1
|
Chen S, Huang M, Zhang L, Huang Q, Wang Y, Liang Y. Inflammatory response signature score model for predicting immunotherapy response and pan-cancer prognosis. Comput Struct Biotechnol J 2024; 23:369-383. [PMID: 38226313 PMCID: PMC10788202 DOI: 10.1016/j.csbj.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024] Open
Abstract
Background Inflammatory responses influence the outcome of immunotherapy and tumorigenesis by modulating host immunity. However, systematic inflammatory response assessment models for predicting cancer immunotherapy (CIT) responses and survival across human cancers remain unexplored. Here, we investigated an inflammatory response score model to predict CIT responses and patient survival in a pan-cancer analysis. Methods We retrieved 12 CIT response gene expression datasets from the Gene Expression Omnibus database (GSE78220, GSE19423, GSE100797, GSE126044, GSE35640, GSE67501, GSE115821 and GSE168204), Tumor Immune Dysfunction and Exclusion database (PRJEB23709, PRJEB25780 and phs000452.v2.p1), European Genome-phenome Archive database (EGAD00001005738), and IMvigor210 cohort. The tumor samples from six cancers types: metastatic urothelial cancer, metastatic melanoma, gastric cancer, primary bladder cancer, renal cell carcinoma, and non-small cell lung cancer.We further established a binary classification model to predict CIT responses using the least absolute shrinkage and selection operator (LASSO) computational algorithm. Findings The model had high predictive accuracy in both the training and validation cohorts. During sub-group analysis, area under the curve (AUC) values of 0.82, 0.80, 0.71, 0.7, 0.67, and 0.64 were obtained for the non-small cell lung cancer, gastric cancer, metastatic urothelial cancer, primary bladder cancer, metastatic melanoma, and renal cell carcinoma cohorts, respectively. CIT response rates were higher in the high-scoring training cohort subjects (51%) than the low-scoring subjects (27%). The five-year survival rates in the high- and low score groups of the training cohorts were 62% and 21%, respectively, while those of the validation cohorts were 54% and 22%, respectively (P < 0·001 in all cases). Inflammatory response signature score derived from on-treatment tumor specimens are highly predictive of response to CIT in patients with metastatic melanoma. A significant correlation was observed between the inflammatory response scores and tumor purity. Regardless of the tumor purity, patients in the low score group had a significantly poorer prognosis than those in the high score group. Immune cell infiltration analysis indicated that in the high score cohort, tumor-infiltrating lymphocytes were significantly enriched, particularly effector and natural killer cells. Inflammatory response scores were positively correlated with immune checkpoint genes, suggesting that immune checkpoint inhibitors may have benefited patients with high scores. Analysis of signature scores across different cancer types from The Cancer Genome Atlas revealed that the prognostic performance of inflammatory response scores for survival in patients who have not undergone immunotherapy can be affected by tumor purity. Interleukin 21 (IL21) had the highest weight in the inflammatory response model, suggesting its vital role in the prediction mode. Since the number of metastatic melanoma patients (n = 429) was relatively large among CIT cohorts, we further performed a co-culture experiment using a melanoma cell line and CD8 + T cell populations generated from peripheral blood monocytes. The results showed that IL21 therapy combined with anti-PD1 (programmed cell death 1) antibodies (trepril monoclonal antibodies) significantly enhanced the cytotoxic activity of CD8 + T cells against the melanoma cell line. Conclusion In this study, we developed an inflammatory response gene signature model that predicts patient survival and immunotherapy response in multiple malignancies. We further found that the predictive performance in the non-small cell lung cancer and gastric cancer group had the highest value among the six different malignancy subgroups. When compared with existing signatures, the inflammatory response gene signature scores for on-treatment samples were more robust predictors of the response to CIT in metastatic melanoma.
Collapse
Affiliation(s)
- Shuzhao Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Mayan Huang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Limei Zhang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Qianqian Huang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu R, Wang X, Zhou M, Zhai J, Sun J. PSF-lncRNA interaction as a target for novel targeted anticancer therapies. Biomed Pharmacother 2024; 180:117491. [PMID: 39332189 DOI: 10.1016/j.biopha.2024.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
The Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF), a component of the Drosophila Behavior/Human Splicing (DBHS) complex, plays a pivotal role in cancer pathogenesis. The epigenetic regulation mediated by PSF and long noncoding RNA (lncRNA), along with PSF's alternative splicing activity, has been implicated in promoting cancer cell proliferation, migration, invasion, metastasis, and drug resistance in various human cancers. Recent research highlights the therapeutic promise of targeting the PSF-lncRNA interaction to combat aggressive malignancies, making it a compelling target for cancer therapy. This review offers a detailed synthesis of the current understanding of PSF's role in oncogenic pathways and recent progress in identifying inhibitors of PSF-lncRNA interactions. Furthermore, it discusses the potential of using these inhibitors in cancer treatment strategies, especially as adjuncts to immune checkpoint blockade therapies to improve the efficacy of anti-PD-(L)1 treatments in Glioblastoma Multiforme (GBM). By outlining the interaction patterns of existing PSF-lncRNA inhibitors, this article aims to guide the development and refinement of future pharmacological interventions.
Collapse
Affiliation(s)
- Ren Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Deng Z, Zhang L, Sun C, Liu Y, Li B. Identification of molecular subtypes, prognostic status and immunotherapy response in cervical cancer based on angiogenic signature genes. Heliyon 2024; 10:e38488. [PMID: 39391470 PMCID: PMC11466623 DOI: 10.1016/j.heliyon.2024.e38488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cervical cancer, as one of the most common malignancies in women, is closely related to the mechanism of angiogenesis, which needs further exploration. Methods The squamous cell carcinoma of the cervix and cervical adenocarcinoma (CESC) data from The Cancer Genome Atlas (TCGA) database. CESC subtypes based on 48 angiogenesis-related genes were identified using consistent cluster analysis, and the limma package were adopted to screen the differentially expressed genes (DEGs) associated with prognosis. Further compress the DEGs through univariate and Least Absolute Shrinkage and Selection Operator (LASSO) COX analysis to identify the key genes. Calculate immune scores using the GSVA package and predict immunotherapy response with TIDE. For in vitro analysis, the expressions of these key genes were additionally tested via reverse-transcription quantitative PCR, and the migration and invasion of Hela cells were determined in scratch and transwell assays, respectively. Results 3 CESC subtypes were identified, with the best survival advantage in the C2 subtype and the worst in C1 subtype. A risk model was established utilizing seven key genes (MMP3, DLL4, CAP2, PDIA6, TCN2, PAPSS2, and VCAM1), showcases an Area Under the Curve (AUC) exceeding 0.7, underlining its robust performance. The risk score model showed a trend of poorer survival for patients in the high-risk score group and good agreement across different datasets. A nomogram was constructed, and calibration curves indicated robust predictive performance. Immunological analysis revealed heightened sensitivity to immunotherapy in the low-risk group. Besides, the elevated expressions of all 7 genes were seen in Hela cells, and the specific target-mediated DLL4 knockdown diminished the migration and invasion of Hela cells in vitro. Conclusion This research provides fresh insights and a valuable tool to guide therapeutic decision-making for CESC.
Collapse
Affiliation(s)
- Zhuo Deng
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Lu Zhang
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Chenyang Sun
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Yiping Liu
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Bin Li
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| |
Collapse
|
4
|
Zeng H, Jiang Q, Zhang R, Zhuang Z, Wu J, Li Y, Fang Y. Immunogenic cell death signatures from on-treatment tumor specimens predict immune checkpoint therapy response in metastatic melanoma. Sci Rep 2024; 14:22872. [PMID: 39358546 PMCID: PMC11447205 DOI: 10.1038/s41598-024-74636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Melanoma is a highly malignant form of skin cancer that typically originates from abnormal melanocytes. Despite significant advances in treating metastatic melanoma with immune checkpoint blockade (ICB) therapy, a substantial number of patients do not respond to this treatment and face risks of recurrence and metastasis. This study collected data from multiple datasets, including cohorts from Riaz et al., Gide et al., MGH, and Abril-Rodriguez et al., focusing on on-treatment samples during ICB therapy. We used the single-sample gene set enrichment analysis (ssGSEA) method to calculate immunogenic cell death scores (ICDS) and employed an elastic network algorithm to construct a model predicting ICB efficacy. By analyzing 18 ICD gene signatures, we identified 9 key ICD gene signatures that effectively predict ICB treatment response for on-treatment metastatic melanoma specimens. Results showed that patients with high ICD scores had significantly higher response rates to ICB therapy compared to those with low ICD scores. ROC analysis demonstrated that the AUC values for both the training and validation sets were around 0.8, indicating good predictive performance. Additionally, survival analysis revealed that patients with high ICD scores had longer progression-free survival (PFS). This study used an elastic network algorithm to identify 9 ICD gene signatures related to the immune response in metastatic melanoma. These gene features can not only predict the efficacy of ICB therapy but also provide references for clinical decision-making. The results indicate that ICD plays an important role in metastatic melanoma immunotherapy and that expressing ICD signatures can more accurately predict ICB treatment response and prognosis for on-treatment metastatic melanoma specimens, thus providing a basis for personalized treatment.
Collapse
Affiliation(s)
- Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, No.243, Daxue Road, Tuo Jiang Street, Jinping District, Shantou, 515041, Guangdong, China
| | - Jundong Wu
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
| | - Yutong Fang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
5
|
Chen Q, Gao F, Wu J, Zhang K, Du T, Chen Y, Cai R, Zhao D, Deng R, Tang J. Comprehensive pan-cancer analysis of mitochondrial outer membrane permeabilisation activity reveals positive immunomodulation and assists in identifying potential therapeutic targets for immunotherapy resistance. Clin Transl Med 2024; 14:e1735. [PMID: 38899748 PMCID: PMC11187817 DOI: 10.1002/ctm2.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Mitochondrial outer membrane permeabilisation (MOMP) plays a pivotal role in cellular death and immune activation. A deeper understanding of the impact of tumour MOMP on immunity will aid in guiding more effective immunotherapeutic strategies. METHODS A comprehensive pan-cancer dataset comprising 30 cancer-type transcriptomic cohorts, 20 immunotherapy transcriptomic cohorts and three immunotherapy scRNA-seq datasets was collected and analysed to determine the influence of tumour MOMP activity on clinical prognosis, immune infiltration and immunotherapy effectiveness. Leveraging 65 scRNA-Seq datasets, the MOMP signature (MOMP.Sig) was developed to accurately reflect tumour MOMP activity. The clinical predictive value of MOMP.Sig was explored through machine learning models. Integration of the MOMP.Sig model and a pan-cancer immunotherapy CRISPR screen further investigated potential targets to overcome immunotherapy resistance, which subsequently underwent clinical validation. RESULTS Our research revealed that elevated MOMP activity reduces mortality risk in cancer patients, drives the formation of an anti-tumour immune environment and enhances the response to immunotherapy. This finding emphasises the potential clinical application value of MOMP activity in immunotherapy. MOMP.Sig, offering a more precise indicator of tumour cell MOMP activity, demonstrated outstanding predictive efficacy in machine-learning models. Moreover, with the assistance of the MOMP.Sig model, FOXO1 was identified as a core modulator that promotes immune resistance. Finally, these findings were successfully validated in clinical immunotherapy cohorts of skin cutaneous melanoma and triple-negative breast cancer patients. CONCLUSIONS This study enhances our understanding of MOMP activity in immune modulation, providing valuable insights for more effective immunotherapeutic strategies across diverse tumours.
Collapse
Affiliation(s)
- Qingshan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Fenglin Gao
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Junwan Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Biotherapy Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Kaiming Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Tian Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuhong Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ruizhao Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dechang Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
6
|
Halle MK, Hodneland E, Wagner-Larsen KS, Lura NG, Fasmer KE, Berg HF, Stokowy T, Srivastava A, Forsse D, Hoivik EA, Woie K, Bertelsen BI, Krakstad C, Haldorsen IS. Radiomic profiles improve prognostication and reveal targets for therapy in cervical cancer. Sci Rep 2024; 14:11339. [PMID: 38760387 PMCID: PMC11101482 DOI: 10.1038/s41598-024-61271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Cervical cancer (CC) is a major global health problem with 570,000 new cases and 266,000 deaths annually. Prognosis is poor for advanced stage disease, and few effective treatments exist. Preoperative diagnostic imaging is common in high-income countries and MRI measured tumor size routinely guides treatment allocation of cervical cancer patients. Recently, the role of MRI radiomics has been recognized. However, its potential to independently predict survival and treatment response requires further clarification. This retrospective cohort study demonstrates how non-invasive, preoperative, MRI radiomic profiling may improve prognostication and tailoring of treatments and follow-ups for cervical cancer patients. By unsupervised clustering based on 293 radiomic features from 132 patients, we identify three distinct clusters comprising patients with significantly different risk profiles, also when adjusting for FIGO stage and age. By linking their radiomic profiles to genomic alterations, we identify putative treatment targets for the different patient clusters (e.g., immunotherapy, CDK4/6 and YAP-TEAD inhibitors and p53 pathway targeting treatments).
