1
|
Cech P, Skórka K, Dziki L, Giannopoulos K. T-Cell Engagers-The Structure and Functional Principle and Application in Hematological Malignancies. Cancers (Basel) 2024; 16:1580. [PMID: 38672662 PMCID: PMC11048836 DOI: 10.3390/cancers16081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Recent advancements in cancer immunotherapy have made directing the cellular immune response onto cancer cells a promising strategy for the treatment of hematological malignancies. The introduction of monoclonal antibody-based (mAbs) targeted therapy has significantly improved the prognosis for hematological patients. Facing the issues of mAb-based therapies, a novel bispecific antibody (BsAb) format was developed. T-cell engagers (TCEs) are BsAbs, which simultaneously target tumor-associated antigens on tumor cells and CD3 molecules present on T-cells. This mechanism allows for the direct activation of T-cells and their anti-tumor features, ultimately resulting in the lysis of tumor cells. In 2014, the FDA approved blinatumomab, a TCE directed to CD3 and CD19 for treatment of acute lymphoblastic leukemia. Since then, numerous TCEs have been developed, allowing for treating different hematological malignancies such as acute myeloid leukemia, multiple myeloma, and non-Hodgkin lymphoma and Hodgkin lymphoma. As of November 2023, seven clinically approved TCE therapies are on the market. TCE-based therapies still have their limitations; however, improving the properties of TCEs, as well as combining TCE-based therapies with other forms of treatment, give hope to find the cures for currently terminal diseases. In this paper, we summarized the technical basis of the TCE technology, its application in hematology, and its current issues and prospects.
Collapse
Affiliation(s)
| | - Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland; (P.C.); (L.D.); (K.G.)
| | | | | |
Collapse
|
2
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022; 11:cells11010139. [PMID: 35011701 PMCID: PMC8749975 DOI: 10.3390/cells11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.
Collapse
|
4
|
Rybchenko VS, Panina AA, Aliev TK, Solopova ON, Balabashin DS, Novoseletsky VN, Dolgikh DA, Sveshnikov PG, Kirpichnikov MP. Bispecific Antibodies for IFN-β Delivery to ErbB2 + Tumors. Biomolecules 2021; 11:1915. [PMID: 34944558 PMCID: PMC8699518 DOI: 10.3390/biom11121915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
The main aim of our work was to create a full-length bispecific antibody (BsAb) as a vehicle for the targeted delivery of interferon-beta (IFN-β) to ErbB2+ tumor cells in the form of non-covalent complex of BsAb and IFN-β. Such a construct is a CrossMab-type BsAb, consisting of an ErbB2-recognizing trastuzumab moiety, a part of chimeric antibody to IFN-β, and human IgG1 Fc domain carrying knob-into-hole amino acid substitutions necessary for the proper assembly of bispecific molecules. The IFN-β- recognizing arm of BsAb not only forms a complex with the cytokine but neutralizes its activity, thus providing a mechanism to avoid the side effects of the systemic action of IFN-β by blocking IFN-β Interaction with cell receptors in the process of cytokine delivery to tumor sites. Enzyme sandwich immunoassay confirmed the ability of BsAb to bind to human IFN-β comparable to that of the parental chimeric mAb. The BsAb binds to the recombinant ErbB2 receptor, as well as to lysates of ErbB2+ tumor cell lines. The inhibition of the antiproliferative effect of IFN-β by BsAb (IC50 = 49,3 µg/mL) was demonstrated on the HT29 cell line. It can be proposed that the BsAb obtained can serve as a component of the immunocytokine complex for the delivery of IFN-β to ErbB2-associated tumor cells.
Collapse
MESH Headings
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Gene Expression Regulation, Neoplastic
- HT29 Cells
- Humans
- Immunoglobulin Fc Fragments/chemistry
- Interferon-beta/metabolism
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Receptor, ErbB-2/metabolism
- Trastuzumab/chemistry
Collapse
Affiliation(s)
- Vladislav S. Rybchenko
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.S.B.); (D.A.D.); (M.P.K.)
| | - Anna A. Panina
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.S.B.); (D.A.D.); (M.P.K.)
| | - Teimur K. Aliev
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga N. Solopova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Russian Research Center for Molecular Diagnostics and Therapy, 117638 Moscow, Russia;
| | - Dmitry S. Balabashin
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.S.B.); (D.A.D.); (M.P.K.)
| | | | - Dmitry A. Dolgikh
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.S.B.); (D.A.D.); (M.P.K.)
