1
|
Asgharzadeh F, Memarzia A, Alikhani V, Beigoli S, Boskabady MH. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl Oncol 2024; 47:102039. [PMID: 38917593 PMCID: PMC11254173 DOI: 10.1016/j.tranon.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
One of the main causes of death on the globe is cancer. Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors, including PPARα, PPARδ and PPARγ, which are important in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. PPARs are receiving interest as possible therapeutic targets for a number of disorders. Numerous clinical studies are being conducted on PPARs as possible therapeutic targets for cancer. Therefore, this review will focus on the existing and future uses of PPARs agonists and antagonists in treating malignancies. PubMed, Science Direct, and Scopus databases were searched regarding the effect of PPARs on various types of cancers until the end of May 2023. The results of the review articles showed the therapeutic influence of PPARs on a wide range of cancer on in vitro, in vivo and clinical studies. However, further experimental and clinical studies are needed to be conducted on the influence of PPARs on various cancers.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wang B, Qiu Y, Xie M, Huang P, Yu Y, Sun Q, Shangguan W, Li W, Zhu Z, Xue J, Feng Z, Zhu Y, Yang Q, Wu P. Gut microbiota Parabacteroides distasonis enchances the efficacy of immunotherapy for bladder cancer by activating anti-tumor immune responses. BMC Microbiol 2024; 24:237. [PMID: 38961326 PMCID: PMC11221038 DOI: 10.1186/s12866-024-03372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Bladder cancer(BCa) was a disease that seriously affects patients' quality of life and prognosis. To address this issue, many researches suggested that the gut microbiota modulated tumor response to treatment; however, this had not been well-characterized in bladder cancer. In this study, our objective was to determine whether the diversity and composition of the gut microbiota or the density of specific bacterial genera influence the prognosis of patients with bladder cancer. METHODS We collected fecal samples from a total of 50 bladder cancer patients and 22 matched non-cancer individuals for 16S rDNA sequencing to investigate the distribution of Parabacteroides in these two groups. Further we conducted follow-up with cancer patients to access the impact of different genera of microorganisms on patients survival. We conducted a Fecal Microbiota Transplantation (FMT) and mono-colonization experiment with Parabacteroides distasonis to explore its potential enhancement of the efficacy of anti-PD-1 immunotherapy in MB49 tumor-bearing mice. Immunohistochemistry, transcriptomics and molecular experiment analyses were employed to uncover the underlying mechanisms. RESULTS The 16S rDNA showed that abundance of the genus Parabacteroides was elevated in the non-cancer control group compared to bladder cancer group. The results of tumor growth curves showed that a combination therapy of P. distasonis and ICIs treatment significantly delayed tumor growth and increased the intratumoral densities of both CD4+T and CD8+T cells. The results of transcriptome analysis demonstrated that the pathways associated with antitumoral immune response were remarkably upregulated in the P. distasonis gavage group. CONCLUSION P. distasonis delivery combined with α-PD-1 mAb could be a new strategy to enhance the effect of anti-PD-1 immunotherapy. This effect might be achieved by activating immune and antitumor related pathways.
Collapse
Affiliation(s)
- Benlin Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifeng Qiu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wentai Shangguan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weijia Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhangrui Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwen Xue
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengyuan Feng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuexuan Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qishen Yang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024; 41:114. [PMID: 38619661 DOI: 10.1007/s12032-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.
Collapse
Affiliation(s)
- Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Qian Cui
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Camoglio C, Balla J, Fadda P, Dedoni S. Oleoylethanolamide and Palmitoylethanolamide Enhance IFNβ-Induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells. Molecules 2024; 29:1592. [PMID: 38611871 PMCID: PMC11013881 DOI: 10.3390/molecules29071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNβ. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNβ leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNβ signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNβ-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.