Collapse
Affiliation(s)
- Mari Kyllesø Halle
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Erlend Hodneland
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Kari S Wagner-Larsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Njål G Lura
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kristine E Fasmer
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hege F Berg
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Tomasz Stokowy
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Aashish Srivastava
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway
| | - David Forsse
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Erling A Hoivik
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Kathrine Woie
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Bjørn I Bertelsen
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway.
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Ni S, Liang Q, Jiang X, Ge Y, Jiang Y, Liu L. Prognostic models for immunotherapy in non-small cell lung cancer: A comprehensive review. Heliyon 2024; 10:e29840. [PMID: 38681577 PMCID: PMC11053285 DOI: 10.1016/j.heliyon.2024.e29840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of lung cancer. Given the limited clinical benefits of immunotherapy in patients with non-small cell lung cancer (NSCLC), various predictors have been shown to significantly influence prognosis. However, no single predictor is adequate to forecast patients' survival benefit. Therefore, it's imperative to develop a prognostic model that integrates multiple predictors. This model would be instrumental in identifying patients who might benefit from ICIs. Retrospective analysis and small case series have demonstrated the potential role of these models in prognostic prediction, though further prospective investigation is required to evaluate more rigorously their application in these contexts. This article presents and summarizes the latest research advancements on immunotherapy prognostic models for NSCLC from multiple omics perspectives and discuss emerging strategies being developed to enhance the domain.
Collapse
Affiliation(s)
- Siqi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xingyu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinping Ge
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uygur Autonomous Regio, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uygur Autonomous Regio, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
8
|
Tian W, Tan S, Wang J, Shen P, Qin Q, Zi D. Immune-related LncRNAs scores predicts chemotherapeutic responses and prognosis in cervical cancer patients. Discov Oncol 2024; 15:119. [PMID: 38615287 PMCID: PMC11016529 DOI: 10.1007/s12672-024-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) regulating the immune microenvironment of cancer is a hot spot. But little is known about the influence of the immune-related lncRNA (IRlncRs) on the chemotherapeutic responses and prognosis of cervical cancer (CC) patients. The purpose of the study was to identify an immune-related lncRNAs (IRlncRs)-based model for the prospective prediction of clinical outcomes in CC patients. METHODS CC patients' relevant data was acquired from The Cancer Genome Atlas (TCGA). Correlation analysis and Cox regression analyses were applied. A risk score formula was formulated. Prognostic factors were combined into a nomogram, while sensitivity for chemotherapy drugs was analyzed using the OncoPredict algorithm. RESULTS Eight optimal IRlncRs(ATP2A1-AS1, LINC01943, AL158166.1, LINC00963, AC009065.8, LIPE-AS1, AC105277.1, AC098613.1.) were incorporated in the IRlncRs model. The overall survival (OS) of the high-risk group of the model was inferior to those in the low-risk group. Further analysis demonstrated this eight-IRlncRs model as a useful prognostic marker. The Nomogram had a concordance index of survival prediction of 0.763(95% CI 0.746-0.780) and more robust predictive accuracy. Furthermore, patients in the low-risk group were found to be more sensitive to chemotherapy, including Paclitaxel, Rapamycin, Epirubicin, Vincristine, Docetaxel and Vinorelbine. CONCLUSIONS An eight-IRlncRs-based prediction model was identified that has the potential to be an important tool to predict chemotherapeutic responses and prognosis for CC patients.
Collapse
Affiliation(s)
- Weijie Tian
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Songsong Tan
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Jun Wang
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Ping Shen
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Qingfen Qin
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
9
|
Guo H, Gao S, Kong W. Stratified Prognostic Comparison Between Stage IIB-IVA Cervical Adenocarcinoma and Squamous Cell Carcinoma: A SEER Database-Based Study. Int J Womens Health 2024; 16:579-590. [PMID: 38596195 PMCID: PMC11001550 DOI: 10.2147/ijwh.s446644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Objective In current most observational studies, the prognosis of cervical adenocarcinoma is worse than that of cervical squamous cell carcinoma. However, most of the current studies are holistic and lack more detailed staging and grouping analysis of the prognosis of the two types of cervical tumors. Patients and Methods Inclusion from the SEER database of stage IIB-IVA cervical squamous cell carcinoma and cervical adenocarcinoma patients who did not undergo surgery from 2000 to 2019, underwent radiotherapy/chemotherapy/radiotherapy and chemotherapy/no treatment, and then propensity score matching (PSM) was performed to eliminate confounding factors between cervical squamous cell carcinoma and cervical adenocarcinoma patients with the same stage and treatment method. After matching the original data and propensity score, logarithmic rank test and chi square test were used to evaluate the survival benefits of different stages and treatment methods for patients using Kaplan Meier curve. The prognosis of two types of cervical tumors under the same treatment method was compared, and factors that may cause poor prognosis were analyzed, excluding confounding factors. Results A total of 10,057 patients were included in this study, and survival analysis showed a significant correlation between the treatment method used and patient prognosis (P<0.05). However, for patients who received radiotherapy or no special treatment, OS and CSS were only related to tumor stage and not to tumor type. In patients undergoing radiotherapy and chemotherapy, the OS and CSS of stage IIIA and IVA patients are not related to tumor pathological characteristics, while the OS of stage IIB patients is not related to tumor properties after PSM. Conclusion In patients undergoing radiotherapy and chemotherapy, the OS and CSS of stage IIIA and IVA patients were not related to histological type, while the OS of stage IIB patients was not related to histological type after PSM.
Collapse
Affiliation(s)
- Huimin Guo
- Gynecology Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China
| | - Songkun Gao
- Gynecologic Oncology Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China
| | - Weimin Kong
- Gynecology Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Lv ZB, Zhang JJ, Xiang C. GDF10 and IDO1 as a thyroid cancer prognostic biomarker associated with immune infiltration. Heliyon 2024; 10:e27651. [PMID: 38509876 PMCID: PMC10950683 DOI: 10.1016/j.heliyon.2024.e27651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Objection The aim of this work is to screen the immune-related genes to predict the prognosis and provide a new direction of treatment for patients with thyroid cancer (THCA). Methods The mRNA and clinical features of THCA patients were collected from the Cancer Genome Atlas (TCGA) databases. The immune-related genes were obtained from the ImmPort databases. The bio-information methods were performed to screen the differential expression genes (DEGs) and genes related to immunity between the THCA patients and normal individuals. On this basis, the hub prognosis immunity genes were screened by Veen. The related genes were obtained by constructing the protein-protein interaction network. The enrichment analyses were performed based on the protein and protein interaction (PPI) related genes. The hub immune checkpoint was screened by correlation analysis. Finally, the hub gene and the immunity checkpoint-miRNA (or transcription factor, drug) interaction network were constructed. A drug-sensitive analysis also was performed. Results The GDF10 was screened. The PPI genes were enriched in the TGF-beta signaling pathway, signaling pathways regulating, the pluripotency of stem cells, Cytokine-cytokine receptor interaction, and so on. The hub immunity checkpoint IDO1 was obtained. The joint indicator of two hub genes was positively related to the thyroid differentiation score. Three interaction factors were found to be related to the two hub genes, and 7 kinds of drugs screened act on the two hub genes at the same time. Conclusion This work indicated that immune-related gene GDF10 and immune checkpoint IDO1 are important for the prognosis prediction of THCA patients, and immunity is involved in the proliferation, and differentiation of tumor cells.
Collapse
Affiliation(s)
- Zhao-bao Lv
- Breast and Thyroid Surgery, The Second Hospital of Liaocheng, Lingqing, 252600, Shandong, China
| | - Jun-jing Zhang
- Breast and Thyroid Surgery, The Second Hospital of Liaocheng, Lingqing, 252600, Shandong, China
| | - Cheng Xiang
- Thyroid Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
11
|
Pavelková L, Táborská E, Syding LA, Plačková K, Simonova E, Hladíková K, Hensler M, Laco J, Koucký V, Zábrodský M, Bouček J, Grega M, Rozkošová K, Vošmiková H, Halaška MJ, Rob L, Práznovec I, Hodek M, Vošmik M, Čelakovský P, Chrobok V, Ryška A, Palová-Jelínková L, Špíšek R, Fialová A. Tissue contexture determines the pattern and density of tumor-infiltrating immune cells in HPV-associated squamous cell carcinomas of oropharynx and uterine cervix. Transl Oncol 2024; 41:101884. [PMID: 38242007 PMCID: PMC10831289 DOI: 10.1016/j.tranon.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
The profile of the antitumor immune response is an important factor determining patient clinical outcome. However, the influence of the tissue contexture on the composition of the tumor microenvironments of virally induced tumors is not clearly understood. Therefore, we analyzed the immune landscape of two HPV-associated malignancies: oropharyngeal squamous cell carcinoma (OPSCC) and squamous cell carcinoma of uterine cervix (CESC). We employed multiplex immunohistochemistry and immunofluorescence to evaluate the density and spatial distribution of immune cells in retrospective cohorts of OPSCC and CESC patients. This approach was complemented by transcriptomic analysis of purified primary tumor cells and in silico analysis of publicly available RNA sequencing data. Transcriptomic analysis showed similar immune profiles in OPSCC and CESC samples. Interestingly, immunostaining of OPSCC tissues revealed high densities of immune cells in both tumor stroma and tumor epithelium, whereas CESC samples were mainly characterized by the lack of immune cells in the tumor epithelium. However, in contrast to other immune cell populations, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were abundant in both segments of CESC samples and CESC-derived tumor cells expressed markedly higher levels of the PMN-MDSC chemoattractants CXCL1, CXCL5, and CXCL6 than OPSCC tumor cells. Taken together, despite their having the same etiologic agent, the immune infiltration pattern significantly differs between OPSCC and CESC, with a noticeable shift toward prominent MDSC infiltration in the latter. Our data thus present a rationale for a diverse approach to targeted therapy in patients with HPV-associated tumors of different tissue origins.
Collapse
Affiliation(s)
- Lucie Pavelková
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eliška Táborská
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic
| | - Linn A Syding
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic
| | - Klára Plačková
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Kamila Hladíková
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic
| | - Michal Hensler
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Vladimír Koucký
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Zábrodský
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Bouček
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Rozkošová
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Hana Vošmiková
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Michael J Halaška
- Department of Obstetrics and Gynecology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lukáš Rob
- Department of Obstetrics and Gynecology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ivan Práznovec
- Department of Obstetrics and Gynecology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Miroslav Hodek
- Department of Oncology and Radiotherapy, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Milan Vošmik
- Department of Oncology and Radiotherapy, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Petr Čelakovský
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Viktor Chrobok
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | | | - Radek Špíšek
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic
| | - Anna Fialová
- SOTIO, Českomoravská 2532/19b,Prague 9, Prague CZ-19000, Czech Republic.
| |
Collapse
|
12
|
Zhang Y, Sui P, Zhong C, Liu J. Development and Validation of the novel Cuproptosis- and Immune-related Signature for Predicting Prognosis in Hepatocellular Carcinoma. J Cancer 2024; 15:2260-2275. [PMID: 38495502 PMCID: PMC10937287 DOI: 10.7150/jca.92558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Hepatocellular carcinoma often results in late-stage diagnosis, leading to decreased treatment success. To improve prognosis, this study integrates cuproptosis with immune risk scoring models for HCC patients. Method: We identified differentially expressed genes connected to cuproptosis and immune responses using Pearson correlation. A risk signature was then constructed via LASSO regression, and its robustness was validated in the International Cancer Genome Consortium dataset. Additionally, qPCR confirmed findings in tumor and normal tissues. Results: Eight genes emerged as key prognostic markers from the 110 differentially expressed genes linked to cuproptosis and immunity. A risk-scoring model was developed using gene expression, effectively categorizing patients into low- or high-risk groups. Validated in the ICGC dataset, high-risk patients had significantly reduced survival times. Multivariate Cox regression affirmed the risk signature's independent predictive capability. A clinical nomogram based on the risk signature was generated. Notably, low-risk patients might benefit more from immune checkpoint inhibitors. qPCR and western blotting results substantiated our bioinformatics findings. Conclusions: The genetic risk signature linked to cuproptosis and immunity holds potential as a vital prognostic biomarker for Hepatocellular carcinoma, providing avenues for tailored therapeutic strategies.