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Petr G. Sveshnikov
- Russian Research Center for Molecular Diagnostics and Therapy, 117638 Moscow, Russia;
| | - Mikhail P. Kirpichnikov
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.S.B.); (D.A.D.); (M.P.K.)
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
5
|
Clinical Studies on Cytokine-Induced Killer Cells: Lessons from Lymphoma Trials. Cancers (Basel) 2021; 13:cancers13236007. [PMID: 34885117 PMCID: PMC8656601 DOI: 10.3390/cancers13236007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Lymphoma is a heterogeneous group of neoplasms including over 70 different subtypes. Its biological characteristic of deriving from lymphoid tissues makes it ideal for immunotherapy. In this paper, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy. We also reviewed pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas. Abstract Cancer is a complex disease where resistance to therapies and relapses often pose a serious clinical challenge. The scenario is even more complicated when the cancer type itself is heterogeneous in nature, e.g., lymphoma, a cancer of the lymphocytes which constitutes more than 70 different subtypes. Indeed, the treatment options continue to expand in lymphomas. Herein, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy and other pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas.
Collapse
|
6
|
Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol 2021; 14:75. [PMID: 33941237 PMCID: PMC8091790 DOI: 10.1186/s13045-021-01084-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Harnessing the power of immune cells, especially T cells, to enhance anti-tumor activities has become a promising strategy in clinical management of hematologic malignancies. The emerging bispecific antibodies (BsAbs), which recruit T cells to tumor cells, exemplified by bispecific T cell engagers (BiTEs), have facilitated the development of tumor immunotherapy. Here we discussed the advances and challenges in BiTE therapy developed for the treatment of hematologic malignancies. Blinatumomab, the first BiTE approved for the treatment of acute lymphocytic leukemia (ALL), is appreciated for its high efficacy and safety. Recent studies have focused on improving the efficacy of BiTEs by optimizing treatment regimens and refining the molecular structures of BiTEs. A considerable number of bispecific T cell-recruiting antibodies which are potentially effective in hematologic malignancies have been derived from BiTEs. The elucidation of mechanisms of BiTE action and neonatal techniques used for the construction of BsAbs can improve the treatment of hematological malignancies. This review summarized the features of bispecific T cell-recruiting antibodies for the treatment of hematologic malignancies with special focus on preclinical experiments and clinical studies.
Collapse
Affiliation(s)
- Zheng Tian
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
7
|
Martens AWJ, Janssen SR, Derks IAM, Adams Iii HC, Izhak L, van Kampen R, Tonino SH, Eldering E, van der Windt GJW, Kater AP. CD3xCD19 DART molecule treatment induces non-apoptotic killing and is efficient against high-risk chemotherapy and venetoclax-resistant chronic lymphocytic leukemia cells. J Immunother Cancer 2021; 8:jitc-2019-000218. [PMID: 32581054 PMCID: PMC7319711 DOI: 10.1136/jitc-2019-000218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Bispecific antibodies are promising new therapeutics in B cell malignancies. Whether they lead to potent T cell activation despite described T cell dysfunction in chronic lymphocytic leukemia (CLL), and are able to effectively target high-risk or venetoclax-resistant samples, is currently unknown. METHODS CD19+ cell lines or primary (high-risk) CLL were cocultured in vitro with healthy donor (HD) or CLL-derived T cells in the presence of a CD3xCD19 dual affinity retargeting molecule (CD3xCD19 DART). Cell cytotoxicity, T cell activation, proliferation and effector molecule production were analyzed using flow cytometry. RESULTS Here, we report that a bispecific CD3xCD19 DART mediates efficient killing by HD T cells of CD19+ cell-lines and primary CLL cells, regardless of immunoglobulin heavy chain variable region (IGHV) mutational status TP53 status or chemotherapy, ibrutinib or venetoclax sensitivity. Whereas TCR stimulation of CLL-derived T cells resulted in dysfunctional T cell activation and proliferation, treatment with CD3xCD19 DART led to a similar activation profile in CLL-derived and HD-derived T cells. Consistently, co-culture of CLL derived T cells with JeKo-1 or CLL cells in the presence of CD3xCD19 DART resulted in significant cytotoxicity by both CD4+ and CD8+ T cells. On stimulation of CLL cells with CD40L, CLL cells become resistant to the specific inhibitor of anti-apoptotic Bcl-2 protein venetoclax, due to upregulation of Bcl-2 family members such as Bcl-XL. Nevertheless, CD40L stimulated CLL cells were as efficiently lysed on CD3xCD19 DART treatment as unstimulated CLL cells. Further examination of the mechanism of CD3xCD19 DART mediated killing showed that lysis was dependent on granules, but was independent of BAX/BAK or caspase activity, indicating non-apoptotic cell death. CONCLUSIONS These data show that CD3xCD19 DART in CLL leads to robust T cell activation and lysis of high-risk venetoclax resistant CLL cells through a non-apoptotic mechanism.