Collapse
Affiliation(s)
- Chiara Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
| | - Jihane Balla
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
- Neuroscience Institute, National Research Council of Italy (CNR), 09142 Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
| |
Collapse
|
5
|
Zhang F, Jiang R, Sun S, Wu C, Yu Q, Awadasseid A, Wang J, Zhang W. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. Eur J Med Chem 2024; 268:116267. [PMID: 38422701 DOI: 10.1016/j.ejmech.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruiya Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China; Moganshan Institute, Zhejiang University of Technology, Deqing, China
| | - Jianwei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
7
|
Xiong Z, Chan SL, Zhou J, Vong JSL, Kwong TT, Zeng X, Wu H, Cao J, Tu Y, Feng Y, Yang W, Wong PPC, Si-Tou WWY, Liu X, Wang J, Tang W, Liang Z, Lu J, Li KM, Low JT, Chan MWY, Leung HHW, Chan AWH, To KF, Yip KYL, Lo YMD, Sung JJY, Cheng ASL. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut 2023; 72:1758-1773. [PMID: 37019619 PMCID: PMC10423534 DOI: 10.1136/gutjnl-2022-328364] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE Therapy-induced tumour microenvironment (TME) remodelling poses a major hurdle for cancer cure. As the majority of patients with hepatocellular carcinoma (HCC) exhibits primary or acquired resistance to antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) therapies, we aimed to investigate the mechanisms underlying tumour adaptation to immune-checkpoint targeting. DESIGN Two immunotherapy-resistant HCC models were generated by serial orthotopic implantation of HCC cells through anti-PD-L1-treated syngeneic, immunocompetent mice and interrogated by single-cell RNA sequencing (scRNA-seq), genomic and immune profiling. Key signalling pathway was investigated by lentiviral-mediated knockdown and pharmacological inhibition, and further verified by scRNA-seq analysis of HCC tumour biopsies from a phase II trial of pembrolizumab (NCT03419481). RESULTS Anti-PD-L1-resistant tumours grew >10-fold larger than parental tumours in immunocompetent but not immunocompromised mice without overt genetic changes, which were accompanied by intratumoral accumulation of myeloid-derived suppressor cells (MDSC), cytotoxic to exhausted CD8+ T cell conversion and exclusion. Mechanistically, tumour cell-intrinsic upregulation of peroxisome proliferator-activated receptor-gamma (PPARγ) transcriptionally activated vascular endothelial growth factor-A (VEGF-A) production to drive MDSC expansion and CD8+ T cell dysfunction. A selective PPARγ antagonist triggered an immune suppressive-to-stimulatory TME conversion and resensitised tumours to anti-PD-L1 therapy in orthotopic and spontaneous HCC models. Importantly, 40% (6/15) of patients with HCC resistant to pembrolizumab exhibited tumorous PPARγ induction. Moreover, higher baseline PPARγ expression was associated with poorer survival of anti-PD-(L)1-treated patients in multiple cancer types. CONCLUSION We uncover an adaptive transcriptional programme by which tumour cells evade immune-checkpoint targeting via PPARγ/VEGF-A-mediated TME immunosuppression, thus providing a strategy for counteracting immunotherapeutic resistance in HCC.