Collapse
Affiliation(s)
- Yongping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ping Sui
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Cheng Zhong
- Department of Orthopedics, The first clinical medical college of Guangzhou University of Chinese Medicine, Guangzhou, 515000, China
- Department of Orthopedics, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, 52900, China
| | - Jiansheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
13
|
He M, Wang L, Yue Z, Feng C, Dai G, Jiang J, Huang H, Ji Q, Zhou M, Li D, Chai W. Development and validation of glycosyltransferase related-gene for the diagnosis and prognosis of head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:1750-1766. [PMID: 38244579 PMCID: PMC10866440 DOI: 10.18632/aging.205455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous cancer characterized by difficulties in early diagnosis and outcome prediction. Aberrant glycosylated structures produced by the aberrant expression of glycosyltransferases are prevalent in HNSCC. In this study, we aim to construct glycosyltransferase-related gene signatures with diagnostic and prognostic value to better stratify patients with HNSCC and improve their diagnosis and prognosis. METHODS Bioinformatic tools were used to process data of patients with HNSCC from The Cancer Genome Atlas (TCGA) database. The prognostic model was formatted using univariate and multivariate Cox regression methods, while the diagnostic signature was constructed using support vector machine (SVM) and LASSO analysis. The results were verified using the Gene Expression Omnibus (GEO) cohort. The tumor microenvironment and benefits of immune checkpoint inhibitor (ICI) therapy in subgroups defined by glycosyltransferase-related genes were analyzed. Molecular biology experiments, including western blotting, cell counting kit (CCK)-8, colony formation, wound healing, and Transwell assays, were conducted to confirm the oncogenic function of beta-1,4-galactosyltransferase 3 (B4GALT3) in HNSCC. RESULTS We established a five-gene prognostic signature and a 15-gene diagnostic model. Based on the median risk score, patients with low risk had longer overall survival than those in the high-risk group, which was consistent with the results of the GEO cohort. The concrete results suggested that high-risk samples were related to a high tumor protein (TP)53 mutation rate, high infiltration of resting memory cluster of differentiation (CD)4 T cells, resting natural killer (NK) cells, and M0 macrophages, and benefited from ICI therapy. In contrast, the low-risk subgroup was associated with a low TP53 mutation rate; and high infiltration of naive B cells, plasma cells, CD8 T cells, and resting mast cells; and benefited less from ICI therapy. In addition, the diagnostic model had an area under curve (AUC) value of 0.997 and 0.978 in the training dataset and validation cohort, respectively, indicating the high diagnostic potential of the model. Ultimately, the depletion of B4GALT3 significantly hindered the proliferation, migration, and invasion of HNSCC cells. CONCLUSIONS We established two new biomarkers that could provide clinicians with diagnostic, prognostic, and treatment guidance for patients with HNSCC.
Collapse
Affiliation(s)
- Miao He
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Li Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Zihan Yue
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Chunbo Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Guosheng Dai
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Jinsong Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Hui Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Qingjun Ji
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Minglang Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Wei Chai
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| |
Collapse
|
14
|
Liu B, Xu Y, Hu B, Song X, Lin S, Wang J, Wang L, Chu T, Peng T, Xu M, Ding W, Cao C, Wu P, Li L. Immune landscape and heterogeneity of cervical squamous cell carcinoma and adenocarcinoma. Aging (Albany NY) 2024; 16:568-592. [PMID: 38206304 PMCID: PMC10817369 DOI: 10.18632/aging.205397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 01/12/2024]
Abstract
Despite the differences in disease outcomes and pathological features between cervical squamous cell carcinoma (CSCC) and adenocarcinoma (ADC), the molecular characteristics in immune heterogeneity of the tumor microenvironment remain unclear. Here, we explored the immune landscape and heterogeneity between CSCC and ADC. Gene expression and clinical characteristics of cervical carcinoma from The Cancer Genome Atlas (TCGA) were downloaded. Differentially expressed genes (DEGs), immune cell infiltration, and pathway enrichment analyses were used to explore the immune landscape and heterogeneity between CSCC and ADC. Furthermore, distinct immune signatures between CSCC and ADC were validated based on clinical samples. In total, 4,132 upregulated DEGs and 2,307 down-regulated DEGs were identified between CSCC and ADC, with enrichments in immune related-pathways in CSCC. In addition, 54 hub DEGs correlated with patients' prognosis and immunocytes infiltration were identified. The CSCC patients had a higher ImmuneScore and more abundant immunocytes infiltration compared to ADC patients, as validated by immunohistochemistry (IHC) and multicolor immunofluorescence (mIF) analyses of collected samples. Furthermore, CSCC displayed higher inhibitory immune checkpoints expression, tumor mutation burden (TMB), and microsatellite instability (MSI) compared to ADC, which indicated CSCC patients were more likely to benefit from immunotherapy. In summary, our results revealed the huge immune heterogeneity between CSCC and ADC, and provided guidance for immunotherapy selection for different pathological types of cervical cancer.
Collapse
Affiliation(s)
- Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Bai Hu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Xiaole Song
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | | | - Lingfang Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Tian Chu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430100, Hubei, China
| | - Li Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
15
|
Chouchane-Mlik O, Oniga A, Latouche A, Halladjian M, Kleine-Borgmann FB, Gérardy JJ, Mittelbronn M, Kamal M, Scholl SM. Systematic assessment of tumor necrosis at baseline in cervical cancer - An independent factor associated with poor outcome. Hum Pathol 2024; 143:62-70. [PMID: 38135059 DOI: 10.1016/j.humpath.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Cervical cancer (CC) is a leading challenge in oncology worldwide, with high prevalence and mortality rates in young adults, most prominent in low to middle-income countries with marginal screening facilities. From the prospectively collected BioRAIDS (NCT02428842) cohort of primary squamous CC conducted in 7 European countries, a central pathology review was carried out on 294 patients' tumors. The focus was on identification of tumor-stromal characteristics such as CD8+, CD45+, CD68+ staining cells, PD-L1 expression, tumor infiltrating lymphocytes (TILs) together with the degree of tumor necrosis. Both (FIGO-2018) stage (I-II/III-IV) as well as tumor necrosis were highly significantly associated with Progression-free Survival (PFS); with tumor necrosis scoring as most potent independent factor in a multivariable analysis (p < 0.001). Tumor necrosis can be assessed in the very first diagnostic biopsyand our data suggest that this rapid, simple and cost-effective biomarker, should be routinely assessed prior to treatment decisions.
Collapse
Affiliation(s)
- Olfa Chouchane-Mlik
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg.
| | - Alexandra Oniga
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Aurélien Latouche
- Statistical Methods for Precision Medicine, PSL Research University, Mines Paris Tech, INSERM U900, Paris, France; Conservatoire National des Arts et Métiers, Paris, France
| | - Maral Halladjian
- Department of Drug Development and Innovation, Institut Curie, PSL Research University, Paris & Saint-Cloud, France
| | - Felix B Kleine-Borgmann
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), Luxembourg
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), Luxembourg; Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Maud Kamal
- Department of Drug Development and Innovation, Institut Curie, PSL Research University, Paris & Saint-Cloud, France.
| | - Suzy M Scholl
- Department of Drug Development and Innovation, Institut Curie, PSL Research University, Paris & Saint-Cloud, France.
| |
Collapse
|
16
|
Wang J, Li X, Chen S, Cao J, Fan X, Wang H, Zhang X, Yang L. Identification of the role of MCM6 in bladder cancer prognosis, immunotherapy response, and in vitro experimental investigation using multi-omics analysis. Life Sci 2023; 335:122253. [PMID: 37951536 DOI: 10.1016/j.lfs.2023.122253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The tumor-promoting effects of MCM6 in numerous tumors have been widely revealed, yet its specific role in bladder cancer (BLCA) is still elusive. The objective of this research was to explore the underlying impact of MCM6 on BLCA. METHODS Integrating transcriptomic and proteomic data, MCM6 was identified to be strongly correlated with BLCA through weighted gene co-expression network analysis(WGCNA) and venn analyses. Then, the clinical value of MCM6 was validated with public database data. The different molecular/immune characteristics and the benefit of immunotherapy were also found in MCM6-defined subgroups. Additionally, single-cell RNA sequencing (scRNA-seq) data was choose for quantify MCM6 expression in the distinct BLCA cell types. The biological role of MCM6 were evaluated via in vitro functional experiments. RESULTS It was testified that the MCM6 could distinguish patients outcome in TCGA and GEO cohorts. Moreover, compared with the MCM6 low-expression group, the MCM6 high-expression group was related to more tumor-promoting related pathways, aggressive phenotypes, and benefit from immunotherapy. Analysis of scRNA-seq data resulted in MCM6 was mainly expressed in BLCA epithelial cells and the proportion of MCM6-expressing tumor epithelial cells is higher than the normal epithelial cells. Moreover, vitro experiments demonstrated that MCM6 knockdown repressed proliferation, cell cycle, migration, and invasion of BLCA cells. CONCLUSION This research indicated MCM6 is a promising marker for both prognosis and immunotherapy benefit and could promote the cells proliferation, invasion and migration in BLCA.
Collapse
Affiliation(s)
- Jirong Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiaoran Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Siyu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jinlong Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xinpeng Fan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Huabin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xingxing Zhang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
17
|
He L, Zhao C, Xu J, Li W, Lu Y, Gong Y, Gu D, Wang X, Guo F. A potential novel biomarker: comprehensive analysis of prognostic value and immune implication of CES3 in colonic adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:13239-13255. [PMID: 37480527 DOI: 10.1007/s00432-023-05156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Colon cancer is the most common malignant tumor in the intestine. Abnormal Carboxylesterases 3 (CES3) expression had been reported to be correlated to multiple tumor progression. However, the association among CES3 expression and prognostic value and immune effects in colonic adenocarcinoma (COAD) were unclear. PATIENTS AND METHODS The transcription and expression data of CES3 and corresponding clinical information was downloaded from The Cancer Genome Atlas (TCGA). The CES3 protein expression and the prognostic value were verified based on tissue microarray data. The Cancer immune group Atlas (TCIA), Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the GSE78220 immunotherapy cohort were used to forecast immunotherapy efficacy. Finally, a prognostic immune signature was constructed and verified. RESULTS Compared with normal colon tissues, the expression of mRNA and protein levels of CES3 were downregulated in tumor tissues. CES3 expression was associated with TIICs. Hihg-CES3 COAD patients had better efficacy of concurrent immunotherapy. CES3-related immune genes (CRIs) were identified and were then used to construct prognostic immune signature and had been successfully verified in GES39582. CONCLUSION CES3 might be a potential immune-related gene and promising prognostic biomarker in COAD.
Collapse
Affiliation(s)
- Lulu He
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Chenyi Zhao
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xu
- Central Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjing Li
- Department of Clinical Laboratory, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yujie Lu
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yang Gong
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Dingyi Gu
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Xiaoyan Wang
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Feng Guo
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
18
|
He YZ, Liao PC, Chang YT. Enhancing patient-centred care in Taiwan's dental education system: Exploring the feasibility of doctor-patient communication education and training. J Dent Sci 2023; 18:1830-1837. [PMID: 37799875 PMCID: PMC10548035 DOI: 10.1016/j.jds.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/02/2023] [Indexed: 10/07/2023] Open
Abstract
Background/purpose Improved communication can optimize treatment outcomes and patient satisfaction. Findings emphasize the need for tailored communication strategies based on patient characteristics. Implementing communication courses can enhance patient-centered care and reduce conflicts. Therefore, this study examined the feasibility of integrating doctor-patient communication education in Taiwan's dental education system. Materials and methods Using interviews and questionnaires, we conducted descriptive statistics and generalized linear mixed-effects model analysis on the importance of doctor-patient communication from the dentist and patient perspectives. Results More than 600 patient surveys and four interviewed dentists with 20+ years of experience stressed doctor-patient communication in dentistry. Patients' age and income were positively related to the emphasis on physician-patient communication but negatively associated with dental assistants' communication. Dentists valued communication education but differed in its execution and importance. Conclusion It is recommended to initiate dentist-patient communication education during university studies and continue its practice to adapt to the changing societal dynamics. Individuals with higher socioeconomic status and older age show a greater appreciation for dentist-patient communication, potentially driven by self-promotion, thereby highlighting the diverse nature of doctor-patient relationships. Based on our findings, we suggest to implement the doctor-patient communication courses in Taiwan.
