1
|
Yin Z(S, Wang Z. Strategies for engineering oncolytic viruses to enhance cancer immunotherapy. Front Pharmacol 2024; 15:1450203. [PMID: 39309012 PMCID: PMC11413971 DOI: 10.3389/fphar.2024.1450203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is characterized by rapid metastasis and high mortality, presenting a challenge for early-stage treatment modalities. The heterogeneity of NSCLC's tumor microenvironment (TME) significantly influences the efficacy of anti-PD-1 immune checkpoint inhibitors (ICIs) therapy, leading to varied patient responses. This review characterized different strains of oncolytic viruses in NSCLC and the different gene edits in pre-existing oncolytic viruses. This study also aimed to provide strategies to enhance anti-PD-1 therapy in NSCLC by engineering oncolytic viruses (OVs). This study offers insights into the genomic adaptations necessary for OVs targeting NSCLC, identify genetic determinants of anti-PD-1 response variability, and propose genomic edits to bolster therapy effectiveness. The primary goal of this study is to present a theoretically designed OV with a detailed genomic framework capable of enhancing the response to anti-PD-1 therapy, thereby advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Zhengfeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Basnet S, Van der Heijden M, Quixabeira DCA, Jirovec E, Grönberg-Vähä-Koskela SAM, Clubb JHA, Kanerva A, Pakola S, Haybout L, Arias V, Hemminki O, Kudling T, Zafar S, Cervera-Carrascon V, Santos JM, Hemminki A. Overcoming effector T cell exhaustion in ovarian cancer ascites with a novel adenovirus encoding for a MUC1 bispecific antibody engager and IL-2 cytokine. Mol Ther 2024; 32:3114-3127. [PMID: 38910324 PMCID: PMC11403222 DOI: 10.1016/j.ymthe.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
T cell-focused cancer immunotherapy including checkpoint inhibitors and cell therapies has been rapidly evolving over the past decade. Nevertheless, there remains a major unmet medical need in oncology generally and immuno-oncology specifically. We have constructed an oncolytic adenovirus, Ad5/3-E2F-d24-aMUC1aCD3-IL-2 (TILT-322), which is armed with a human aMUC1aCD3 T cell engager and IL-2. TILT-322 treatment stimulated T cell cytotoxicity through the increased presence of granzyme B, perforin, and interferon-gamma. Additional immune profiling indicated TILT-322 increased gamma delta T cell activation and impacted other cell types such as natural killer cells and natural killer-like T cells that are traditionally involved in cancer immunotherapy. TILT-322 treatment also decreased the proportion of exhausted CD8+ T cells as demarked by immune checkpoint expression in ovarian ascites samples. Overall, our data showed that TILT-322 treatment led to an enhanced T cell activation and reversed T cell exhaustion translating into high antitumor efficacy when given locally or intravenously. The analysis of blood and tumors isolated from an in vivo patient-derived ovarian cancer xenograft model suggested TILT-322 mediated tumor control through improved T cell functions. Therefore, TILT-322 is a promising novel anti-tumor agent for clinical translation.
Collapse
Affiliation(s)
- Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Mirte Van der Heijden
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Susanna A M Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Gynecology and Obstetrics, Helsinki University Hospital, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tatiana Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Applied Tumor Genomics HUS Comprehensive Cancer Center, Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
3
|
Yu Z, Shi J, Fang Y, Zhao Y, Xu A, Li N. Developing innovative strategies of tumor‑infiltrating lymphocyte therapy for tumor treatment. Oncol Rep 2024; 51:85. [PMID: 38666543 PMCID: PMC11082634 DOI: 10.3892/or.2024.8744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer is the main cause of global mortality, and thus far, effective therapeutic strategies for cancer treatment are in high demand. Adoptive transfer of tumor‑infiltrating lymphocytes (TILs) represents a promising avenue in immunotherapy for the management of malignancies. The clinical safety and efficacy of TIL‑based therapy have been established through numerous rigorous clinical trials. However, the efficacy of TIL infusion in inducing an anti‑tumor response is limited to a subset of clinical patients with cancer. Therefore, there is an urgent need to develop innovative strategies aimed at enhancing the effectiveness of TIL‑based therapy. In the present review, the developmental history of TIL‑based therapy was systematically summarized and analyzed, while also presenting a unique perspective on enhancing the multi‑dimensional anti‑tumor capabilities of TILs. The insight and conclusions presented in this review may contribute to improving the efficacy of TIL‑based therapy and expediting its development.