Collapse
Affiliation(s)
- Zhewen Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joaquim S L Vong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Tung Kwong
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoran Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianquan Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Pak-Chun Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Willis Wai-Yiu Si-Tou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhixian Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiahuan Lu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Man Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie-Ting Low
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Michael Wing-Yan Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Howard H W Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yuk Ming Dennis Lo
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Zhang S, Peng W, Wang H, Xiang X, Ye L, Wei X, Wang Z, Xue Q, Chen L, Su Y, Zhou Q. C1q + tumor-associated macrophages contribute to immunosuppression through fatty acid metabolic reprogramming in malignant pleural effusion. J Immunother Cancer 2023; 11:e007441. [PMID: 37604643 PMCID: PMC10445384 DOI: 10.1136/jitc-2023-007441] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has shown remarkable benefits in cancers, a subset of patients with cancer exhibits unresponsiveness or develop acquired resistance due to the existence of abundant immunosuppressive cells. Tumor-associated macrophages (TAMs), as the dominant immunosuppressive population, impede the antitumor immune response; however, the underlying mechanisms have not been fully elucidated yet. METHODS Single-cell RNA sequencing analysis was performed to portray macrophage landscape and revealed the underlying mechanism of component 1q (C1q)+ TAMs. Malignant pleural effusion (MPE) of human and mouse was used to explore the phenotypes and functions of C1q+ TAMs. RESULTS C1q+ TAMs highly expressed multiple inhibitory molecules and their high infiltration was significantly correlated with poor prognosis. C1q+ TAMs promote MPE immunosuppression through impairing the antitumor effects of CD8+ T cells. Mechanistically, C1q+ TAMs enhance fatty acid binding protein 5 (FABP5)-mediated fatty acid metabolism, which activate transcription factor peroxisome proliferator-activated receptor-gamma, increasing the gene expression of inhibitory molecules. A high-fat diet increases the expression of inhibitory molecules in C1q+ TAMs and the immunosuppression of MPE microenvironment, whereas a low-fat diet ameliorates these effects. Moreover, FABP5 inhibition represses the expression of inhibitory molecules in TAMs and tumor progression, while enhancing the efficacy of ICB therapy in MPE and lung cancer. CONCLUSIONS C1q+ TAMs impede antitumor effects of CD8+ T cells promoting MPE immunosuppression. Targeting C1q+ TAMs effectively alleviates the immunosuppression and enhances the efficacy of ICB therapy. C1q+ TAMs subset has great potential to be a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Su
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Kiriyama Y, Nochi H. Regulation of PD-L1 Expression by Nuclear Receptors. Int J Mol Sci 2023; 24:9891. [PMID: 37373038 DOI: 10.3390/ijms24129891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The suppression of excessive immune responses is necessary to prevent injury to the body, but it also allows cancer cells to escape immune responses and proliferate. Programmed cell death 1 (PD-1) is a co-inhibitory molecule that is present on T cells and is the receptor for programmed cell death ligand 1 (PD-L1). The binding of PD-1 to PD-L1 leads to the inhibition of the T cell receptor signaling cascade. PD-L1 has been found to be expressed in many types of cancers, such as lung, ovarian, and breast cancer, as well as glioblastoma. Furthermore, PD-L1 mRNA is widely expressed in normal peripheral tissues including the heart, skeletal muscle, placenta, lungs, thymus, spleen, kidney, and liver. The expression of PD-L1 is upregulated by proinflammatory cytokines and growth factors via a number of transcription factors. In addition, various nuclear receptors, such as androgen receptor, estrogen receptor, peroxisome-proliferator-activated receptor γ, and retinoic-acid-related orphan receptor γ, also regulate the expression of PD-L1. This review will focus on the current knowledge of the regulation of PD-L1 expression by nuclear receptors.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
- Institute of Neuroscience, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| |
Collapse
|
10
|
Jia X, Qian J, Chen H, Liu Q, Hussain S, Jin J, Shi J, Hou Y. PPARγ agonist pioglitazone enhances colorectal cancer immunotherapy by inducing PD-L1 autophagic degradation. Eur J Pharmacol 2023; 950:175749. [PMID: 37105516 DOI: 10.1016/j.ejphar.2023.175749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
Blockade of PD-1/PD-L1 immune checkpoint could be an effective antitumor strategy for multiple types of cancer, but it is low response rate for colorectal cancer patients with unclear mechanism. Here we found that PPARγ agonist pioglitazone could reduce PD-L1 protein levels without effect on its gene expression. Further analysis showed that pioglitazone induced PD-L1 autophagic degradation in a PPARγ-dependent manner. Pioglitazone promoted PD-L1 translocation to lysosome by immunofluorescence analysis, which was associated with the increased binding of PPARγ to PD-L1. Moreover the combined pioglitazone with PD-1 antibody enhanced colorectal tumor immunotherapy, which was involved in reduced PD-L1 levels and increased CD8+ T cells. These findings suggest that PPARγ agonist could induce PD-L1 autophagic degradation resulting in increased colorectal tumor immunotherapy.