Collapse
Affiliation(s)
- Yi-Zhou He
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yung-Ta Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
19
|
Kang H, Zhu X, Cui Y, Xiong Z, Zong W, Bao Y, Jia P. A Comprehensive Benchmark of Transcriptomic Biomarkers for Immune Checkpoint Blockades. Cancers (Basel) 2023; 15:4094. [PMID: 37627121 PMCID: PMC10452274 DOI: 10.3390/cancers15164094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy by inducing durable clinical responses, but only a small percentage of patients can benefit from ICB treatments. Many studies have established various biomarkers to predict ICB responses. However, different biomarkers were found with diverse performances in practice, and a timely and unbiased assessment has yet to be conducted due to the complexity of ICB-related studies and trials. In this study, we manually curated 29 published datasets with matched transcriptome and clinical data from more than 1400 patients, and uniformly preprocessed these datasets for further analyses. In addition, we collected 39 sets of transcriptomic biomarkers, and based on the nature of the corresponding computational methods, we categorized them into the gene-set-like group (with the self-contained design and the competitive design, respectively) and the deconvolution-like group. Next, we investigated the correlations and patterns of these biomarkers and utilized a standardized workflow to systematically evaluate their performance in predicting ICB responses and survival statuses across different datasets, cancer types, antibodies, biopsy times, and combinatory treatments. In our benchmark, most biomarkers showed poor performance in terms of stability and robustness across different datasets. Two scores (TIDE and CYT) had a competitive performance for ICB response prediction, and two others (PASS-ON and EIGS_ssGSEA) showed the best association with clinical outcome. Finally, we developed ICB-Portal to host the datasets, biomarkers, and benchmark results and to implement the computational methods for researchers to test their custom biomarkers. Our work provided valuable resources and a one-stop solution to facilitate ICB-related research.
Collapse
Affiliation(s)
- Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuli Zhu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xiong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenting Zong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
20
|
Newton AJH, Chartash D, Kleinstein SH, McDougal RA. A pipeline for the retrieval and extraction of domain-specific information with application to COVID-19 immune signatures. BMC Bioinformatics 2023; 24:292. [PMID: 37474900 PMCID: PMC10357743 DOI: 10.1186/s12859-023-05397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The accelerating pace of biomedical publication has made it impractical to manually, systematically identify papers containing specific information and extract this information. This is especially challenging when the information itself resides beyond titles or abstracts. For emerging science, with a limited set of known papers of interest and an incomplete information model, this is of pressing concern. A timely example in retrospect is the identification of immune signatures (coherent sets of biomarkers) driving differential SARS-CoV-2 infection outcomes. IMPLEMENTATION We built a classifier to identify papers containing domain-specific information from the document embeddings of the title and abstract. To train this classifier with limited data, we developed an iterative process leveraging pre-trained SPECTER document embeddings, SVM classifiers and web-enabled expert review to iteratively augment the training set. This training set was then used to create a classifier to identify papers containing domain-specific information. Finally, information was extracted from these papers through a semi-automated system that directly solicited the paper authors to respond via a web-based form. RESULTS We demonstrate a classifier that retrieves papers with human COVID-19 immune signatures with a positive predictive value of 86%. The type of immune signature (e.g., gene expression vs. other types of profiling) was also identified with a positive predictive value of 74%. Semi-automated queries to the corresponding authors of these publications requesting signature information achieved a 31% response rate. CONCLUSIONS Our results demonstrate the efficacy of using a SVM classifier with document embeddings of the title and abstract, to retrieve papers with domain-specific information, even when that information is rarely present in the abstract. Targeted author engagement based on classifier predictions offers a promising pathway to build a semi-structured representation of such information. Through this approach, partially automated literature mining can help rapidly create semi-structured knowledge repositories for automatic analysis of emerging health threats.
Collapse
Affiliation(s)
- Adam J H Newton
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - David Chartash
- Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06511, USA
- School of Medicine, University College Dublin - National University of Ireland, Dublin, Co. Dublin, Republic of Ireland
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Robert A McDougal
- Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA.
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06511, USA.
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
21
|
Zhou J, Xu L, Zhou H, Wang J, Xing X. Prediction of Prognosis and Chemotherapeutic Sensitivity Based on Cuproptosis-Associated lncRNAs in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Genes (Basel) 2023; 14:1381. [PMID: 37510286 PMCID: PMC10379127 DOI: 10.3390/genes14071381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cervical cancer is the fourth most common cancer. The 5-year survival rate for metastatic cervical cancer is less than 10%. The survival time of patients with recurrent cervical cancer is approximately 13-17 months. Cuproptosis is a novel type of cell death related to mitochondrial respiration. Accumulative studies showed that long non-coding RNAs (lncRNAs) regulated cervical cancer progression. Compressive bioinformatic analysis showed that nine cuproptosis-related lncRNAs (CRLs), including C002128.2, AC002563.1, AC009237.14, AC048337.1, AC145423.1, AL117336.1, AP001542.3, ATP2A1-AS1, and LINC00426, were independently correlated with the overall survival (OS) of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients. The time-dependent area under curve value reached 0.716 at 1 year, 0.718 at 3 years, and 0.719 at 5 years. Notably, CESC patients in the low-risk group had increased immune cell infiltration and expression of several immune checkpoints, which indicated that they may benefit more from immune checkpoint blockade therapy. In addition, we also used the model for drug sensitivity analysis. Several drug sensitivities were more sensitive in high-risk patients and showed significant correlations with the risk models, such as Bortezomib_1191, Luminespib_1559, and Rapamycin_1084, suggesting that these drugs may be candidate clinical drugs for patients with a high risk of CESC. In summary, this study further explored the mechanism of CRLs in CESC and provided a more optimized prognostic model and some insights into chemotherapy of CESC.
Collapse
Affiliation(s)
- Jianghong Zhou
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Lili Xu
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Hong Zhou
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Jingjin Wang
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Xiaoliang Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
22
|
Li J, Xue X, Zhang Y, Ding F, Wu W, Liu C, Xu Y, Chen H, Ou Q, Shao Y, Li X, Wu F, Wu X. The differences in immune features and genomic profiling between squamous cell carcinoma and adenocarcinoma - A multi-center study in Chinese patients with uterine cervical cancer. Gynecol Oncol 2023; 175:133-141. [PMID: 37356314 DOI: 10.1016/j.ygyno.2023.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Squamous cell carcinoma (SCC) and adenocarcinoma (AC) of the uterine cervix have distinct biological behaviors and different treatment responses. Studies on immune features and genomic profiling of these two pathologic types were limited and mainly focused on small patient cohorts. METHODS From 2014 to 2021, 336 (254 SCC vs. 82 AC) cervical cancer patients who were diagnosed/treated in 7 medical centers in China were enrolled in the study. Next-generation sequencing of 425 cancer-relevant genes was performed on tumor tissues and liquid biopsies. Somatic alterations and immune response-related biomarkers were analyzed. Patient prognosis and immune infiltration were analyzed using data from The Cancer Genome Atlas (TCGA). RESULTS AC tended to have more immunotherapy resistance-related STK11 alterations (P = 0.039), a higher proportion of microsatellite instability (P = 0.21), and more actionable mutations (P = 0.161). In contrast, higher tumor mutational burdens (TMB; P = 0.01), a higher proportion of TMB-high patients (P = 0.016), and more PD-L1-high patients (P = 0.0013) were observed in SCC. Multiple genetic alterations and aberrant signaling pathways were specifically enriched in AC (e.g., TP53, KRAS, ERBB2, and ARID1A alterations) or SCC (e.g., PIK3CA, FBXW7, EP300, and BAP1 mutations). Notably, AC-enriched genetic changes were significantly associated with decreased infiltrations of various B cells, T cells, and dendritic cells, whereas SCC-associated molecular features tended to be associated with increased CD4+ T cell infiltrations. CONCLUSIONS This was the first multi-center study revealing the immunologic and genomic features between SCC and AC in Chinese patients with cervical cancer. Our findings have illustrated the difference in genetic profiles of those two cervical cancer subtypes, which may suggest the possibility of differential treatment regimens, with better immunotherapy efficacy in SCC and targeted therapy options more favorable in AC.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohong Xue
- Department of Gynecology, Obstetrics & Gynecology, Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Gynecology, Weifang People's Hospital, Shandong, China
| | - Fengna Ding
- Department of Gynecologic Oncology, Shandong Linyi Tumor Hospital, Shandong, China
| | - Wenyan Wu
- Department of Obstetrics and Gynecology, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Cuicui Liu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yang Xu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Hanlin Chen
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinjun Li
- Department of Gynecology, Hebei General Hospital, Hebei, China
| | - Fei Wu
- Department of Gynecology, Maternal and Child Health Hospital of Hunan Province, Hunan, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Shi Y, Zhang Y, Zuo N, Wang L, Sun X, Liang L, Ju M, Di X. Necrotic related-lncRNAs: Prediction of prognosis and differentiation between cold and hot tumors in head and neck squamous cell carcinoma. Medicine (Baltimore) 2023; 102:e33994. [PMID: 37335630 DOI: 10.1097/md.0000000000033994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Treatment of head and neck squamous cell carcinoma (HNSCC) is a substantial clinical challenge due to the high local recurrence rate and chemotherapeutic resistance. This project seeks to identify new potential biomarkers of prognosis prediction and precision medicine to improve this condition. A synthetic data matrix for RNA transcriptome datasets and relevant clinical information on HNSCC and normal tissues was downloaded from the Genotypic Tissue Expression Project and The Cancer Genome Atlas (TCGA). The necrosis-associated long-chain noncoding RNAs (lncRNAs) were identified by Pearson correlation analysis. Then 8-necrotic-lncRNA models in the training, testing and entire sets were established through univariate Cox (uni-Cox) regression and Lasso-Cox regression. Finally, the prognostic ability of the 8-necrotic-lncRNA model was evaluated via survival analysis, nomogram, Cox regression, clinicopathological correlation analysis, and receiver operating characteristic (ROC) curve. Gene enrichment analysis, principal component analysis, immune analysis and prediction of risk group semi-maximum inhibitory concentration (IC50) were also conducted. Correlations between characteristic risk score and immune cell infiltration, immune checkpoint molecules, somatic gene mutations, and anti-cancer drug sensitivity were analyzed. Eight necrosis-associated lncRNAs (AC099850.3, AC243829.2, AL139095.4, SAP30L-AS1, C5orf66-AS1, LIN02084, LIN00996, MIR4435-2HG) were developed to improve the prognosis prediction of HNSCC patients. The risk score distribution, survival status, survival time, and relevant expression standards of these lncRNAs were compared between low- and high-risk groups in the training, testing and entire sets. Kaplan-Meier analysis showed the low-risk patients had significantly better prognosis. The ROC curves revealed the model had an acceptable predictive value in the TCGA training and testing sets. Cox regression and stratified survival analysis indicated that the 8 necrosis-associated lncRNAs were risk factors independent of various clinical parameters. We recombined the patients into 2 clusters through Consensus ClusterPlus R package according to the expressions of necrotic lncRNAs. Significant differences were found in immune cell infiltration, immune checkpoint molecules, and IC50 between clusters, suggesting these characteristics can be used to evaluate the clinical efficacy of chemotherapy and immunotherapy. This risk model may serve as a prognostic signature and provide clues for individualized immunotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Yujing Shi
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Yumeng Zhang
- Department of Radiation Oncology, Shanghai First Maternal and Child Health Care Hospital, Shanghai, China
| | - Nian Zuo
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Lan Wang
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Xinchen Sun
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Liang
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Mengyang Ju
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaoke Di
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Chen Y, Lin X, Zou X, Qian Y, Liu Y, Wang R, Wang X, Yu X, Liu C, Cheng H. A novel immune checkpoint score system for prognostic evaluation in pancreatic adenocarcinoma. BMC Gastroenterol 2023; 23:113. [PMID: 37024802 PMCID: PMC10080823 DOI: 10.1186/s12876-023-02748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) remains a lethal malignancy making the detection of novel prognostic biomarkers urgent. Limited studies have investigated the predictive capability of immune checkpoints in PAAD. METHOD Gene expression data and correlative clinical information of PAAD cohort were obtained from public databases, including TCGA, ICGC, GTEX and GEO databases. Risk factors were screened and used to establish a risk score model through LASSO and Cox regression analyses. The prognostic ability of the risk score model was demonstrated. The association between risk score with immune cells infiltration, immune checkpoint genes expression, immunogenic cell death, somatic mutations and signaling pathways enrichment were analysed. scRNA-seq data were collected to confirmed the immune checkpoints expression in PAAD samples. The prognosis prediction ability of OX40/TNFRSF4 was identified. The mRNA and protein expression of OX40 in our clinical specimens were examined by RT-PCR and IHC method and its prognosis ability was verified. RESULTS First of all, the difference of immune microenvironment between pancreatic cancer and adjacent tissues was shown. A risk score system based on three immune checkpoints (OX40, TNFSF14 and KIR3DL1) was established. The risk score model was an independent prognostic factor and performed well regarding overall survival (OS) predictions among PAAD patients. A nomogram was established to facilitate the risk model application in clinical prognosis. Immune cells including naive B cells, CD8+ T cells and Tregs were negatively correlated with the risk score. The risk score was associated with expression of immune checkpoint genes, immunogenic cell death related genes and somatic mutations. Glycolysis processes, IL-2-STAT5, IL-6-STAT3, and mTORC1 signaling pathways were enriched in the high-risk score group. Furthermore, scRNA-seq data confirmed that TNFRSF4, TNFSF14 and KIR3DL1 were expressed on immune cells in PAAD samples. We then identified OX40 as an independent prognosis-related gene, and a higher OX40 expression was associated with increased survival rate and immune environment change. In 84 PAAD clinical specimens collected from our center, we confirmed that higher OX40 mRNA expression levels were related to a good prognosis. The protein expression of OX40 on tumor-infiltrating immune cells (TIICs), endothelial cells and tumor cells was verified in PAAD tissues by immunohistochemistry (IHC) method. CONCLUSIONS Overall, our findings strongly suggested that the three-immune checkpoints score system might be useful in the prognosis and design of personalized treatments for PAAD patients. Finally, we identified OX40 as an independent potential biomarker for PAAD prognosis prediction.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - He Cheng
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Gan Q, Mao L, Shi R, Chang L, Wang G, Cheng J, Chen R. Prognostic Value and Immune Infiltration of HPV-Related Genes in the Immune Microenvironment of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Cancers (Basel) 2023; 15:1419. [PMID: 36900213 PMCID: PMC10000937 DOI: 10.3390/cancers15051419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
Mounting evidence has highlighted the immune environment as a critical feature in the development of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, the relationship between the clinical characteristics of the immune environment and CESC remain unclear. Therefore, the aim of this study was to further characterize the relationship between the tumor and immune microenvironment and the clinical features of CESC using a variety of bioinformatic methods. Expression profiles (303 CESCs and three control samples) and relevant clinical data were obtained from The Cancer Genome Atlas. We divided CESC cases into different subtypes and performed a differential gene expression analysis. In addition, gene ontology (GO) and gene set enrichment analysis (GSEA) were performed to identify potential molecular mechanisms. Furthermore, data from 115 CESC patients from East Hospital were used to help identify the relationship between the protein expressions of key genes and disease-free survival using tissue microarray technology. Cases of CESC (n = 303) were divided into five subtypes (C1-C5) based on their expression profiles. A total of 69 cross-validated differentially expressed immune-related genes were identified. Subtype C4 demonstrated a downregulation of the immune profile, lower tumor immune/stroma scores, and worse prognosis. In contrast, the C1 subtype showed an upregulation of the immune profile, higher tumor immune/stroma scores, and better prognosis. A GO analysis suggested that changes in CESC were primarily enriched nuclear division, chromatin binding, and condensed chromosomes. In addition, GSEA demonstrated that cellular senescence, the p53 signaling pathway, and viral carcinogenesis are critical features of CESC. Moreover, high FOXO3 and low IGF-1 protein expression were closely correlated with decreased clinical prognosis. In summary, our findings provide novel insight into the relationship between the immune microenvironment and CESC. As such, our results may provide guidance for developing potential immunotherapeutic targets and biomarkers for CESC.
