002/jlb.4a0820-550rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gut-associated sepsis is a major problem in patients undergoing abdominal radiation therapy; the majority of pathogens causing this type of sepsis are translocated from the gut microbiota. While treating sepsis, bacterial clearance must be achieved to ensure patient survival, and the hepatic immune response is responsible for this process. In particular, Kupffer cells play a crucial role in the hepatic immune response against infectious agents. Recently, two populations of Kupffer cells have been described: liver-resident macrophages (Mϕ) (F4/80+ CD11b- CD68+ cells) and hepatic Mϕ derived from circulating monocytes (F4/80+ CD11b+ CD68- cells). We examined the properties of both types of hepatic Mϕ obtained from irradiated and normal mice and their role in sepsis. Hepatic F4/80+ CD11b- CD68+ cells from both normal and irradiated mice did not show any antibacterial activity. However, F4/80+ CD11b+ CD68- cells from normal mice behaved as effector cells against sepsis by Enterococcus faecalis, although those from irradiated mice lost this ability. Moreover, hepatic F4/80+ CD11b+ CD68- cells from normal infected mice were shown to be IL-12+ IL-10- CD206- CCL1- (considered M1Mϕ), and hepatic F4/80+ CD11b- CD68+ cells from the same mice were shown to be IL-12- IL-10+ CD206+ CCL1- (considered M2aMϕ). When normal mice were exposed to radiation, hepatic F4/80+ CD11b+ CD68- cells altered their phenotype to IL-12- IL-10+ CD206- CCL1+ (considered M2bMϕ), independent of infection, but hepatic F4/80+ CD11b- CD68+ cells remained IL-12- IL-10+ CD206+ CCL1- (M2aMϕ). In addition, hepatic F4/80+ CD11b+ CD68- cells from irradiated mice acquired antibacterial activity upon treatment with CCL1 antisense oligodeoxynucleotides. Therefore, the characteristics of hepatic F4/80+ CD11b+ CD68- cells play a key role in the antibacterial response against gut-associated sepsis.
Collapse
Affiliation(s)
- Norio Okamoto
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Hideko Ohama
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Masahiro Matsui
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Shinya Fukunishi
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Kazuhide Higuchi
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Akira Asai
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
17
|
Leone V, Ali A, Weber A, Tschaharganeh DF, Heikenwalder M. Liver Inflammation and Hepatobiliary Cancers. Trends Cancer 2021; 7:606-623. [PMID: 33674229 DOI: 10.1016/j.trecan.2021.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/17/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Immune regulation has an important role in cancer development, particularly in organs with continuous exposure to environmental pathogens, such as the liver and gastrointestinal tract. Chronic liver inflammation can lead to the development of hepatobiliary cancers, namely hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), or combined HCC (cHCC)-CCA. In this review, we discuss the link between oxidative stress and the hepatic immune compartments, as well as how these factors trigger hepatocyte damage, proliferation, and eventually cancer initiation and its sustainment. We further give an overview of new anticancer therapies based on immunomodulation.