Collapse
Affiliation(s)
- Xiao Jia
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Jin Qian
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, PR China
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, PR China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China.
| |
Collapse
|
11
|
Zhao J, Fong A, Seow SV, Toh HC. Organoids as an Enabler of Precision Immuno-Oncology. Cells 2023; 12:1165. [PMID: 37190074 PMCID: PMC10136954 DOI: 10.3390/cells12081165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Since the dawn of the past century, landmark discoveries in cell-mediated immunity have led to a greater understanding of the innate and adaptive immune systems and revolutionised the treatment of countless diseases, including cancer. Today, precision immuno-oncology (I/O) involves not only targeting immune checkpoints that inhibit T-cell immunity but also harnessing immune cell therapies. The limited efficacy in some cancers results mainly from a complex tumour microenvironment (TME) that, in addition to adaptive immune cells, comprises innate myeloid and lymphoid cells, cancer-associated fibroblasts, and the tumour vasculature that contribute towards immune evasion. As the complexity of TME has called for more sophisticated human-based tumour models, organoids have allowed the dynamic study of spatiotemporal interactions between tumour cells and individual TME cell types. Here, we discuss how organoids can study the TME across cancers and how these features may improve precision I/O. We outline the approaches to preserve or recapitulate the TME in tumour organoids and discuss their potential, advantages, and limitations. We will discuss future directions of organoid research in understanding cancer immunology in-depth and identifying novel I/O targets and treatment strategies.
Collapse
Affiliation(s)
- Junzhe Zhao
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antoinette Fong
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - See Voon Seow
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| |
Collapse
|
12
|
Shang K, Ma N, Che J, Li H, Hu J, Sun H, Cao B. SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway. BMC Cancer 2023; 23:335. [PMID: 37041476 PMCID: PMC10091540 DOI: 10.1186/s12885-023-10816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Peroxisome proliferator activated receptors (PPARs) are a nuclear hormone receptors superfamily that is closely related to fatty acid (FA) metabolism and tumor progression. Solute carrier family 27 member 2 (SLC27A2) is important for FA transportation and metabolism and is related to cancer progression. This study aims to explore the mechanisms of how PPARs and SLC27A2 regulate FA metabolism in colorectal cancer (CRC) and find new strategies for CRC treatment. METHODS Biological information analysis was applied to detect the expression and the correlation of PPARs and SLC27A2 in CRC. The protein-protein interaction (PPI) interaction networks were explored by using the STRING database. Uptake experiments and immunofluorescence staining were used to analyse the function and number of peroxisomes and colocalization of FA with peroxisomes, respectively. Western blotting and qRT‒PCR were performed to explore the mechanisms. RESULTS SLC27A2 was overexpressed in CRC. PPARs had different expression levels, and PPARG was significantly highly expressed in CRC. SLC27A2 was correlated with PPARs in CRC. Both SLC27A2 and PPARs were closely related to fatty acid oxidation (FAO)‒related genes. SLC27A2 affected the activity of ATP Binding Cassette Subfamily D Member 3 (ABCD3), also named PMP70, the most abundant peroxisomal membrane protein. We found that the ratios of p-Erk/Erk and p-GSK3β/GSK3β were elevated through nongenic crosstalk regulation of the PPARs pathway. CONCLUSIONS SLC27A2 mediates FA uptake and beta-oxidation through nongenic crosstalk regulation of the PPARs pathway in CRC. Targeting SLC27A2/FATP2 or PPARs may provide new insights for antitumour strategies.
Collapse
Affiliation(s)
- Kun Shang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Nina Ma
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Huihui Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Jiexuan Hu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Haolin Sun
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
13
|
Zhang M, He S. Peroxisome proliferator-activated receptors regulate the progression and treatment of gastrointestinal cancers. Front Pharmacol 2023; 14:1169566. [PMID: 37025484 PMCID: PMC10070695 DOI: 10.3389/fphar.2023.1169566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are essential nuclear hormone receptors regulating metabolic processes, and they participate in the initiation and progression processes of tumors. Gastrointestinal (GI) cancer is a prevalent malignancy worldwide that originates from the tissues of the gastrointestinal tract and is characterized by severe symptoms and poor prognosis. Numerous published studies have investigated the critical role of PPARs in esophageal, gastric, and colorectal cancers. Here, we summarize and review the current literature to understand the role of PPARs in the pathogenesis of GI cancers and to provide a systematic reference for the subsequent investigation and development of efficient therapies targeting PPARs and their pathways.