Collapse
Affiliation(s)
- Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Luning Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Linlin Chang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Guozeng Wang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Rui Chen
- Department of Gynecology, Shanghai United Family Hospital, Shanghai 200120, China
| |
Collapse
|
26
|
Ahrenfeldt J, Christensen DS, Østergaard AB, Kisistók J, Sokač M, Birkbak NJ. The ratio of adaptive to innate immune cells differs between genders and associates with improved prognosis and response to immunotherapy. PLoS One 2023; 18:e0281375. [PMID: 36745657 PMCID: PMC9901741 DOI: 10.1371/journal.pone.0281375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised cancer treatment. However, not all cancer patients benefit, and current stratification strategies based primarily on PD1 status and mutation burden are far from perfect. We hypothesised that high activation of an innate response relative to the adaptive response may prevent proper tumour neoantigen identification and decrease the specific anticancer response, both in the presence and absence of immunotherapy. To investigate this, we obtained transcriptomic data from three large publicly available cancer datasets, the Cancer Genome Atlas (TCGA), the Hartwig Medical Foundation (HMF), and a recently published cohort of metastatic bladder cancer patients treated with immunotherapy. To analyse immune infiltration into bulk tumours, we developed an RNAseq-based model based on previously published definitions to estimate the overall level of infiltrating innate and adaptive immune cells from bulk tumour RNAseq data. From these, the adaptive-to-innate immune ratio (A/I ratio) was defined. A meta-analysis of 32 cancer types from TCGA overall showed improved overall survival in patients with an A/I ratio above median (Hazard ratio (HR) females 0.73, HR males 0.86, P < 0.05). Of particular interest, we found that the association was different for males and females for eight cancer types, demonstrating a gender bias in the relative balance of the infiltration of innate and adaptive immune cells. For patients with metastatic disease, we found that responders to immunotherapy had a significantly higher A/I ratio than non-responders in HMF (P = 0.036) and a significantly higher ratio in complete responders in a separate metastatic bladder cancer dataset (P = 0.022). Overall, the adaptive-to-innate immune ratio seems to define separate states of immune activation, likely linked to fundamental immunological reactions to cancer. This ratio was associated with improved prognosis and improved response to immunotherapy, demonstrating potential relevance to patient stratification. Furthermore, by demonstrating a significant difference between males and females that associates with response, we highlight an important gender bias which likely has direct clinical relevance.
Collapse
Affiliation(s)
- Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- * E-mail: (JA); (NJB)
| | - Ditte S. Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Judit Kisistók
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Mateo Sokač
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Nicolai J. Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- * E-mail: (JA); (NJB)
| |
Collapse
|
27
|
Sun P, Zhang H, Shi J, Xu M, Cheng T, Lu B, Yang L, Zhang X, Huang J. KRTCAP2 as an immunological and prognostic biomarker of hepatocellular carcinoma. Colloids Surf B Biointerfaces 2023; 222:113124. [PMID: 36634487 DOI: 10.1016/j.colsurfb.2023.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Alterations in protein glycosylation affect tumor progression and immune responses in the tumor microenvironment. Keratinocyte-associated protein 2 (KRTCAP2) encodes the corresponding proteins involved in N-glycosylation. The clinical predictive significance and immune role of KRTCAP2 in hepatocellular carcinoma (HCC) largely remain elusive. Combining bioinformatics tools and multiplex immunohistochemistry analysis, we evaluated the KRTCAP2 expression in the HCC tumor microenvironment. The results showed that KRTCAP2 mRNA and protein expression were markedly increased in HCC tissues. Furthermore, high KRTCAP2 expression was an independent predictive factor of unfavorable prognosis in HCC. Moreover, high KRTCAP2 protein expression was associated with a lower proportion of CD8+ T cells and CD68+ macrophages in the stroma region. There was also a lower proportion of CD8+ T cells in the tumor region with high KRTCAP2 protein expression. Specifically, KRTCAP2 expression showed an inverse relationship with programmed cell death ligand-1 in HCC. Analysis of immunophenoscore showed that the low KRTCAP2 expression group had a stronger ability to predict response to immune checkpoint inhibitors. In conclusion, KRTCAP2 had a significant prognostic value for HCC and was correlated with the immune microenvironment. Our findings suggest that KRTCAP2 is a prognostic marker for HCC patients with potential clinical implications for predicting immunotherapeutic responsiveness.
Collapse
Affiliation(s)
- Pingping Sun
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Hui Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiawen Shi
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Tong Cheng
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Bing Lu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Lei Yang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
28
|
Influence of chemoradiation on the immune microenvironment of cervical cancer patients. Strahlenther Onkol 2023; 199:121-130. [PMID: 36251031 PMCID: PMC9876875 DOI: 10.1007/s00066-022-02007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/04/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Cervical cancer remains a leading cause of cancer death in women. While immunotherapy has shown great success in combating cancer, the value of immunotherapy in cervical cancer is still only beginning to be explored. Thus, we performed a prospective analysis of patient blood and tumor samples at the beginning and end of conventional chemoradiation to assess changes in the immune cell and immunoreceptor compartments, and investigate if and when the addition of immunotherapy could be beneficial. METHODS Patients with FIGO II-III cervical cancer receiving standard chemoradiation between January 2020 and December 2021 were included. We collected tumor and blood samples from patients before and at the end of therapy and analyzed immune cell composition and immune checkpoint receptor expression on both immune and tumor cells using multicolor flow cytometry. RESULTS In all, 34 patients were eligible in the study period; 22 could be included and analyzed in this study. We found that chemoradiation significantly reduces T cell numbers in both tumors and blood, but increases macrophage and neutrophil numbers in tumors. Furthermore, we found that the percentage of immune checkpoint receptor PD‑1 and TIGIT-expressing cells in tumors was significantly reduced at the end of therapy and that CD4 and CD8 memory T cell populations were altered by chemoradiation. In addition, we observed that while PD-L1 expression intensity was upregulated by chemoradiation on blood CD8 cells, PD-L1 expression frequency and the expression intensity of antigen-presenting molecule MHC‑I were significantly reduced on tumor cells. CONCLUSION Our data demonstrate that chemoradiation significantly alters the immune cell composition of human cervical tumors and the expression of immune checkpoint receptors on both lymphocytes and tumor cells. As our results reveal that the percentage of PD‑1+ CD8 cells in the tumor as well as the frequency of PD-L1-expressing tumor cells were reduced at the end of therapy, neoadjuvant or simultaneous anti-PD‑1 or anti-PD-L1 treatment might provide better treatment efficiency in upcoming clinical studies.
Collapse
|
29
|
Hossain MA, Sohel M, Rahman MH, Hasan MI, Khan MS, Amin MA, Islam MZ, Peng S. Bioinformatics and In silico approaches to identify novel biomarkers and key pathways for cancers that are linked to the progression of female infertility: A comprehensive approach for drug discovery. PLoS One 2023; 18:e0265746. [PMID: 36608061 PMCID: PMC9821510 DOI: 10.1371/journal.pone.0265746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/07/2022] [Indexed: 01/07/2023] Open
Abstract
Despite modern treatment, infertility remains one of the most common gynecologic diseases causing severe health effects worldwide. The clinical and epidemiological data have shown that several cancerous risk factors are strongly linked to Female Infertility (FI) development, but the exact causes remain unknown. Understanding how these risk factors affect FI-affected cell pathways might pave the door for the discovery of critical signaling pathways and hub proteins that may be targeted for therapeutic intervention. To deal with this, we have used a bioinformatics pipeline to build a transcriptome study of FI with four carcinogenic risk factors: Endometrial Cancer (EC), Ovarian Cancer (OC), Cervical Cancer (CC), and Thyroid Cancer (TC). We identified FI sharing 97, 211, 87 and 33 differentially expressed genes (DEGs) with EC, OC, CC, and TC, respectively. We have built gene-disease association networks from the identified genes based on the multilayer network and neighbour-based benchmarking. Identified TNF signalling pathways, ovarian infertility genes, cholesterol metabolic process, and cellular response to cytokine stimulus were significant molecular and GO pathways, both of which improved our understanding the fundamental molecular mechanisms of cancers associated with FI progression. For therapeutic intervention, we have targeted the two most significant hub proteins VEGFA and PIK3R1, out of ten proteins based on Maximal Clique Centrality (MCC) value of cytoscape and literature analysis for molecular docking with 27 phytoestrogenic compounds. Among them, sesamin, galangin and coumestrol showed the highest binding affinity for VEGFA and PIK3R1 proteins together with favourable ADMET properties. We recommended that our identified pathway, hub proteins and phytocompounds may be served as new targets and therapeutic interventions for accurate diagnosis and treatment of multiple diseases.