Collapse
Affiliation(s)
- Zhongjie Yu
- R&D, Qingdao Sino-cell Biomedicine Co., Ltd., Qingdao, Shandong 266000, P.R. China
| | - Jianhua Shi
- Phase I Clinical Research Center Affiliated, Linyi Tumor Hospital, Linyi, Shandong 276000, P.R. China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yi Zhao
- R&D, Qingdao Sino-cell Biomedicine Co., Ltd., Qingdao, Shandong 266000, P.R. China
| | - Aotian Xu
- R&D, Qingdao Sino-cell Biomedicine Co., Ltd., Qingdao, Shandong 266000, P.R. China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
4
|
Eum HH, Jeong D, Kim N, Jo A, Na M, Kang H, Hong Y, Kong JS, Jeong GH, Yoo SA, Lee HO. Single-cell RNA sequencing reveals myeloid and T cell co-stimulation mediated by IL-7 anti-cancer immunotherapy. Br J Cancer 2024; 130:1388-1401. [PMID: 38424167 PMCID: PMC11014989 DOI: 10.1038/s41416-024-02617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors unleash inhibitory signals on T cells conferred by tumors and surrounding stromal cells. Despite the clinical efficacy of checkpoint inhibitors, the lack of target expression and persistence of immunosuppressive cells limit the pervasive effectiveness of the therapy. These limitations may be overcome by alternative approaches that co-stimulate T cells and the immune microenvironment. METHODS We analyzed single-cell RNA sequencing data from multiple human cancers and a mouse tumor transplant model to discover the pleiotropic expression of the Interleukin 7 (IL-7) receptor on T cells, macrophages, and dendritic cells. RESULTS Our experiment on the mouse model demonstrated that recombinant IL-7 therapy induces tumor regression, expansion of effector CD8 T cells, and pro-inflammatory activation of macrophages. Moreover, spatial transcriptomic data support immunostimulatory interactions between macrophages and T cells. CONCLUSION These results indicate that IL-7 therapy induces anti-tumor immunity by activating T cells and pro-inflammatory myeloid cells, which may have diverse therapeutic applicability.
Collapse
Affiliation(s)
- Hye Hyeon Eum
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dasom Jeong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Areum Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Minsu Na
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Huiram Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yourae Hong
- Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jin-Sun Kong
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gi Heon Jeong
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung-Ah Yoo
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
5
|
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals (Basel) 2024; 17:415. [PMID: 38675377 PMCID: PMC11054630 DOI: 10.3390/ph17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-7 (IL-7) is a versatile cytokine that plays a crucial role in regulating the immune system's homeostasis. It is involved in the development, proliferation, and differentiation of B and T cells, as well as being essential for the differentiation and survival of naïve T cells and the production and maintenance of memory T cells. Given its potent biological functions, IL-7 is considered to have the potential to be widely used in the field of anti-tumour immunotherapy. Notably, IL-7 can improve the tumour microenvironment by promoting the development of Th17 cells, which can in turn promote the recruitment of effector T cells and NK cells. In addition, IL-7 can also down-regulate the expression of tumour growth factor-β and inhibit immunosuppression to promote anti-tumour efficacy, suggesting potential clinical applications for anti-tumour immunotherapy. This review aims to discuss the origin of IL-7 and its receptor IL-7R, its anti-tumour mechanism, and the recent advances in the application of IL-7 in tumour therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (C.F.); (X.Z.); (X.Z.); (D.W.); (S.H.)