Collapse
Affiliation(s)
- Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shujie He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shujie He,
| |
Collapse
|
14
|
Shao Y, Chen J, Hu Y, Wu Y, Zeng H, Lin S, Lai Q, Fan X, Zhou X, Zheng M, Gao B, Sun J. Investigating the effects and mechanisms of Erchen Decoction in the treatment of colorectal cancer by network pharmacology and experimental validation. Front Pharmacol 2022; 13:1000639. [PMID: 36313338 PMCID: PMC9606229 DOI: 10.3389/fphar.2022.1000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: Erchen Decoction (ECD), a well-known traditional Chinese medicine, exerts metabolism-regulatory, immunoregulation, and anti-tumor effects. However, the action and pharmacological mechanism of ECD remain largely unclear. In the present study, we explored the effects and mechanisms of ECD in the treatment of CRC using network pharmacology, molecular docking, and systematic experimental validation.Methods: The active components of ECD were obtained from the TCMSP database and the potential targets of them were annotated by the STRING database. The CRC-related targets were identified from different databases (OMIM, DisGeNet, GeneCards, and DrugBank). The interactive targets of ECD and CRC were screened and the protein-protein interaction (PPI) networks were constructed. Then, the hub interactive targets were calculated and visualized from the PPI network using the Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. In addition, the molecular docking was performed. Finally, systematic in vitro, in vivo and molecular biology experiments were performed to further explore the anti-tumor effects and underlying mechanisms of ECD in CRC.Results: A total of 116 active components and 246 targets of ECD were predicted based on the component-target network analysis. 2406 CRC-related targets were obtained from different databases and 140 intersective targets were identified between ECD and CRC. 12 hub molecules (STAT3, JUN, MAPK3, TP53, MAPK1, RELA, FOS, ESR1, IL6, MAPK14, MYC, and CDKN1A) were finally screened from PPI network. GO and KEGG pathway enrichment analyses demonstrated that the biological discrepancy was mainly focused on the tumorigenesis-, immune-, and mechanism-related pathways. Based on the experimental validation, ECD could suppress the proliferation of CRC cells by inhibiting cell cycle and promoting cell apoptosis. In addition, ECD could inhibit tumor growth in mice. Finally, the results of molecular biology experiments suggested ECD could regulate the transcriptional levels of several hub molecules during the development of CRC, including MAPKs, PPARs, TP53, and STATs.Conclusion: This study revealed the potential pharmacodynamic material basis and underlying molecular mechanisms of ECD in the treatment of CRC, providing a novel insight for us to find more effective anti-CRC drugs.
Collapse
Affiliation(s)
- Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Chen
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Hu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuan Wu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hualin Zeng
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuying Lin
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiying Lai
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jing Sun, ; Bizhen Gao, ; Minhua Zheng,
| | - Bizhen Gao
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Jing Sun, ; Bizhen Gao, ; Minhua Zheng,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jing Sun, ; Bizhen Gao, ; Minhua Zheng,
| |
Collapse
|
15
|
Marchalot A, Mjösberg J. Innate lymphoid cells in colorectal cancer. Scand J Immunol 2022; 95:e13156. [PMID: 35274359 PMCID: PMC9286852 DOI: 10.1111/sji.13156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Innate lymphoid cells (ILC) can be viewed as the innate counterparts of T cells. In contrast to T cells, ILCs exert their functions in antigen‐independent manners, relying on tissue‐derived signals from other immune cells, stroma and neurons. Natural killer (NK) cells have been known for their antitumour effects for decades. However, the roles of other ILC subtypes in cancer immunity are just now starting to be unravelled. ILCs contribute to both homeostasis and inflammation in the intestinal mucosa. Intestinal inflammation predisposes the intestine for the development of colonic dysplasia and colorectal cancer (CRC). Recent data from mouse models and human studies indicate that ILCs play a role in CRC, exerting both protumoural and antitumoural functions. Studies also suggest that intratumoural ILC frequencies and expression of ILC signature genes can predict disease progression and response to PD‐1 checkpoint therapy in CRC. In this mini‐review, we focus on such recent insights and their implications for understanding the immunobiology of CRC. We also identify knowledge gaps and research areas that require further work.