Collapse
Affiliation(s)
- Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- * E-mail:
| | - Md Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
| | - Md. Sharif Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Zahidul Islam
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Silong Peng
- Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Chen S, Zhang L, Chen L, Huang Q, Wang Y, Liang Y. Comprehensive analysis of glycoprotein VI-mediated platelet activation signaling pathway for predicting pan-cancer survival and response to anti-PD-1 immunotherapy. Comput Struct Biotechnol J 2023; 21:2873-2883. [PMID: 37206616 PMCID: PMC10189353 DOI: 10.1016/j.csbj.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Platelets play a vital role in cancer and immunity. However, few comprehensive studies have been conducted on the role of platelet-related signaling pathways in various cancers and their responses to immune checkpoint blockade (ICB) therapy. In the present study, we focused on the glycoprotein VI-mediated platelet activation (GMPA) signaling pathway and comprehensively evaluated its roles in 19 types of cancers listed in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Cox regression and meta-analyses showed that for all 19 types of cancers, patients with high GMPA scores tended to have a good prognosis. Furthermore, the GMPA signature score could serve as an independent prognostic factor for patients with skin cutaneous melanoma (SKCM). The GMPA signature was linked to tumor immunity in all 19 types of cancers, and was correlated with SKCM tumor histology. Compared to other signature scores, the GMPA signature scores for on-treatment samples were more robust predictors of the response to anti-PD-1 blockade in metastatic melanoma. Moreover, the GMPA signature scores were significantly negatively correlated with EMMPRIN (CD147) and positively correlated with CD40LG expression at the transcriptomic level in most cancer patient samples from the TCGA cohort and on-treatment samples from anti-PD1 therapy cohorts. The results of this study provide an important theoretical basis for the use of GMPA signatures, as well as GPVI-EMMPRIN and GPVI-CD40LG pathways, to predict the responses of cancer patients to various types of ICB therapy.
Collapse
|
31
|
Identification of an Immune-Related Gene Signature Associated with Prognosis and Tumor Microenvironment in Esophageal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7413535. [PMID: 36588538 PMCID: PMC9803573 DOI: 10.1155/2022/7413535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Background Esophageal cancer (EC) is a common malignant tumor of the digestive system with high mortality and morbidity. Current evidence suggests that immune cells and molecules regulate the initiation and progression of EC. Accordingly, it is necessary to identify immune-related genes (IRGs) affecting the biological behaviors and microenvironmental characteristics of EC. Methods Bioinformatics methods, including differential expression analysis, Cox regression, and immune infiltration prediction, were conducted using R software to analyze the Gene Expression Omnibus (GEO) dataset. The Cancer Genome Atlas (TCGA) cohort was used to validate the prognostic signature. Patients were stratified into high- and low-risk groups for further analyses, including functional enrichment, immune infiltration, checkpoint relevance, clinicopathological characteristics, and therapeutic sensitivity analyses. Results A prognostic signature was established based on 21 IRGs (S100A7, S100A7A, LCN1, CR2, STAT4, GAST, ANGPTL5, TRAV39, F2RL2, PGLYRP3, KLRD1, TRIM36, PDGFA, SLPI, PCSK2, APLN, TICAM1, ITPR3, MAPK9, GATA4, and PLAU). Compared with high-risk patients, better overall survival rates and clinicopathological characteristics were found in low-risk patients. The areas under the curve of the two cohorts were 0.885 and 0.718, respectively. Higher proportions of resting CD4+ memory T lymphocytes, M2 macrophages, and resting dendritic cells and lower proportions of follicular helper T lymphocytes, plasma cells, and neutrophils were found in the high-risk tumors. Moreover, the high-risk group showed higher expression of CD44 and TNFSF4, lower expression of PDCD1 and CD40, and higher TIDE scores, suggesting they may respond poorly to immunotherapy. High-risk patients responded better to chemotherapeutic agents such as docetaxel, doxorubicin, and gemcitabine. Furthermore, IRGs associated with tumor progression, including PDGFA, ITPR3, SLPI, TICAM1, and GATA4, were identified. Conclusion Our immune-related signature yielded reliable value in evaluating the prognosis, microenvironmental characteristics, and therapeutic sensitivity of EC and may help with the precise treatment of this patient population.
Collapse
|
32
|
Wang J, Chen S, Wang H, Cao J, Fan X, Man J, Li Q, Yang L. Integrated molecular analyses of an interferon-γ based subtype with regard to outcome, immune characteristics, and immunotherapy in bladder cancer and experimental verification. Heliyon 2022; 8:e12102. [PMID: 36582677 PMCID: PMC9792807 DOI: 10.1016/j.heliyon.2022.e12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
This study attempted to explore the role of interferon-γ related genes (IRGs) in the prognosis and immunotherapy of bladder cancer (BC). Based on data downloaded from public databases, molecular subtypes with different IRG expression patterns were determined via nonnegative matrix factorization clustering. On the basis of IRGs, interferon-γ related gene signature (IRGS) was developed through Cox regression analyses. We identified that two molecular subgroups with different outcome and immune profiles. It was proved that IRGS possessed prediction efficiency for BC prognosis. Compared with low IRGS group, high IRGS group was related to less anti-cancer immune cells infiltration, less tumor mutation burden score, more cancer stem cell index, and less benefit from immunotherapy. Differential expression of six model genes (IRF5, LATS2, MTHFD2, VAMP8, HLA-G and PTPN6) was validated between paired tissues by RT-qPCR. This study presents a prognostic model, which could serve as an indicator for the benefit of BC immunotherapy.
Collapse
Affiliation(s)
- Jirong Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Siyu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Huabin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jinlong Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xinpeng Fan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jiangwei Man
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Qingchao Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
33
|
Maiorano BA, Maiorano MFP, Ciardiello D, Maglione A, Orditura M, Lorusso D, Maiello E. Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14235955. [PMID: 36497437 PMCID: PMC9737392 DOI: 10.3390/cancers14235955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) constitutes the fourth most common tumor among the female population. Therapeutic approaches to advanced CC are limited, with dismal results in terms of survival, mainly after progression to platinum-based regimens. Immune checkpoint inhibitors (ICIs) are remodeling the therapeutic scenario of many solid tumors. The role of ICIs in CC should be addressed. Therefore, we systematically reviewed the latest clinical trials employing ICIs in advanced CC to assess which ICIs have been employed and how ICIs might meet the need for new therapeutic options in terms of efficacy and safety. METHODS The review was conducted following the PRISMA guidelines. The following efficacy outcomes were specifically collected: overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS); for safety: type, number, and grade of adverse events (AEs). RESULTS A total of 17 studies were analyzed. Anti-PD1 (pembrolizumab, nivolumab, cemiplimab, balstilimab, and tislelizumab), anti-PD-L1 (atezolizumab), and anti-CTLA-4 (ipilimumab, zalifrelimab) agents were employed both as single agents or combinations. Overall ORR ranged from 0% to 65.9%. ORR ranged from 5.9% to 69.6% in PD-L1-positive patients and from 0% to 50% in PD-L1-negative patients. DCR was 30.6-94.1%. mPFS ranged from 2 to 10.4 months. mOS ranged from 8 months to not reached. PD-L1 status did not impact survival. A total of 33.9% to 100% of patients experienced AEs. CONCLUSION Immunotherapy represents an appealing strategy for patients with advanced CC, as 2 out of 3 patients seem to respond to ICIs. PD-L1 status might be an indicator of response without impacting survival.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence:
| | - Davide Ciardiello
- Oncology Unit, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Annamaria Maglione
- Obstetrics and Gynecology Department, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Michele Orditura
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Domenica Lorusso
- Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Scientific Directorate, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
34
|
Identification and Application of a Novel Immune-Related lncRNA Signature on the Prognosis and Immunotherapy for Lung Adenocarcinoma. Diagnostics (Basel) 2022; 12:diagnostics12112891. [PMID: 36428951 PMCID: PMC9689875 DOI: 10.3390/diagnostics12112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) participates in the immune regulation of lung cancer. However, limited studies showed the potential roles of immune-related lncRNAs (IRLs) in predicting survival and immunotherapy response of lung adenocarcinoma (LUAD). Methods: Based on The Cancer Genome Atlas (TCGA) and ImmLnc databases, IRLs were identified through weighted gene coexpression network analysis (WGCNA), Cox regression, and Lasso regression analyses. The predictive ability was validated by Kaplan−Meier (KM) and receiver operating characteristic (ROC) curves in the internal dataset, external dataset, and clinical study. The immunophenoscore (IPS)-PD1/PD-L1 blocker and IPS-CTLA4 blocker data of LUAD were obtained in TCIA to predict the response to immune checkpoint inhibitors (ICIs). The expression levels of immune checkpoint molecules and markers for hyperprogressive disease were analyzed. Results: A six-IRL signature was identified, and patients were stratified into high- and low-risk groups. The low-risk had improved survival outcome (p = 0.006 in the training dataset, p = 0.010 in the testing dataset, p < 0.001 in the entire dataset), a stronger response to ICI (p < 0.001 in response to anti-PD-1/PD-L1, p < 0.001 in response to anti-CTLA4), and higher expression levels of immune checkpoint molecules (p < 0.001 in PD-1, p < 0.001 in PD-L1, p < 0.001 in CTLA4) but expressed more biomarkers of hyperprogression in immunotherapy (p = 0.002 in MDM2, p < 0.001 in MDM4). Conclusion: The six-IRL signature exhibits a promising prediction value of clinical prognosis and ICI efficacy in LUAD. Patients with low risk might gain benefits from ICI, although some have a risk of hyperprogressive disease.
Collapse
|
35
|
Xia ZA, Zhou Y, Li J, He J. Integrated Analysis of Single-Cell and Bulk RNA-Sequencing Reveals a Tissue-Resident Macrophage-Related Signature for Predicting Immunotherapy Response in Breast Cancer Patients. Cancers (Basel) 2022; 14:cancers14225506. [PMID: 36428599 PMCID: PMC9688720 DOI: 10.3390/cancers14225506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Immune checkpoint therapy (ICT) is among the widely used treatments for breast cancer (BC), but most patients do not respond to ICT and the availability of the predictive biomarkers is limited. Emerging evidence indicates that tissue-resident macrophages (RTMs) inhibit BC progression, suggesting that their presence may predict immunotherapy response. A single-cell RNA-sequencing analysis of BC samples was performed to identify five RTM clusters with a mixed phenotype of M1-M2 macrophages. The comprehensive results showed that a high score of each RTM cluster was associated with a high infiltration of CD8+ T cells, M1 macrophages, and dendritic cells, and improved overall survival. In addition, a low score of each RTM cluster was associated with a high infiltration of M0 macrophages, naïve B cells and Tregs, and poor overall survival. Gene signatures from each RTM cluster were significantly enriched in responders compared with nonresponders. Each RTM cluster expression was significantly higher in responders than in nonresponders. The analyses of bulk RNA-seq datasets of BC samples led to identification and validation of a gene expression signature, named RTM.Sig, which contained the related genes of RTM clusters for predicting response to immunotherapy. This study highlights RTM.Sig could provide a valuable tool for clinical decisions in administering ICT.
Collapse
Affiliation(s)
- Zi-An Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - You Zhou
- Department of Pathology, Tongji Medical College Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Li
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Guangdong 518036, China
| | - Jiang He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- Correspondence: ; Tel.: +86-151-1135-7101
| |
Collapse
|
36
|
Liu X, Zhang X, Liu C, Mu W, Peng J, Song K. Immune and inflammation: related factor alterations as biomarkers for predicting prognosis and responsiveness to PD-1 monoclonal antibodies in cervical cancer. Discov Oncol 2022; 13:96. [PMID: 36171464 PMCID: PMC9519820 DOI: 10.1007/s12672-022-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We aimed to elucidate the potential mechanisms of effective responsiveness to PD-1 monoclonal antibody and evaluate more reliable biomarkers to improve the ability to predict the populations of cervical cancer (CC) suitable for immunotherapy. METHODS Peripheral blood samples of CC patients undergoing anti-PD-1 therapy were collected before and after treatment. Differentially expressed genes (DEGs) were analyzed between partial response (PR) and progressive disease (PD) patients. A novel prognostic inflammation and immune-related response gene (IRRG) model was constructed and its prognostic role, correlation with tumor immunity and tumor mutation were evaluated. RESULTS DEGs in PR patient after treatment could predict the response to PD-1 monoclonal antibodies. Among PR-specific pathways, tumor immunity, leukocyte migration, and cytokine activities were prominently enriched. Additionally, an IRRG signature comprising CTLA4, AZU1, C5, LAT, CXCL2, GDF7, MPL, PPARG and CELA1 was established and validated to predict the prognosis of CC with great accuracy and specificity. This signature could reflect the tumor microenvironment (TME) and tumor mutational burden (TMB). We also found stimulated adaptive immunity and downregulated inflammation at baseline in patients with sensitive responses to PD-1 monoclonal antibody. CONCLUSION We developed an IRRG signature and verified that it was an independent prognostic factor for predicting survival and could reflect a sensitive response to PD-1 monoclonal antibody, which plays a nonnegligible role in the TME of CC. Further investigations are warranted to confirm that patients with stimulated adaptive immunity and downregulated inflammation at baseline could achieve a better survival benefit from PD-1 monoclonal antibody.