| |
Collapse
|
6
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: local anesthetics in cancer therapy. Oncoimmunology 2024; 13:2308940. [PMID: 38504848 PMCID: PMC10950281 DOI: 10.1080/2162402x.2024.2308940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Preclinical evidence indicates potent antitumor properties of local anesthetics. Numerous underlying mechanisms explaining such anticancer effects have been identified, suggesting direct cytotoxic as well as indirect immunemediated effects that together reduce the proliferative, invasive and migratory potential of malignant cells. Although some retrospective and correlative studies support these findings, prospective randomized controlled trials have not yet fully confirmed the antineoplastic activity of local anesthetics, likely due to the intricate methodology required for mitigating confounding factors. This trial watch aims at compiling all published preclinical and clinical research, along with completed and ongoing trials, that explore the potential antitumor effects of local anesthetics.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département Anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
7
|
Park JH, Lee SW, Choi D, Lee C, Sung YC. Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies. Immune Netw 2024; 24:e9. [PMID: 38455462 PMCID: PMC10917577 DOI: 10.4110/in.2024.24.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Donghoon Choi
- Research Institute of NeoImmune Tech., Co, Ltd., Bio Open Innovation Center, Pohang 37666, Korea
| | - Changhyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Young Chul Sung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
8
|
Quixabeira DCA, Pakola S, Jirovec E, Havunen R, Basnet S, Santos JM, Kudling TV, Clubb JHA, Haybout L, Arias V, Grönberg-Vähä-Koskela S, Cervera-Carrascon V, Kerkelä E, Pasanen A, Anttila M, Tapper J, Kanerva A, Hemminki A. Boosting cytotoxicity of adoptive allogeneic NK cell therapy with an oncolytic adenovirus encoding a human vIL-2 cytokine for the treatment of human ovarian cancer. Cancer Gene Ther 2023; 30:1679-1690. [PMID: 37949944 PMCID: PMC10721546 DOI: 10.1038/s41417-023-00674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Despite good results in the treatment of hematological malignancies, Natural killer (NK) cells have shown limited effectiveness in solid tumors, such as ovarian cancer (OvCa). Here, we assessed the potential of an oncolytic adenovirus expressing a variant interleukin-2 (vIL-2) cytokine, Ad5/3-E2F-d24-vIL2 (vIL-2 virus), also known as TILT-452, to enhance NK cell therapy efficacy in human OvCa ex vivo. Human OvCa surgical specimens were processed into single-cell suspensions and NK cells were expanded from healthy blood donors. OvCa sample digests were co-cultured ex vivo with NK cells and vIL-2 virus and cancer cell killing potential assessed in real time through cell impedance measurement. Proposed therapeutic combination was evaluated in vivo with an OvCa patient-derived xenograft (PDX) in mice. Addition of vIL-2 virus significantly enhanced NK cell therapy killing potential in treated OvCa co-cultures. Similarly, vIL-2 virus in combination with NK cell therapy promoted the best in vivo OvCa tumor control. Mechanistically, vIL-2 virus induced higher percentages of granzyme B in NK cells, and CD8+ T cells, while T regulatory cell proportions remained comparable to NK cell monotherapy in vivo. Ad5/3-E2F-d24-vIL2 virus treatment represents a promising strategy to boost adoptive NK cell therapeutic effect in human OvCa.
Collapse
Affiliation(s)
- D C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - S Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - E Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - S Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - T V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - L Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - V Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - V Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - E Kerkelä
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - A Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M Anttila
- Pathology, Finnish Food Authority, Helsinki, Finland
| | - J Tapper
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - A Kanerva
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - A Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- TILT Biotherapeutics Ltd, Helsinki, Finland.
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
9
|
Houel A, Foloppe J. [Oncolytic viruses: Actors and deliverers of therapeutic proteins against tumors]. Med Sci (Paris) 2023; 39:845-854. [PMID: 38018928 DOI: 10.1051/medsci/2023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
The discovery of the unique ability of certain viruses to specifically target cancer cells has led to significant advancements in cancer immunotherapy research. In addition to inducing specific lysis of cancer cells, oncolytic viruses (OV) have been genetically modified to express molecules of interest within the tumor bed. The use of OV as vectors for therapeutic molecules has allowed to enhance antitumor responses while limiting the adverse effects associated with systemic administration of the molecule. Other studies are currently focused on delaying the neutralization and clearance of the virus by the host's immune system and improving its delivery insight tumors.