Collapse
Affiliation(s)
- Valentina Leone
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Research Unit Radiation Cytogenetics, Helmholtz Zentrum München Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, Institute of Molecular Cancer Research (IMCR), University Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Darjus Felix Tschaharganeh
- Helmholtz-University Group Cell Plasticity and Epigenetic Remodeling, German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Zhu C, Su Y, Liu L, Wang S, Liu Y, Wu J. Circular RNA hsa_circ_0004277 Stimulates Malignant Phenotype of Hepatocellular Carcinoma and Epithelial-Mesenchymal Transition of Peripheral Cells. Front Cell Dev Biol 2021; 8:585565. [PMID: 33511111 PMCID: PMC7835424 DOI: 10.3389/fcell.2020.585565] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence shows that exosomal circRNAs reflect the physiological status of donor cells, and various cell reactions are induced after exosomal circRNAs are captured by recipient cells. In this study, qRT-PCR was performed to detect circ-0004277 expression in hepatocellular carcinoma (HCC) cell lines, tissues, and plasma exosomes. The effects of circ-0004277 on the proliferation and migration of HCC cells were assessed by cell counting, 5-ethynyl-2'-deoxyuridine assays, Transwell migration assays, and tumor formation in nude mice. We found that circ-0004277 was significantly upregulated in HCC cells, tissues, and plasma exosomes compared to that in normal controls. Overexpression of circ-0004277 enhanced the proliferation, migration, and epithelial-mesenchymal transition (EMT) of HCC cells in vivo and in vitro. Furthermore, exosomes from HCC cells enhanced circ-0004277 expression in surrounding normal cells and stimulated EMT progression. ZO-1, a tight junction adapter protein, was downregulated in HCC tissues. In conclusion, our findings suggest that circ-0004277 promotes the malignant phenotype of HCC cells via inhibition of ZO-1 and promotion of EMT progression. In addition, exosomal circ-0004277 from HCC cells stimulates EMT of peripheral cells through cellular communication to further promote the invasion of HCC into normal surrounding tissues.
Collapse
Affiliation(s)
- Chuanrong Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yang Su
- Department of Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lei Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shaochuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuting Liu
- Department of Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jinsheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
19
|
Liu Y, Ji X, Kang N, Zhou J, Liang X, Li J, Han T, Zhao C, Yang T. Tumor necrosis factor α inhibition overcomes immunosuppressive M2b macrophage-induced bevacizumab resistance in triple-negative breast cancer. Cell Death Dis 2020; 11:993. [PMID: 33214550 PMCID: PMC7678839 DOI: 10.1038/s41419-020-03161-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Bevacizumab in neoadjuvant therapy provides a new hope of improved survival for patients with triple-negative breast cancer (TNBC) by targeting vascular endothelial growth factor in combination with chemotherapy, but curative effect is limited by bevacizumab’s continuous use while mechanisms remain incompletely understood. More and more researches reported that tumor-associated macrophages mediate resistance to chemotherapy and radiotherapy in various tumors. Here we developed a TNBC model resistant to bevacizumab under bevacizumab continuous administration. It was found that proportion of a specific subset of tumor-associated macrophages characterized as M2b (CD11b+ CD86high IL10high) increased and responsible for acquired resistance to bevacizumab. Then, we showed that RAW264.7 macrophages could be polarized to M2b subtype on simultaneous exposure to bevacizumab and TLR4 ligands as occurs in the context of continuous bevacizumab treatment. Concordantly, in TLR4-deleted C57BL/10ScNJNju (TLR4lps–del) mut/mut mice with bevacizumab treatment model, it was verified that the M2b macrophage could be induced by Fc gamma receptor-TLR4 cross-talk. In MDA-MB-231-resistant tumor-bearing mice, the content of TNFα in serum kept going up consistent with CCL1, a chemokine of M2b macrophage. In vitro neutralizing tumor necrosis factor α (TNFα) could inhibit the tumor progression caused by M2b culture medium and tumor IDO1 expression. Therefore, we thought that TNFα is a key tumor-promoting effector molecule secreted by M2b macrophage. Accordingly, the curative effect of bevacizumab was proved to be significantly improved by neutralizing TNFα with anti-TNFα nanobody. This study is expected to provide theoretical and clinical evidence elucidating the drug resistance in patients receiving bevacizumab.