Collapse
Affiliation(s)
- Xihan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Gynecologic Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xi Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Gynecologic Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wendi Mu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jin Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Gynecologic Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
37
|
Six Genes Associated with Lymphatic Metastasis in Colon Adenocarcinoma Linked to Prognostic Value and Tumor Immune Cell Infiltration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4304361. [PMID: 36072412 PMCID: PMC9444393 DOI: 10.1155/2022/4304361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Objective. The aim of the study is to explore the relationship between lymphatic metastasis genes, prognosis, and immune cell infiltration in patients with colon cancer. Methods. Based on the Cancer Genome Atlas Program (TCGA) database, differentially expressed genes and prognostic genes related to colon adenocarcinoma (COAD) lymphatic metastasis were screened and intersected. We used lasso and univariate Cox regression analysis to screen core genes and establish a preliminary prediction model. GO and KEGG enrichment analysis was used for lymphatic metastasis-related genes, and single GSEA was used for the final screening results. Finally, we evaluated the relationship between identified genes and immune cell infiltration. Results. A total of 1727 genes were differentially expressed between COAD patients with TNM stages of N0 and N1. After further screening, six core genes (RNU4-2, ZNF556, RNVU1-15, NSA2P6, RN7SL767P, and RN7SL473P) were obtained, and a preliminary prediction model was established, in which ZNF556 was a risk factor, and the rest were protective factors. Single GSEA showed that pathways such as systemic lupus erythematosus might play an important role in the initial lymphatic metastasis of COAD. GO and KEGG enrichment analysis of 1727 genes supported this result. Immune infiltration analysis showed that six genes were significantly correlated with T cell and NK cell families. Conclusion. Six core genes may affect COAD initial lymphatic metastasis through the systemic lupus erythematosus pathway and immune cell infiltration.
Collapse
|
38
|
Zheng K, Gao L, Hao J, Zou X, Hu X. An immunotherapy response prediction model derived from proliferative CD4+ T cells and antigen-presenting monocytes in ccRCC. Front Immunol 2022; 13:972227. [PMID: 36091022 PMCID: PMC9452905 DOI: 10.3389/fimmu.2022.972227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Most patients with clear cell renal cell carcinoma (ccRCC) have an impaired response to immune checkpoint blockade (ICB) therapy. Few biomarkers can predict responsiveness, and there is insufficient evidence to extend them to ccRCC clinical use. To explore subtypes and signatures of immunocytes with good predictive performance for ICB outcomes in the ccRCC context, we reanalyzed two ccRCC single-cell RNA sequencing (scRNA-seq) datasets from patients receiving ICB treatment. A subtype of proliferative CD4+ T cells and regulatory T cells and a subtype of antigen-presenting monocytes that have good predictive capability and are correlated with ICB outcomes were identified. These findings were corroborated in independent ccRCC ICB pretreatment bulk RNA-seq datasets. By incorporating the cluster-specific marker genes of these three immunocyte subtypes, we developed a prediction model, which reached an AUC of 93% for the CheckMate cohort (172 samples). Our study shows that the ICB response prediction model can serve as a valuable clinical decision-making tool for guiding ICB treatment of ccRCC patients.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lianchong Gao
- Yantai Institute, China Agricultural University, Yantai, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jie Hao, ; Xin Zou, ; Xiaoyong Hu,
| | - Xin Zou
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jie Hao, ; Xin Zou, ; Xiaoyong Hu,
| | - Xiaoyong Hu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jie Hao, ; Xin Zou, ; Xiaoyong Hu,
| |
Collapse
|
39
|
Guo Y, Yang J, Gao H, Tian X, Zhang X, Kan Q. Development and Verification of a Combined Immune- and Metabolism-Related Prognostic Signature for Hepatocellular Carcinoma. Front Immunol 2022; 13:927635. [PMID: 35874741 PMCID: PMC9304746 DOI: 10.3389/fimmu.2022.927635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 12/09/2022] Open
Abstract
Immune escape and metabolic reprogramming are becoming important characteristics of tumor biology, which play critical roles in tumor initiation and progression. However, the integrative analysis of immune and metabolic characteristics for the tumor microenvironment in hepatocellular carcinoma (HCC) remains unclear. Herein, by univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses, a prognostic signature associated with tumor microenvironment was established based on five immune- and metabolism-related genes (IMRGs), which was fully verified and evaluated in both internal and external cohorts. The C-index was superior to previously published HCC signatures, indicating the robustness and reliability of IMRGs prognostic signature. A nomogram was built based on IMRGs prognostic signature and various clinical parameters, such as age and T stage. The AUCs of nomogram at 1-, 3-, and 5-year (AUC = 0.829, 0.749, 0.749) were slightly better than that of IMRGs signature (AUC = 0.809, 0.734, 0.711). The relationship of risk score (RS) with immune checkpoint expressions, immunophenoscore (IPS), as well as microsatellite instability (MSI) together accurately predicted the treatment efficacy. Collectively, the IMRGs signature might have the potential to better predict prognostic risk, evaluate immunotherapy efficacy, and help personalize immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Tian, ; Xiaojian Zhang, ; Quancheng Kan,
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Tian, ; Xiaojian Zhang, ; Quancheng Kan,
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Tian, ; Xiaojian Zhang, ; Quancheng Kan,
| |
Collapse
|
40
|
Dong M, Cui X, Wang G, Zhang Q, Li X. Development of a prognostic signature based on immune-related genes and the correlation with immune microenvironment in breast cancer. Aging (Albany NY) 2022; 14:5427-5448. [PMID: 35793235 PMCID: PMC9320535 DOI: 10.18632/aging.204158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer (BC) is an inflammatory tumor caused by a variety of pathological factors, and is still the most common malignant tumor in women. Immune-related genes (IRGs) play a prominent role in the oncogenesis and progression of BC, and are of tumor-specific expression patterns that would benefit the prognosis evaluation. However, there were no systematic studies concerning the possibilities of IRGs in BC prognosis. In this study, the Cancer Genome Atlas (TCGA) database was used to integrate the expression profiles of IRG with the overall survival (OS) rate of 1039 breast cancer patients. The Cox regression analysis was used to predict the survival-related IRGs in BC. Then, we successfully screened a total of 6 IRGs, including PSME2, ULBP2, IGHE, SCG2, SDC1, and SSTR1, and accordingly constructed a prognosis prediction model of BC. Based on the IRG-related model, the BC patients were divided into high- and low-risk groups, and the association between the prognostic model and tumor immune microenvironment (TME) was further explored. The prognostic model reflected the infiltration of various immune cells. Moreover, the low-risk group was found to be with higher immunophenoscore and distinct mutation signatures compared with the high-risk group. The histological validation showed that SDC1, as well as M2 macrophage biomarker CD206, were both of higher abundance in BC samples of high-risk patients, compared with those of low-risk patients. Our results identify the clinically significant IRGs and demonstrate the importance of the IRG-based immune prognostic model in BC monitoring, prognosis prediction, and therapy.
Collapse
Affiliation(s)
- Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
41
|
Tian C, Wang Y, Song X. Prognostic Characteristics of Immune-Related Genes and the Related Regulatory Axis in Patients With Stage N+M0 Breast Cancer. Front Oncol 2022; 12:878219. [PMID: 35785160 PMCID: PMC9243266 DOI: 10.3389/fonc.2022.878219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BRCA) has the highest incidence rate among female tumours. The function of the immune system affects treatment efficacy and prognosis in patients with BRCA. However, the exact role of immune-related genes (IRGs) in stage N+M0 BRCA is unknown. We constructed a predictive risk scoring model with five IRGs (CDH1, FGFR3, INHBA, S100B, and SCG2) based on the clinical, mutation, and RNA sequencing data of individuals with stage N+M0 BRCA sourced from The Cancer Genome Atlas. Results from the Shandong Cancer Hospital and Institute validation cohort suggested that regardless of clinical stage, tumour size, or the number of lymph node metastases, this model was able to reliably discriminate low-risk patients from high-risk ones and assess the prognosis of patients with stage N+M0 BRCA, and low-risk patients could benefit more from immunotherapy than high-risk patients. In addition, significant inter-group variations in immunocyte infiltration and the tumour microenvironment were observed. Moreover, risk score and age were found to be independent factors in multivariate COX regression analysis, which influenced the outcome of patients with stage N+M0 BRCA. Based on the above findings, we plotted a prognostic nomogram. Finally, we constructed a lncRNA KCNQ1OT1-LINC00665-TUG1/miR-9-5p/CDH1 regulatory axis of the ceRNA network to explore the mechanism of BRCA progression. In summary, we conducted a systemic and extensive bioinformatics investigation and established an IRG-based prognostic scoring model. Finally, we constructed a ceRNA regulatory axis that might play a significant role in BRCA development. More research is required to confirm this result. Scoring system-based patient grouping can help predict the outcome of patients with stage N+M0 BRCA more effectively and determine their sensitivity to immunotherapies, which will aid the development of personalised therapeutic strategies and inspire the research and development of novel medications.
Collapse
Affiliation(s)
- Chonglin Tian
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yongsheng Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Yongsheng Wang, ; Xianrang Song,
| | - Xianrang Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Yongsheng Wang, ; Xianrang Song,
| |
Collapse
|
42
|
Liu L, Zhu H, Wang P, Wu S. Construction of a Six-Gene Prognostic Risk Model Related to Hypoxia and Angiogenesis for Cervical Cancer. Front Genet 2022; 13:923263. [PMID: 35769999 PMCID: PMC9234147 DOI: 10.3389/fgene.2022.923263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The prognosis of cervical cancer (CC) is poor and not accurately reflected by the primary tumor node metastasis staging system. Our study aimed to develop a novel survival-prediction model. Methods: Hallmarks of CC were quantified using single-sample gene set enrichment analysis and univariate Cox proportional hazards analysis. We linked gene expression, hypoxia, and angiogenesis using weighted gene co-expression network analysis (WGCNA). Univariate and multivariate Cox regression was combined with the random forest algorithm to construct a prognostic model. We further evaluated the survival predictive power of the gene signature using Kaplan-Meier analysis and receiver operating characteristic (ROC) curves. Results: Hypoxia and angiogenesis were the leading risk factors contributing to poor overall survival (OS) of patients with CC. We identified 109 candidate genes using WGCNA and univariate Cox regression. Our established prognostic model contained six genes (MOCSI, PPP1R14A, ESM1, DES, ITGA5, and SERPINF1). Kaplan-Meier analysis indicated that high-risk patients had worse OS (hazard ratio = 4.63, p < 0.001). Our model had high predictive power according to the ROC curve. The C-index indicated that the risk score was a better predictor of survival than other clinicopathological variables. Additionally, univariate and multivariate Cox regressions indicated that the risk score was the only independent risk factor for poor OS. The risk score was also an independent predictor in the validation set (GSE52903). Bivariate survival prediction suggested that patients exhibited poor prognosis if they had high z-scores for hypoxia or angiogenesis and high risk scores. Conclusions: We established a six-gene survival prediction model associated with hypoxia and angiogenesis. This novel model accurately predicts survival and also provides potential therapeutic targets.
Collapse
Affiliation(s)
- Lili Liu
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
| | - Hongcang Zhu
- Foshan Retirement Center for Retired Cadres, Guangdong Military Region of the PLA, Foshan, China
| | - Pei Wang
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Suzhen Wu
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
- *Correspondence: Suzhen Wu,
| |
Collapse
|
43
|
Xin C, Huang B, Chen M, Yan H, Zhu K, Chen L, Jiang C, Zhang J, Wu Y. Construction and validation of an immune-related LncRNA prognostic model for hepatocellular carcinoma. Cytokine 2022; 156:155923. [PMID: 35667281 DOI: 10.1016/j.cyto.2022.155923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Herein, based on mRNA data from TCGA database, hepatocellular carcinoma (HCC) samples were subjected to a single-sample Gene Set Enrichment Analysis (ssGSEA). Then, HCC samples were finally classified into high-, middle-, and low-immunity groups using K-means consensus clustering (K = 3) according to ssGSEA scores. After the tumor microenvironment of HCC patients was further analyzed using ESTIMATE algorithm, the results indicated high immune score, stromal score, ESTIMATE score and low tumor purity in high-immunity group. HLA family genes and PD-L1(CD274) were remarkably highly expressed in high-immunity group. Immune-related lncRNAs were required by analyzing differentially expressed genes in high- and low-immunity groups. Differential expression analysis was undertaken on HCC samples, with normal samples as the control. After immune-related lncRNAs and differentially expressed lncRNAs were intersected, 321 differentially expressed immune-related lncRNAs were acquired. Later, the prognostic model based on immune-related lncRNAs was obtained following the Cox regression analysis of previous samples. According to the riskScore, the samples in TCGA-LIHC were divided into high- and low-risk groups. Kaplan-Meier survival analysis, ROC curve, and independence analysis confirmed that the immune-related lncRNAs prognostic model was an important factor independent from clinical characteristics. We further analyzed the difference in immune microenvironment and mutational landscapes in both risk groups. Prominent differences were shown in multiple immunity-related gene sets and immune cells in both groups. The mutation rate of TP53 in high-risk group was much higher than the low-risk one. All these conclusions offered references to prognostic evaluations and personalized treatments for patients with HCC.