Collapse
Affiliation(s)
- Ana Houel
- UMRS 1 135 Sorbonne université, Paris, France - Inserm U1135, Paris, France - Équipe « Microenvironnement immunitaire et immunothérapie », centre d'immunologie et des maladies infectieuses (Cimi), faculté de médecine, Sorbonne université, Paris, France - Transgene, Illkirch-Graffenstaden, France
| | | |
Collapse
|
10
|
Quixabeira DCA, Jirovec E, Pakola S, Havunen R, Basnet S, Santos JM, Kudling TV, Clubb JHA, Haybout L, Arias V, Grönberg-Vähä-Koskela S, Cervera-Carrascon V, Pasanen A, Anttila M, Tapper J, Kanerva A, Hemminki A. Improving the cytotoxic response of tumor-infiltrating lymphocytes towards advanced stage ovarian cancer with an oncolytic adenovirus expressing a human vIL-2 cytokine. Cancer Gene Ther 2023; 30:1543-1553. [PMID: 37666898 PMCID: PMC10645590 DOI: 10.1038/s41417-023-00658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
While the presence of tumor-infiltrating lymphocytes (TILs) associates with improved survival prognosis in ovarian cancer (OvCa) patients, TIL therapy benefit is limited. Here, we evaluated an oncolytic adenovirus coding for a human variant IL-2 (vIL-2) cytokine, Ad5/3-E2F-d24-vIL2 (vIL-2 virus), also known as TILT-452, as an immunotherapeutic strategy to enhance TIL responsiveness towards advanced stage OvCa tumors. Fragments of resected human OvCa tumors were processed into single-cell suspensions, and autologous TILs were expanded from said samples. OvCa tumor specimens were co-cultured with TILs plus vIL-2 virus, and cell killing was assessed in real time through cell impedance measurement. Combination therapy was further evaluated in vivo through a patient-derived xenograft (PDX) ovarian cancer murine model. The combination of vIL-2 virus plus TILs had best cancer cell killing ex vivo compared to TILs monotherapy. These results were supported by an in vivo experiment, where the best OvCa tumor control was obtained when vIL-2 virus was added to TIL therapy. Furthermore, the proposed therapy induced a highly cytotoxic phenotype demonstrated by increased granzyme B intensity in NK cells, CD4+ T, and CD8+ T cells in treated tumors. Our results demonstrate that Ad5/3-E2F-d24-vIL2 therapy consistently improved TILs therapy cytotoxicity in treated human OvCa tumors.
Collapse
Affiliation(s)
- D C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - E Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - S Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - T V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - L Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - V Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - V Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - A Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M Anttila
- Pathology, Finnish Food Authority, Helsinki, Finland
| | - J Tapper
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - A Kanerva
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - A Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- TILT Biotherapeutics Ltd, Helsinki, Finland.
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
11
|
Ding J, Zheng Y, Zhu F, Wang M, Fang L, Li H, Tian H, Liu Y, Wang G, Zheng J, Chai D. Adenovirus-assembled DC vaccine induces dual-targeting CTLs for tumor antigen and adenovirus to eradicate tumors. Int Immunopharmacol 2023; 123:110722. [PMID: 37573687 DOI: 10.1016/j.intimp.2023.110722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
The dendritic cell (DC) vaccine is a promising cancerimmunotherapy strategy, but its efficacy in treating the solid tumor is limited. To overcome this limitation, an oncolytic adenovirus (OAV-IL-12) was developed to enhance antigen targeting ability of adenovirus-assembled DC vaccine (DCs-CD137L/CAIX) for renal carcinoma treatment. Peritumoral administration of OAV-IL-12 increased the number of tumor-infiltrating DCs and their subsets (CD8+DCs and CD103+DCs). Combining OAV-IL-12 with DCs-CD137L/CAIX significantly inhibited the growth of subcutaneous tumors by inducing potent cytotoxic T lymphocyte (CTL) effect and improving the immune infiltration in tumor lesions. Interestingly, this treatment also reduced tumor growth distal to the OAV-IL-12 injecting side via eliciting a systemic CTL response. Furthermore, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment induced dual CTL responses against both CAIX and adenovirus antigens. The therapeutic benefits of this treatment approach mainly relied on multifunctional CD8+T cell immune responses, as indicated by the depletion assay. Moreover, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment generated a long-lasting protective effect against tumors by inducing memory CD8+T cell immune responses. These results suggest that the effective tumor targeting of the adenovirus-based DC vaccine, boosted by OAV-IL-12, is a promising treatment approach for renal carcinoma and other solid tumors.