Collapse
Affiliation(s)
- Anne W J Martens
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Hematology, Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Susanne R Janssen
- Department of Hematology, Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ingrid A M Derks
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Homer C Adams Iii
- Janssen Pharmaceutical Companies of Johnson and Johnson, Philadelphia, Pennsylvania, USA
| | - Liat Izhak
- Janssen Pharmaceutical Companies of Johnson and Johnson, Philadelphia, Pennsylvania, USA
| | - Roel van Kampen
- Department of Internal Medicine, Zuyderland Medical Centre Heerlen, Heerlen, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gerritje J W van der Windt
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Hematology, Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Patten PEM, Ferrer G, Chen SS, Kolitz JE, Rai KR, Allen SL, Barrientos JC, Ioannou N, Ramsay AG, Chiorazzi N. A Detailed Analysis of Parameters Supporting the Engraftment and Growth of Chronic Lymphocytic Leukemia Cells in Immune-Deficient Mice. Front Immunol 2021; 12:627020. [PMID: 33767698 PMCID: PMC7985329 DOI: 10.3389/fimmu.2021.627020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Patient-derived xenograft models of chronic lymphocytic leukemia (CLL) can be created using highly immunodeficient animals, allowing analysis of primary tumor cells in an in vivo setting. However, unlike many other tumors, CLL B lymphocytes do not reproducibly grow in xenografts without manipulation, proliferating only when there is concomitant expansion of T cells. Here we show that in vitro pre-activation of CLL-derived T lymphocytes allows for a reliable and robust system for primary CLL cell growth within a fully autologous system that uses small numbers of cells and does not require pre-conditioning. In this system, growth of normal T and leukemic B cells follows four distinct temporal phases, each with characteristic blood and tissue findings. Phase 1 constitutes a period during which resting CLL B cells predominate, with cells aggregating at perivascular areas most often in the spleen. In Phase 2, T cells expand and provide T-cell help to promote B-cell division and expansion. Growth of CLL B and T cells persists in Phase 3, although some leukemic B cells undergo differentiation to more mature B-lineage cells (plasmablasts and plasma cells). By Phase 4, CLL B cells are for the most part lost with only T cells remaining. The required B-T cell interactions are not dependent on other human hematopoietic cells nor on murine macrophages or follicular dendritic cells, which appear to be relatively excluded from the perivascular lymphoid aggregates. Notably, the growth kinetics and degree of anatomic localization of CLL B and T cells is significantly influenced by intravenous versus intraperitoneal administration. Importantly, B cells delivered intraperitoneally either remain within the peritoneal cavity in a quiescent state, despite the presence of dividing T cells, or migrate to lymphoid tissues where they actively divide; this dichotomy mimics the human condition in that cells in primary lymphoid tissues and the blood are predominately resting, whereas those in secondary lymphoid tissues proliferate. Finally, the utility of this approach is illustrated by documenting the effects of a bispecific antibody reactive with B and T cells. Collectively, this model represents a powerful tool to evaluate CLL biology and novel therapeutics in vivo.