Collapse
Affiliation(s)
- Yu Liu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xuemei Ji
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Nannan Kang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Junfei Zhou
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue Liang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxin Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianzhen Han
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Chen Zhao
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianwu Yang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
20
|
Asai A, Yasuoka H, Matsui M, Tsuchimoto Y, Fukunishi S, Higuchi K. Programmed Death 1 Ligand Expression in the Monocytes of Patients with Hepatocellular Carcinoma Depends on Tumor Progression. Cancers (Basel) 2020; 12:E2286. [PMID: 32824016 PMCID: PMC7465257 DOI: 10.3390/cancers12082286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Monocytes (CD14+ cells) from advanced-stage hepatocellular carcinoma (HCC) patients express programmed death 1 ligand (PD-L)/PD-1 and suppress the host antitumor immune response. However, it is unclear whether cancer progression is associated with CD14+ cells. We compared CD14+ cell properties before and after cancer progression in the same HCC patients and examined their role in antitumor immunity. CD14+ cells were isolated from 15 naïve early-stage HCC patients before treatment initiation and after cancer progression to advanced stages. Although CD14+ cells from patients at early HCC stages exhibited antitumor activity in humanized murine chimera, CD14+ cells from the same patients after progression to advanced stages lacked this activity. Moreover, CD14+ cells from early HCC stages scantly expressed PD-L1 and PD-L2 and produced few cytokines, while CD14+ cells from advanced stages showed increased PD-L expression and produced IL-10 and CCL1. CD14+ cells were also isolated from five naïve advanced-stage HCC patients before treatment as well as after treatment-induced tumor regression. The CD14+ cells from patients with advanced-stage HCC expressed PD-L expressions, produced IL-10 and CCL1, and exhibited minimal tumoricidal activity. After treatment-induced tumor regression, CD14+ cells from the same patients did not express PD-Ls, failed to produce cytokines, and recovered tumoricidal activity. These results indicate that PD-L expression as well as CD14+ cell phenotype depend on the tumor stage in HCC patients. PD-L expressions of monocytes may be used as a new marker in the classification of cancer progression in HCC.
Collapse
Affiliation(s)
- Akira Asai
- The Second Department of Internal Medicine, Osaka Medical College, Takatsuki 5698686, Japan; (H.Y.); (M.M.); (Y.T.); (S.F.); (K.H.)
| | | | | | | | | | | |
Collapse
|
21
|
Increased both PD-L1 and PD-L2 expressions on monocytes of patients with hepatocellular carcinoma was associated with a poor prognosis. Sci Rep 2020; 10:10377. [PMID: 32587357 PMCID: PMC7316832 DOI: 10.1038/s41598-020-67497-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
Anti-programmed cell death-1 (PD-1) antibodies has been approved to treat HCC. Some PD-1 ligands (PD–L1 and PD–L2) negative tumors respond to treatment of anti-PD-1 antibodies, and this fact may be caused by the expression of PD-1 ligands on non-tumor cells. PD–L1 was recently found to be expressed on CD14+ cells from cancer patients. We investigate PD-1 ligands expression on CD14+ cells of patients with HCC and the role of CD14+ cells in an antitumor response. In this study, 87 patients diagnosed with HCC were enrolled. CD14+ cells from patients with HCC expressed PD–L1 (4.5–95.5%) and PD–L2 (0.2–95.0%). According to cut-off values, we classified patients as those either with PD–L1+PD–L2+CD14+ cells or other types of CD14+ cells. The overall survival of patients with PD–L1+PD–L2+CD14+ cells was shorter than that of patients with other types of CD14+ cells (p = 0.0023). PD–L1+PD–L2+CD14+ cells produced IL-10 and CCL1, and showed little tumoricidal activity against HepG2 cells. The tumoricidal activity of CD8+ cells from patients with PD–L1+PD–L2+CD14+ cells were suppressed by co-cultivation with CD14+ cells from the syngeneic patient. Furthermore, anti-PD-1 antibody restored their tumoricidal activity of CD8+ cells. In conclusion, some patients with HCC have PD–L1+PD–L2+CD14+ cells that suppress their antitumor response. These inhibitory functions of CD14+ cells may be associated with a poor prognosis in these patients.