Collapse
Affiliation(s)
- Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Liu
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
12
|
Houel A, Foloppe J, Dieu-Nosjean MC. Harnessing the power of oncolytic virotherapy and tertiary lymphoid structures to amplify antitumor immune responses in cancer patients. Semin Immunol 2023; 69:101796. [PMID: 37356421 DOI: 10.1016/j.smim.2023.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Tertiary lymphoid structures (TLS) are ectopic aggregates of immune cells that develop in non-lymphoid tissues under persistent inflammation. Since their presence has been associated with a better prognosis in cancer patients, modulating TLS formation is being part of new challenges in immunotherapy. Although mechanisms underlying TLS genesis are still not fully understood, different strategies have been developed in preclinical models to induce their formation and ultimately enhance antitumor responses. Herein, we will discuss a new approach that would consist in using oncolytic viruses (OV). These viruses have the unique feature to preferentially infect, replicate in and kill cancer cells. Their immunoadjuvant property, their use as a vector of therapeutic molecules and their selectivity for cancer cells, make them an attractive strategy to induce TLS in the tumor microenvironment. This review will examine the current knowledge about TLS neogenesis, approaches for inducing them, and relevance of using OV for this purpose, especially in combination with immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Ana Houel
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France; Transgene, Illkirch-Graffenstaden, France
| | | | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France.
| |
Collapse
|
13
|
Benoit A, Vogin G, Duhem C, Berchem G, Janji B. Lighting Up the Fire in the Microenvironment of Cold Tumors: A Major Challenge to Improve Cancer Immunotherapy. Cells 2023; 12:1787. [PMID: 37443821 PMCID: PMC10341162 DOI: 10.3390/cells12131787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Immunotherapy includes immune checkpoint inhibitors (ICI) such as antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death protein/programmed death ligand 1 (PD-1/PD-L1) axis. Experimental and clinical evidence show that immunotherapy based on immune checkpoint inhibitors (ICI) provides long-term survival benefits to cancer patients in whom other conventional therapies have failed. However, only a minority of patients show high clinical benefits via the use of ICI alone. One of the major factors limiting the clinical benefits to ICI can be attributed to the lack of immune cell infiltration within the tumor microenvironment. Such tumors are classified as "cold/warm" or an immune "desert"; those displaying significant infiltration are considered "hot" or inflamed. This review will provide a brief summary of different tumor properties contributing to the establishment of cold tumors and describe major strategies that could reprogram non-inflamed cold tumors into inflamed hot tumors. More particularly, we will describe how targeting hypoxia can induce metabolic reprogramming that results in improving and extending the benefit of ICI.
Collapse
Affiliation(s)
- Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| | - Guillaume Vogin
- Centre National de Radiothérapie François Baclesse, L-4005 Esch-sur-Alzette, Luxembourg;
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine—UMR 7365, 54505 Vandoeuvre-lès-Nancy, France
| | - Caroline Duhem
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| |
Collapse
|
14
|
Pakola S, Quixabeira DCA, Kudling TV, Clubb JHA, Grönberg-Vähä-Koskela S, Basnet S, Jirovec E, Arias V, Haybout L, Heiniö C, Santos JM, Cervera-Carrascon V, Havunen R, Anttila M, Hemminki A. An oncolytic adenovirus coding for a variant interleukin 2 cytokine improves response to chemotherapy through enhancement of effector lymphocyte cytotoxicity, fibroblast compartment modulation and mitotic slippage. Front Immunol 2023; 14:1171083. [PMID: 37475863 PMCID: PMC10354511 DOI: 10.3389/fimmu.2023.1171083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly treatment-resistant cancer. Currently, the only curative treatment for PDAC is surgery, but most patients are diagnosed with metastatic disease and thus outside the scope of surgery. The majority of metastatic patients receive chemotherapy, but responses are limited. New therapeutics are thus urgently needed for PDAC. One major limitation in treating PDAC has been the highly immunosuppressive tumor microenvironment (TME) which inhibits anti-cancer immune responses. We have constructed an oncolytic adenovirus coding for a variant the interleukin 2 molecule, Ad5/3-E2F-d24-vIL2 (also known as TILT-452, and "vIL-2 virus"), with preferential binding to IL-2 receptors on the surface of effector lymphocytes over T regulatory cells (T regs). In the present study this virus was evaluated in combination with nab-paclitaxel and gemcitabine chemotherapy in Panc02 mouse model. Ad5/3-E2F-d24-vIL2 showed marked PDAC cell killing in vitro, alongside induction of mitotic slippage and immunogenic cell death in PDAC cell lines, when combined with chemotherapy. Increased survival was seen in vivo with 80% of animals surviving long term, when compared to chemotherapy alone. Moreover, combination therapy mediated enhanced tumor growth control, without observable toxicities in internal organs or external features. Survival and tumor control benefits were associated with activation of tumor infiltrating immune cells, downregulation of inhibitory signals, change in fibroblast populations in the tumors and changes in intratumoral cytokines, with increased chemokine amounts (CCL2, CCL3, CCL4) and anti-tumor cytokines (IFN-γ and TNFα). Furthermore, vIL-2 virus in combination with chemotherapy efficiently induced tumor protection upon rechallenge, that was extended to a previously non-encountered cancer cell line. In conclusion, Ad5/3-E2F-d24-vIL2 is a promising immunotherapy candidate when combined with nab-paclitaxel and gemcitabine.