Collapse
Affiliation(s)
- Chang Xin
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China.
| | - Bin Huang
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Mingliang Chen
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Huanjun Yan
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Kelei Zhu
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Lei Chen
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Cunbing Jiang
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Jianlei Zhang
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Yifeng Wu
- Department of Hepatobiliary and Pancreatic General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| |
Collapse
|
44
|
Jasrotia R, Dhanjal DS, Bhardwaj S, Sharma P, Chopra C, Singh R, Kumar A, Mubayi A, Kumar D, Kumar R, Goyal A. Nanotechnology based vaccines: Cervical cancer management and perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Han Y, Ding Z, Chen B, Liu Y, Liu Y. A Novel Inflammatory Response–Related Gene Signature Improves High-Risk Survival Prediction in Patients With Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:767166. [PMID: 35480305 PMCID: PMC9035793 DOI: 10.3389/fgene.2022.767166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and malignant tumor that is difficult to effectively prognosticate outcomes. Recent reports have suggested that inflammation is strongly related to tumor progression, and several biomarkers linked to inflammation have been demonstrated to be useful for making a prognosis. The goal of this research was to explore the relevance between the inflammatory-related genes and HNSCC prognosis. Methods: The clinical information and gene expression data of patients with HNSCC were acquired from publicly available data sources. A multigene prognostic signature model was constructed in The Cancer Genome Atlas and verified in the Gene Expression Omnibus database. According to the risk score calculated for each patient, they were divided into low- and high-risk groups based on the median. The Kaplan–Meier survival curve and receiver operating characteristic curve were applied to determine the prognostic value of the risk model. Further analysis identified the independent prognostic factors, and a prognostic nomogram was built. The relationship between tumor immune infiltration status and risk scores was investigated using Spearman correlation analysis. Finally, to confirm the expression of genes in HNSCC, quantitative real-time polymerase chain reaction (qRT-PCR) was performed. Results: A prognostic model consisting of 14 inflammatory-related genes was constructed. The samples with a high risk had an apparently shorter overall survival than those with a low risk. Independent prognostic analysis found that risk scores were a separate prognostic factor in HNSCC patients. Immune infiltration analysis suggested that the abundance of B cells, CD8 T cells, M2 macrophages, myeloid dendritic cells, and monocytes in the low-risk group was higher, while that of M0, M1 macrophages, and resting NK cells was obviously higher in the high-risk group. The risk scores were related to chemotherapeutic sensitivity and the expression of several immune checkpoint genes. Moreover, CCL22 and IL10 were significantly higher in HNSCC tissues, as determined by qRT-PCR. Conclusion: Taken together, we constructed a novel inflammatory response–related gene signature, which may be used to estimate outcomes for patients with HNSCC and may be developed into a powerful tool for forecasting the efficacy of immunotherapeutic and chemotherapeutic drugs for HNSCC.
Collapse
Affiliation(s)
- Yanxun Han
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yehai Liu,
| |
Collapse
|
46
|
Wang X, Xu C, Sun H. DNA Damage Repair-Related Genes Signature for Immune Infiltration and Outcome in Cervical Cancer. Front Genet 2022; 13:733164. [PMID: 35309134 PMCID: PMC8927729 DOI: 10.3389/fgene.2022.733164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Background: The mechanism of DNA damage repair plays an important role in many solid tumors represented by cervical cancer. Purpose: The purpose of this study was to explore the effect of DNA damage repair-related genes on immune function of patients with cervical cancer, and to establish and evaluate a prognosis model based on DNA damage repair-related genes. Methods: In the study, we analyzed the genes related to DNA damage and repair, and obtained two subtypes (F1 and F2). We selected two groups of samples for different selection, and studied which pathways were enriched expression. For different subtypes, the immune score was explored to explain immune infiltration. We got the key genes through screening, and established the prognosis model through the key genes. These 11 key genes were correlated with the expression of common Clusters of Differentiation (CD) genes in order to explore the effects of these genes on immunity. Results: Through the Least absolute shrinkage and selection operator (LASSO) method, we screened 11 genes from 232 candidate genes as the key genes for the prognosis score. Through the Kaplan-Meier method, four genes (HAP1, MCM5, RNASEH2A, CETN2) with significant prognostic significance were screened into the final model, forming a Nomogram with C-index of 0.716 (0.649–1.0). Conclusion: In cervical cancer, DNA damage repair related genes and immune cell infection characteristics have certain association, and DNA damage repair related genes and immune cell infection characteristics can effectively predict the prognosis.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongzan Sun,
| |
Collapse
|
47
|
Hu Y, Liu J, Yu J, Yang F, Zhang M, Liu Y, Ma S, Zhou X, Wang J, Han Y. Identification and validation a costimulatory molecule gene signature to predict the prognosis and immunotherapy response for hepatocellular carcinoma. Cancer Cell Int 2022; 22:97. [PMID: 35193632 PMCID: PMC8864933 DOI: 10.1186/s12935-022-02514-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Costimulatory molecules have been proven to be the foundation of immunotherapy. However, the potential roles of costimulatory molecule genes (CMGs) in HCC remain unclear. Our study is aimed to develop a costimulatory molecule-related gene signature that could evaluate the prognosis of HCC patients. METHODS Based on The Cancer Gene Atlas (TCGA) database, univariate Cox regression analysis was applied in CMGs to identify prognosis-related CMGs. Consensus clustering analysis was performed to stratify HCC patients into different subtypes and compared them in OS. Subsequently, the LASSO Cox regression analysis was performed to construct the CMGs-related prognostic signature and Kaplan-Meier survival curves as well as ROC curve were used to validate the predictive capability. Then we explored the correlations of the risk signature with tumor-infiltrating immune cells, tumor mutation burden (TMB) and response to immunotherapy. The expression levels of prognosis-related CMGs were validated based on qRT-PCR and Human Protein Atlas (HPA) databases. RESULTS All HCC patients were classified into two clusters based on 11 CMGs with prognosis values and cluster 2 correlated with a poorer prognosis. Next, a prognostic signature of six CMGs was constructed, which was an independent risk factor for HCC patients. Patients with low-risk score were associated with better prognosis. The correlation analysis showed that the risk signature could predict the infiltration of immune cells and immune status of the immune microenvironment in HCC. The qRT-PCR and immunohistochemical results indicated six CMGs with differential expression in HCC tissues and normal tissues. CONCLUSION In conclusion, our CMGs-related risk signature could be used as a prediction tool in survival assessment and immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yinan Hu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiahao Yu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fangfang Yang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Miao Zhang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yansheng Liu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuoyi Ma
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Zhou
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jingbo Wang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ying Han
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
48
|
Wang C, Feng G, Zhu J, Wei K, Huang C, Wu Z, Yu Y, Qin G. Developing an immune signature for triple-negative breast cancer to predict prognosis and immune checkpoint inhibitor response. Future Oncol 2022; 18:1055-1066. [PMID: 35105171 DOI: 10.2217/fon-2021-0600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: We aimed to develop a new signature based on immune-related genes to predict prognosis and response to immune checkpoint inhibitors in patients with triple-negative breast cancer (TNBC). Materials & methods: Single-sample gene set enrichment was used to develop an immune-based prognostic signature (IPRS) for TNBC patients. We conducted multivariate Cox analysis to evaluate the prognosis value of the IPRS. Result: An IPRS based on 66 prognostic genes was developed. Multivariate Cox analysis indicated that the IPRS was an independent factor for prognosis. PD-1, PD-L1, PD-L2 and CTLA4 gene expression was higher in the low-risk group, suggesting IPRS could predict the response to immune checkpoint inhibitors. Conclusion: The IPRS might be a reliable signature to predict TNBC patients' prognosis and response to immune checkpoint inhibitors, but needs prospective validation.
Collapse
Affiliation(s)
- Ce Wang
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100083, China
| | - Guoshuang Feng
- Big Data & Engineering Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100083, China
| | - Jingjing Zhu
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kecheng Wei
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Chen Huang
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Zhenyu Wu
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100083, China
| |
Collapse
|
49
|
Xiang Z, He Q, Huang L, Xiong B, Xiang Q. Breast Cancer Classification Based on Tumor Budding and Stem Cell-Related Signatures Facilitate Prognosis Evaluation. Front Oncol 2022; 11:818869. [PMID: 35083162 PMCID: PMC8784696 DOI: 10.3389/fonc.2021.818869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Tumor budding (TB) is emerging as a prognostic factor in multiple cancers. Likewise, the stemness of cancer cells also plays a vital role in cancer progression. However, nearly no research has focused on the interaction of TB and tumor stemness in cancer. Methods Tissue microarrays including 229 cases of invasive breast cancer (BC) were established and subjected to pan-cytokeratin immunohistochemical staining to evaluate molecular expression. Univariate and multivariate analyses were applied to identify prognostic factors of BC, and the Chi-square test was used for comparison of categorical variables. Results High-grade TB was significantly associated with T stage, lymph node metastasis, tumor node metastasis (TNM) stage, epithelial-mesenchymal transition, and poor disease-free survival (DFS) of BC patients. We also found that the prognostic value of TB varied widely among different subtypes and subgroups. Cox regression analysis then showed that TB grade was an independent prognostic factor. Moreover, cancer stem cell (CSC) markers CD44 and ALDH1A1 were significantly higher in high-grade TB tumors. Consequently, patients were classified into high CSC score subgroup and low CSC score subgroups. Further research found that CSC scores correlated with clinicopathological features and DFS of BC patients. Based on TB grade and CSC scores, we classified BC patients into TBlow-CSCslow (type I), TBlow-CSCshigh (type II), TBhigh-CSCslow (type III), and TBhigh-CSCshigh (type IV) subgroups. Survival analysis showed that patients in the type I subgroup had the best DFS, whereas those in the type IV subgroup had the worst DFS. Finally, a TB-CSC-based nomogram for use in BC was established. The nomogram was well calibrated to predict the probability of 5-year DFS, and the C-index was 0.837. Finally, the area under the curve value for the nomogram (0.892) was higher than that of the TNM staging system (0.713). Conclusion The combination of TB grade with CSC score improves the prognostic evaluation of BC patients. A novel nomogram containing TB grade and CSC score provides doctors with a candidate tool to guide the individualized treatment of cancer patients.
Collapse
Affiliation(s)
- Zhenxian Xiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qiuming He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Li Huang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qingming Xiang
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
50
|
Liang F, Xu Y, Chen Y, Zhong H, Wang Z, Nong T, Zhong J. Immune Signature-Based Risk Stratification and Prediction of Immunotherapy Efficacy for Bladder Urothelial Carcinoma. Front Mol Biosci 2022; 8:673918. [PMID: 35004839 PMCID: PMC8739239 DOI: 10.3389/fmolb.2021.673918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Immune-related genes (IRGs) are closely related to tumor progression and the immune microenvironment. Few studies have investigated the effect of tumor immune microenvironment on the survival and response to immune checkpoint inhibitors of patients with bladder urothelial carcinoma (BLCA). We constructed two IRG-related prognostic signatures based on gene–immune interaction for predicting risk stratification and immunotherapeutic responses. We also verified their predictive ability on internal and overall data sets. Patients with BLCA were divided into high- and low-risk groups. The high-risk group had poor survival, enriched innate immune-related cell subtypes, low tumor mutation burden, and poor response to anti-PD-L1 therapy. Our prognostic signatures can be used as reliable prognostic biomarkers, which may be helpful to screen the people who will benefit from immunotherapy and guide the clinical decision-making of patients with BLCA.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yansong Xu
- Emergency Department, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yi Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Huage Zhong
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Zhen Wang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Tianwen Nong
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jincai Zhong
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| |
Collapse
|