Collapse
Affiliation(s)
- Piers E M Patten
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Gerardo Ferrer
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Shih-Shih Chen
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Jonathan E Kolitz
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kanti R Rai
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Steven L Allen
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jacqueline C Barrientos
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Nicholas Chiorazzi
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
9
|
van Bruggen JAC, Martens AWJ, Tonino SH, Kater AP. Overcoming the Hurdles of Autologous T-Cell-Based Therapies in B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2020; 12:cancers12123837. [PMID: 33353234 PMCID: PMC7765898 DOI: 10.3390/cancers12123837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary The activity of novel therapies that utilize patient’s own T-cells to induce remission of B-cell non-Hodgkin lymphoma (B-NHL), including chronic lymphocytic leukemia (CLL), is still suboptimal. In this review, we summarize the clinical efficacy of T-cell-based therapies in B-NHL and provide a biologic rationale for the observed (lack of) responses. We describe and compare the acquired T-cell dysfunctions that occur in the different subtypes of B-NHL. Furthermore, we discuss new insights that could enhance the efficacy of T-cell-based therapies for B-NHL and CLL. Abstract The next frontier towards a cure for B-cell non-Hodgkin lymphomas (B-NHL) is autologous cellular immunotherapy such as immune checkpoint blockade (ICB), bispecific antibodies (BsAbs) and chimeric antigen receptor (CAR) T-cells. While highly successful in various solid malignancies and in aggressive B-cell leukemia, this clinical success is often not matched in B-NHL. T-cell subset skewing, exhaustion, expansion of regulatory T-cell subsets, or other yet to be defined mechanisms may underlie the lack of efficacy of these treatment modalities. In this review, a systematic overview of results from clinical trials is given and is accompanied by reported data on T-cell dysfunction. From these results, we distill the underlying pathways that might be responsible for the observed differences in clinical responses towards autologous T-cell-based cellular immunotherapy modalities between diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL). By integration of the clinical and biological findings, we postulate strategies that might enhance the efficacy of autologous-based cellular immunotherapy for the treatment of B-NHL.
Collapse
Affiliation(s)
- Jaco A. C. van Bruggen
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Anne W. J. Martens
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Sanne H. Tonino
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Arnon P. Kater
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. Int J Mol Sci 2019; 20:E4315. [PMID: 31484424 PMCID: PMC6747204 DOI: 10.3390/ijms20174315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an acquired immune dysfunction. CLL cells affect the phenotype and function of the entire spectrum of innate and adaptive immune cells, including monocytes, T cells, and natural killer (NK) cells, leading to a tumor-supportive environment and reduced immunosurveillance. Novel immunotherapies like immune checkpoint blockade, bi- and tri-specific antibodies, and chimeric antigen receptor (CAR) T cells use the patients' immune system to induce therapeutic responses. Although these novel immunotherapies showed impressive results in several B cell lymphomas, responses in CLL were often disappointing. The strong immunomodulatory effect of CLL is believed to play a pivotal role in the low response rates to these immunotherapeutic strategies. In this review, we summarize how CLL influences the function of non-malignant lymphocytes, with a special focus on T and NK cells, two important cellular mediators for immunotherapy. Secondly, we provide a short overview of the activity of several immunotherapeutics in CLL, and discuss how novel strategies may overcome the disappointing response rates in CLL.
Collapse
Affiliation(s)
- Tom Hofland
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Müller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J, Treder M, Tesar M. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs 2019; 11:899-918. [PMID: 31172847 PMCID: PMC6601565 DOI: 10.1080/19420862.2019.1616506] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Redirection of immune cells to efficiently eliminate tumor cells holds great promise. Natural killer cells (NK), macrophages, or T cells are specifically engaged with target cells expressing markers after infection or neoplastic transformation, resulting in their activation and subsequent killing of those targets. Multiple strategies to redirect immunity have been developed in the past two decades, but they have technical hurdles or cause undesirable side-effects, as exemplified by the T cell-based chimeric antigen receptor approaches (CAR-T therapies) or bispecific T cell engager platforms. Our first-in-class bispecific antibody redirecting innate immune cells to tumors (AFM13, a CD30/CD16A-specific innate immune cell engager) has shown signs of clinical efficacy in CD30-positive lymphomas and the potential to be safely administered, indicating a wider therapeutic window compared to T cell engaging therapies. AFM13 is the most advanced candidate from our fit-for-purpose redirected optimized cell killing (ROCK®) antibody platform, which comprises a plethora of CD16A-binding innate immune cell engagers with unique properties. Here, we discuss aspects of this modular platform, including the advantages of innate immune cell engagement over classical monoclonal antibodies and other engager concepts. We also present details on its potential to engineer a fit-for-purpose innate immune cell engager format that can be equipped with unique CD16A domains, modules that influence pharmacokinetic properties and molecular architectures that influence the activation of immune effectors, as well as tumor targeting. The ROCK® platform is aimed at the activation of innate immunity for the effective lysis of tumor cells and holds the promise of overcoming limitations of other approaches that redirect immune cells by widening the therapeutic window.