Collapse
|
22
|
Liu WR, Tian MX, Tang Z, Fang Y, Zhou YF, Song SS, Jiang XF, Wang H, Tao CY, Zhou PY, Qu WF, Ding ZB, Peng YF, Zhou J, Fan J, Shi YH. Nine-factor-based immunohistochemistry classifier predicts recurrence for early-stage hepatocellular carcinoma after curative resection. Br J Cancer 2020; 123:92-100. [PMID: 32376890 PMCID: PMC7341807 DOI: 10.1038/s41416-020-0864-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Immunoscore have shown a promising prognostic value in many cancers. We aimed to establish and validate an immune classifier to predict survival after curative resection of hepatocellular carcinoma (HCC) patients who have undergone curative resection. Methods The immunohistochemistry (IHC) classifier assay was performed on 664 patients with Barcelona Clinic Liver Cancer (BCLC) stage 0 or A HCC. A nine-feature-based HCC-IHC classifier was then constructed by the least absolute shrinkage and selection operator method. The associations between the HCC-IHC classifier and patient outcomes were assessed. Herein, a nomogram was generated from the Cox regression coefficients and evaluated by decision curve analysis. Results We constructed an HCC-IHC classifier based on nine features; significant differences were found between the low-HCC-IHC classifier patients and high-HCC-IHC classifier patients in the training cohort in the 5-year relapse-free survival rates (46.7% vs. 26.7%, respectively; P < 0.001). The HCC-IHC classifier-based nomogram presented better accuracy than traditional staging systems. Conclusions In conclusion, the HCC-IHC classifier could effectively predict recurrence in early-stage HCC patients and supplemented the prognostic value of the BCLC staging system. The HCC-IHC classifier may facilitate patient decision-making and individualise the management of postoperative patients with early-stage HCC.
Collapse
Affiliation(s)
- Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Meng-Xin Tian
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yu-Fu Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Shu-Shu Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xi-Fei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Han Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Chen-Yang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wei-Feng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan-Fei Peng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| |
Collapse
|
23
|
Bresnahan E, Lindblad KE, Ruiz de Galarreta M, Lujambio A. Mouse Models of Oncoimmunology in Hepatocellular Carcinoma. Clin Cancer Res 2020; 26:5276-5286. [PMID: 32327473 DOI: 10.1158/1078-0432.ccr-19-2923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Liver cancer is the fourth leading cause of cancer-related mortality worldwide and incidence is on the rise. Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with a complex etiology and limited treatment options. The standard-of-care treatment for patients with advanced HCC is sorafenib, a tyrosine kinase inhibitor that offers limited survival benefit. In the past years, therapeutic options for the treatment of advanced HCC have increased substantially, including additional multikinase inhibitors as well as immune checkpoint inhibitors. Nivolumab and pembrolizumab were approved in 2017 and 2018, respectively, as second-line treatment in advanced HCC. These drugs, both targeting the programmed death-1 pathway, demonstrate unprecedented results, with objective response rates of approximately 20%. However, the majority of patients do not respond, necessitating the identification of biomarkers of response and resistance to immunotherapy. With the recent success of immunotherapies in oncology, mouse models that better recapitulate the human disease and antitumor immune response are needed. This review lists ongoing clinical trials testing immunotherapy in HCC, briefly discusses the unique immunosuppressive environment of the liver, and then delves into the most applicable current murine model systems to study oncoimmunology within the context of HCC, including syngeneic, genetically engineered, and humanized models.
Collapse
Affiliation(s)
- Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marina Ruiz de Galarreta
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Yao Y, Zhang T, Ru X, Qian J, Tong Z, Li X, Kong X, Yao W, Zhou H, Zhong J. Constitutively expressed MHC class Ib molecules regulate macrophage M2b polarization and sepsis severity in irradiated mice. J Leukoc Biol 2020; 107:445-453. [PMID: 32017192 DOI: 10.1002/jlb.1ab1219-125rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/25/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Macrophages can change their physiology in response to microenvironmental signals. This differentiation into classically activated M1 or alternatively activated M2 macrophages is known as polarization. In this study, we isolated bone marrow-derived macrophages from β2m-deficient (deficient in both MHC class Ia and Ib) and Kb Db -deficient (deficient only in MHC class Ia) mice and found that β2m-deficient macrophages showed a significantly lower M2b polarization efficiency. In addition, the absence of constitutive MHC class Ib expression decreased the stability of the Notch-1 intracellular domain. Finally, we found that β2m-deficient mice exposed to irradiation showed reduced bacterial translocation and sepsis severity. Overall, our study demonstrates that MHC class Ib molecules are essential for M2b macrophage polarization and suggests that MHC class Ib molecules play an important role during infection-induced innate immunity.