Collapse
Affiliation(s)
- Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
16
|
Biochanin A Suppresses Tumor Progression and PD-L1 Expression via Inhibiting ZEB1 Expression in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3224373. [PMID: 35242187 PMCID: PMC8888121 DOI: 10.1155/2022/3224373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/23/2022]
Abstract
Objective. To investigate the regulatory effect of ZEB1 on PD-L1 expression and the pharmacodynamic effects of Biochanin A on the malignant biological behaviors of colorectal cancer (CRC). Methods. The correlation between epithelial-mesenchymal transition (EMT) score and features of the tumor microenvironment (TME) was investigated using the Cancer Genome Atlas (TCGA) dataset. The correlation between ZEB1 and PD-L1 expression was validated using immunohistochemistry (IHC) staining, and the regulatory effect of ZEB1 on PD-L1 expression was explored by in vitro assays. Moreover, the pharmacodynamic effects of Biochanin A on ZEB1 and PD-L1 expression, as well as malignant biological behaviors of CRC cells, were evaluated by in vitro and in vivo assays. Results. EMT score was positively correlated with a majority of immunostimulators, immune checkpoints, activities of antitumor immunity cycles, and infiltration levels of most immune cells in the TCGA dataset. In addition, ZEB1 was correlated with and positively regulated PD-L1 expression in CRC. Besides, Biochanin A, an inhibitor for the ZEB1/PD-L1 axis, notably inhibited ZEB1-mediated aggressiveness and PD-L1 expression of CRC cells. Moreover, Biochanin A also exerted a tumor-inhibitory role in vivo in the CRC mouse model. Conclusion. Overall, we found that ZEB1 is a main regulator of PD-L1 expression in CRC. In addition, we also identified Biochanin A as a novel inhibitor for the ZEB1/PD-L1 axis, which could inhibit tumor progression and immune escape.
Collapse
|
17
|
Kassie F, Jian Bagherpoor A, Kovacs K, Seelig D. Combinatory lung tumor inhibition by myo-inositol and iloprost/rapamycin: association with immunomodulation. Carcinogenesis 2022; 43:547-556. [PMID: 35147705 DOI: 10.1093/carcin/bgac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 02/09/2022] [Indexed: 11/12/2022] Open
Abstract
Although both preclinical and clinical studies have suggested that myo-inositol (MI) may be a safe and effective lung cancer chemopreventive agent, its efficacy is moderate. To test whether the chemopreventive agents iloprost (IL) or rapamycin enhance the lung tumor inhibitory effects of MI, A/J mice were treated with the tobacco smoke carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and, beginning one week after the end of NNK treatment, given MI, IL, rapamycin, MI+IL or MI+rapamycin for 17 weeks. Analyses of the number and size of tumors on the surface of the lung have indicated that MI, IL, rapamycin, MI+IL and MI+rapamycin reduced the multiplicity of NNK-induced lung tumors by 41%, 34%, 46%, 79% and 67%, respectively, and larger tumors (lung tumors with a diameter of 1-2 mm or > 2 mm) were absent in the MI+IL and MI+rapamycin groups. These results clearly indicated that MI+IL and MI+rapamycin are more effective than MI alone in inhibiting the formation and growth of lung tumors. Assessment of the immunomodulatory effects of the drugs showed that whereas MI+rapamycin and MI+IL increased the infiltration of lung tumors by CD4 + and CD8 + T cells, MI+rapamycin reduced the expression of the immune checkpoint protein programmed-death ligand-1 (PD-L1). Moreover, all treatments, except IL, increased apoptosis, whereas cell proliferation was markedly suppressed in all treated groups. In summary, these results suggest that IL and rapamycin could enhance the efficacy of MI in lung cancer chemoprevention trials.
Collapse
Affiliation(s)
- Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | | | - Katalin Kovacs
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Davis Seelig
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|