Collapse
Affiliation(s)
| | - Uwe Reusch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Ivica Fucek
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Thorsten Ross
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Thomas Müller
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Torsten Haneke
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Erich Rajkovic
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Joachim Koch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Martin Treder
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Michael Tesar
- a Affimed GmbH, Research Department , Heidelberg , Germany
| |
Collapse
|
12
|
Pan J, Niu Q, Deng B, Liu S, Wu T, Gao Z, Liu Z, Zhang Y, Qu X, Zhang Y, Liu S, Ling Z, Lin Y, Zhao Y, Song Y, Tan X, Zhang Y, Li Z, Yin Z, Chen B, Yu X, Yan J, Zheng Q, Zhou X, Gao J, Chang AH, Feng X, Tong C. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia 2019; 33:2854-2866. [PMID: 31110217 DOI: 10.1038/s41375-019-0488-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
Despite worldwide promising clinical outcome of CD19 CAR-T therapy, relapse after this therapy is associated with poor prognosis and has become an urgent problem to be solved. We conducted a CD22 CAR T-cell therapy in 34 relapsed or refractory (r/r) B-ALL pediatric and adult patients who failed from previous CD19 CAR T-cell therapy. Complete remission (CR) or CR with incomplete count recovery (CRi) was achieved in 24 of 30 patients (80%) that could be evaluated on day 30 after infusion, which accounted for 70.5% of all 34 enrolled patients. Most patients only experienced mild cytokine-release syndrome and neurotoxicity. Seven CR patients received no further treatment, and 3 of them remained in remission at 6, 6.6, and 14 months after infusion. Eleven CR patients were promptly bridged to transplantation, and 8 of them remained in remission at 4.6 to 13.3 months after transplantation, resulted in 1-year leukemia-free survival rate of 71.6% (95% CI, 44.2-99.0). CD22 antigen loss or mutation was not observed to be associated with relapsed patients. Our study demonstrated that our CD22 CAR T-cells was highly effective in inducing remission in r/r B-ALL patients, and also provided a precious window for subsequent transplantation to achieve durable remission.
Collapse
Affiliation(s)
- Jing Pan
- Department of Hematology, Beijing Boren Hospital, Beijing, 100070, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Biping Deng
- Cytology Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Shuangyou Liu
- Department of Hematology, Beijing Boren Hospital, Beijing, 100070, China
| | - Tong Wu
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, 100070, China
| | - Zhiyong Gao
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, 100070, China
| | - Zhaoli Liu
- Cytology Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Yue Zhang
- Cytology Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Xiaomin Qu
- Cytology Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Yanlei Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Shaohui Liu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhuojun Ling
- Department of Hematology, Beijing Boren Hospital, Beijing, 100070, China
| | - Yuehui Lin
- Department of Hematology, Beijing Boren Hospital, Beijing, 100070, China
| | - Yongqiang Zhao
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, 100070, China
| | - Yanzhi Song
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, 100070, China
| | - Xiyou Tan
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, 100070, China
| | - Yan Zhang
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, 100070, China
| | - Zhihui Li
- Cytology Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Zhichao Yin
- Department of Hematology, Beijing Boren Hospital, Beijing, 100070, China
| | - Bingzhen Chen
- Medical Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Xinjian Yu
- Medical Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Ju Yan
- Medical Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Qinlong Zheng
- Medical Laboratory, Beijing Boren Hospital, Beijing, 100070, China
| | - Xuan Zhou
- Gaobo Healthcare Group, Beijing, China
| | - Jin Gao
- Gaobo Healthcare Group, Beijing, China
| | - Alex H Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Chunrong Tong
- Department of Hematology, Beijing Boren Hospital, Beijing, 100070, China.
| |
Collapse
|