Collapse
Affiliation(s)
- Yunliang Yao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Ting Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Xiaochen Ru
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Jing Qian
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Zhaowei Tong
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Xiaoyu Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Xiangyang Kong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Wenjia Yao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Hongchang Zhou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Jianfeng Zhong
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
25
|
Yang R, Liao Y, Wang L, He P, Hu Y, Yuan D, Wu Z, Sun X. Exosomes Derived From M2b Macrophages Attenuate DSS-Induced Colitis. Front Immunol 2019; 10:2346. [PMID: 31749791 PMCID: PMC6843072 DOI: 10.3389/fimmu.2019.02346] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are commonly classified as M1 macrophages or M2 macrophages. The M2 macrophages are further sub-categorized into M2a, M2b, M2c, and M2d subtypes. The M2a, M2b, and M2c subtypes play roles in anti-inflammatory activity, tissue remodeling, type 2 T helper cell (Th2) activation, and immunoregulation. Previous studies have shown that macrophage exosomes can affect some disease processes. Exosomes are 30-150-nm lipid bilayer membrane vesicles derived from most living cells, with important biological functions. The role of exosomes in preventing the development of autoimmune diseases, including inflammatory bowel disease (IBD), has evoked increasing interest. Here, we analyze the roles of exosomes derived from M2a, M2b, and M2c macrophage phenotypes in dextran sulfate sodium (DSS)-induced colitis. Exosomes were isolated from the supernatant of different types of macrophages and identified via transmission electron microscopy (TEM), western blotting, and NanoSight. The results showed that M2b macrophage exosomes significantly attenuated the severity of DSS-induced colitis in mice. The number of regulatory T (Treg) cells in the spleens of mice with colitis and levels of IL-4 both increased following treatment with M2b macrophage exosomes. In addition, key cytokines associated with colitis (IL-1β, IL-6, and IL-17A) were significantly suppressed, following treatment with M2b macrophage exosomes. The M2b macrophage exosomes exerted protective effects on DSS-induced colitis, mainly mediated by the CC chemokine 1 (CCL1)/CCR8 axis. These findings provide a novel approach for the treatment of IBD.
Collapse
Affiliation(s)
- Ruibing Yang
- Medical Department of Xizang Minzu University, Xianyang, China
- Key Laboratory for Basic Research in Life Sciences, Institutions of Higher Learning, Xianyang, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Ping He
- Medical Department of Xizang Minzu University, Xianyang, China
- Key Laboratory for Basic Research in Life Sciences, Institutions of Higher Learning, Xianyang, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dongya Yuan
- Medical Department of Xizang Minzu University, Xianyang, China
- Key Laboratory for Basic Research in Life Sciences, Institutions of Higher Learning, Xianyang, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
26
|
Tian MX, Zhou YF, Qu WF, Liu WR, Jin L, Jiang XF, Wang H, Tao CY, Zhou PY, Fang Y, Ding ZB, Peng YF, Zhou J, Fan J, Shi YH. Histopathology-based immunoscore predicts recurrence for intrahepatic cholangiocarcinoma after hepatectomy. Cancer Immunol Immunother 2019; 68:1369-1378. [PMID: 31338558 PMCID: PMC11028083 DOI: 10.1007/s00262-019-02371-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/14/2019] [Indexed: 02/06/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare malignancy with poor prognosis. The evaluation of recurrence risk after liver resection is of great importance for ICCs. We aimed to assess the prognostic value of intra- and peritumoral immune infiltrations and to establish a novel histopathology-related immunoscore (HRI) associated with ICC recurrence. A total of 280 ICC patients who received curative resection between February 2005 and July 2011 were enrolled in our study. Patients were randomly assigned to the derivation cohort (n = 176) or the validation cohort (n = 104). Sixteen immune biomarkers in both intra- and peritumoral tissues were examined by immunohistochemistry. The least absolute shrinkage and selection operator (LASSO) Cox model was used to establish the HRI score. Cox regression analysis was used for multivariate analysis. Nine recurrence-related immune features were identified and integrated into the HRI score. The HRI score was used to categorize patients into low-risk and high-risk groups using the X-tile software. Kaplan-Meier analysis presented that the HRI score showed good stratification between low-risk and high-risk groups in both the derivation cohort (P < 0.001) and the validation cohort (P = 0.014), respectively. Multivariate analysis demonstrated that serum γ-glutamyl transpeptidase, carbohydrate antigen 19-9, lymphoid metastasis, tumor numbers, and the HRI score were independent risk factors associated with recurrence-free survival (RFS). The combination of Shen's model and HRI score provided better performance in recurrence prediction compared with traditional staging systems. The HRI score might serve as a promising RFS predictor for ICC with prognostic values.
Collapse
Affiliation(s)
- Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yu-Fu Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wei-Feng Qu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Lei Jin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xi-Fei Jiang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Han Wang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Chen-Yang Tao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhen-Bin Ding
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan-Fei Peng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| |
Collapse
|
27
|
Tian MX, Liu WR, Wang H, Zhou YF, Jin L, Jiang XF, Tao CY, Tang Z, Zhou PY, Fang Y, Qu WF, Ding ZB, Peng YF, Dai Z, Qiu SJ, Zhou J, Lau WY, Fan J, Shi YH. Tissue-infiltrating lymphocytes signature predicts survival in patients with early/intermediate stage hepatocellular carcinoma. BMC Med 2019; 17:106. [PMID: 31164128 PMCID: PMC6549297 DOI: 10.1186/s12916-019-1341-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Intratumoral immune infiltrates have manifested a robust prognostic signature in patients with hepatocellular carcinoma (HCC). We hypothesized that a novel tissue-related immune signature (TRIS) could improve the prediction of postoperative survival for patients diagnosed with early/intermediate HCC. METHODS Twenty-eight immune features were immunohistochemically examined on 352 HCC specimens. The LASSO Cox regression model was used to construct a five-feature-based TRIS. The univariate and multivariate Cox analyses were performed. Based on independent predictors, the immune-clinical prognostic index (ICPI) was established. Performance assessment was measured with C-index and compared with seven traditional staging systems. The independent validation cohort (n = 393) was included to validate the model. RESULTS By using the LASSO method, the TRIS were constructed on the basis of five immune features, CD3intratumoral (T), CD27T, CD68peritumoral (P), CD103T, and PD1T. Multivariate Cox analysis showed that the TRIS was an independent prognostic predictor. In the training cohort, γ-glutamyl transferase, tumor diameter, tumor differentiation, and TRIS were incorporated into the ICPI. The ICPI presented satisfactory discrimination ability, with C-index values of 0.691 and 0.686 in the training and validation cohorts, respectively. Compared with seven conventional staging systems (C-index, training cohort, 0.548-0.597; validation cohort, 0.519-0.610), the ICPI exhibited better performance for early/intermediate-stage HCCs. Further, the patients were categorized into three subgroups with X-tile software, and the stratified ICPI presented a superior corrected Akaike information criterion and homogeneity in both cohorts. CONCLUSIONS Our ICPI was a useful and reliable prognostic tool which may offer good individualized prediction capability for HCC patients with early/intermediate stage.
Collapse
Affiliation(s)
- Meng-Xin Tian
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei-Ren Liu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Han Wang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yu-Fu Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lei Jin
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xi-Fei Jiang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Chen-Yang Tao
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zheng Tang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuan Fang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei-Feng Qu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhen-Bin Ding
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuan-Fei Peng
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhi Dai
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wan Yee Lau
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.,Faculty of Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| | - Jia Fan
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ying-Hong Shi
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Bianchini R, Roth-Walter F, Ohradanova-Repic A, Flicker S, Hufnagl K, Fischer MB, Stockinger H, Jensen-Jarolim E. IgG4 drives M2a macrophages to a regulatory M2b-like phenotype: potential implication in immune tolerance. Allergy 2019; 74:483-494. [PMID: 30338531 PMCID: PMC6492166 DOI: 10.1111/all.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Macrophages can be converted in vitro into immunoregulatory M2b macrophages in the presence of immune complexes (ICs), but the role of the specific subclasses IgG1 or IgG4 in this phenotypic and functional change is not known. OBJECTIVE We aimed to refine the original method by applying precisely defined ICs of the subclasses IgG4 or IgG1 constructed by two independent methods. METHODS Monocyte-derived macrophages (MDMs) were treated with M-CSF, followed by IL-4/IL-13 to induce the M2a allergic phenotype. To mimic unspecific or allergen-specific ICs, plates were coated with myeloma IgG1 or IgG4, or with grass pollen allergen Phl p 5 followed by recombinant human Phl p 5-specific IgG1 or IgG4. M2a polarized macrophages were then added, cultured, and examined for cellular markers and cytokines by flow cytometry, ELISA, and rtPCR. Alternatively, immune complexes with IgG1 or IgG4 were formed using protein L. RESULTS IgG4 ICs down regulated CD163 and CD206 on M2a cells, and significantly increased IL-10, IL-6, TNFα, and CCL1 secretion, indicating a shift to an M2b-like phenotype. Treatment with IgG4 ICs resulted in expression of FcγRII and down modulation of FcγRII compared with IgG1 treated cells (P = 0.0335) or untreated cells (P < 0.00001). CONCLUSION Immune complexes with subclasses IgG1 and IgG4 can in vitro be generated by plate absorption, and in fluid form by protein L. Cross-linking of FcγRIIb by the IgG4 subclass redirects pro-allergic M2a macrophages to an M2b-like immunosuppressive phenotype. This suggests an interplay of macrophages with IgG4 in immune tolerance, likely relevant in allergen immunotherapy.
Collapse
Affiliation(s)
- Rodolfo Bianchini
- Department of Comparative Medicine; The Interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University of Vienna; University Vienna; Vienna Austria
| | - Franziska Roth-Walter
- Department of Comparative Medicine; The Interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University of Vienna; University Vienna; Vienna Austria
| | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Karin Hufnagl
- Department of Comparative Medicine; The Interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University of Vienna; University Vienna; Vienna Austria
| | - Michael Bernhard Fischer
- Department of Blood Group Serology and Transfusion Medicine; Medical University Vienna; Vienna Austria
- Department of Health Science and Biomedicine; Danube University Krems; Vienna Austria
| | - Hannes Stockinger
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Erika Jensen-Jarolim
- Department of Comparative Medicine; The Interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University of Vienna; University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| |
Collapse
|
29
|
Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol 2018; 106:345-358. [PMID: 30576000 PMCID: PMC7379745 DOI: 10.1002/jlb.3ru1018-378rr] [Citation(s) in RCA: 517] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophages play an important role in a wide variety of physiologic and pathologic processes. Plasticity and functional polarization are hallmarks of macrophages. Macrophages commonly exist in two distinct subsets: classically activated macrophages (M1) and alternatively activated macrophages (M2). M2b, a subtype of M2 macrophages, has attracted increasing attention over the past decade due to its strong immune‐regulated and anti‐inflammatory effects. A wide variety of stimuli and multiple factors modulate M2b macrophage polarization in vitro and in vivo. M2b macrophages possess both protective and pathogenic roles in various diseases. Understanding the mechanisms of M2b macrophage activation and the modulation of their polarization might provide a great perspective for the design of novel therapeutic strategies. The purpose of this review is to discuss current knowledge of M2b macrophage polarization, the roles of M2b macrophages in a variety of diseases and the stimuli to modulate M2b macrophage polarization.
Collapse
Affiliation(s)
- Le-Xun Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sheng-Xi Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Juan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiang-Lu Rong
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong, Hong Kong and Macao on Glycolipid Metabolic Diseases, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|