Collapse
Affiliation(s)
- Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Dafne C. A. Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Tatiana V. Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - James H. A. Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Susanna Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Joao M. Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
15
|
Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP, Kepp O, Kroemer G, Krysko DV, Coosemans A, Vaes RD, De Ruysscher D, De Vleeschouwer S, Wauters E, Smits E, Tejpar S, Beuselinck B, Hatse S, Wildiers H, Clement PM, Vandenabeele P, Zitvogel L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 2023; 12:2219591. [PMID: 37284695 PMCID: PMC10240992 DOI: 10.1080/2162402x.2023.2219591] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jitka Fucíková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Insitute Ghent, Ghent University, Ghent, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven De Vleeschouwer
- Department Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Department Neuroscience, Laboratory for Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (Breathe), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholiek Universiteit Leuven, Leuven, Belgium
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Paul M. Clement
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laurence Zitvogel
- Tumour Immunology and Immunotherapy of Cancer, European Academy of Tumor Immunology, Gustave Roussy Cancer Center, Inserm, Villejuif, France
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Wang D, Porter CE, Lim B, Rosewell Shaw A, Robertson CS, Woods ML, Xu Y, Biegert GG, Morita D, Wang T, Grilley BJ, Heslop H, Brenner MK, Suzuki M. Ultralow-dose binary oncolytic/helper-dependent adenovirus promotes antitumor activity in preclinical and clinical studies. SCIENCE ADVANCES 2023; 9:eade6790. [PMID: 36989357 PMCID: PMC10058234 DOI: 10.1126/sciadv.ade6790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
We show that a binary oncolytic/helper-dependent adenovirus (CAdVEC) that both lyses tumor cells and locally expresses the proinflammatory cytokine IL-12 and PD-L1 blocking antibody has potent antitumor activity in humanized mouse models. On the basis of these preclinical studies, we treated four patients with a single intratumoral injection of an ultralow dose of CAdVEC (NCT03740256), representing a dose of oncolytic adenovirus more than 100-fold lower than used in previous trials. While CAdVEC caused no significant toxicities, it repolarized the tumor microenvironment with increased infiltration of CD8 T cells. A single administration of CAdVEC was associated with both locoregional and abscopal effects on metastases and, in combination with systemic administration of immune checkpoint antibodies, induced sustained antitumor responses, including one complete and two partial responses. Hence, in both preclinical and clinical studies, CAdVEC is safe and even at extremely low doses is sufficiently potent to induce significant tumor control through oncolysis and immune repolarization.
Collapse
Affiliation(s)
- Daniel Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Caroline E. Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Bora Lim
- Duncan Cancer Center-Breast, Baylor College of Medicine, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Catherine S. Robertson
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Mae L. Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Ya Xu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Greyson G.W. Biegert
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Daisuke Morita
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Tao Wang
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bambi J. Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Helen Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K. Brenner
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Basnet S, Santos JM, Quixabeira DCA, Clubb JHA, Grönberg-Vähä-Koskela SAM, Arias V, Pakola S, Kudling TV, Heiniö C, Havunen R, Cervera-Carrascon V, Sorsa S, Anttila M, Kanerva A, Hemminki A. Oncolytic adenovirus coding for bispecific T cell engager against human MUC-1 potentiates T cell response against solid tumors. Mol Ther Oncolytics 2023; 28:59-73. [PMID: 36699617 PMCID: PMC9842968 DOI: 10.1016/j.omto.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy with bispecific T cell engagers has shown efficacy in patients with hematologic malignancies and uveal melanoma. Antitumor effects of bispecific T cell engagers in most solid tumors are limited due to their short serum half-life and insufficient tumor concentration. We designed a novel serotype 5/3 oncolytic adenovirus encoding a human mucin1 antibody and the human CD3 receptor, Ad5/3-E2F-d24-aMUC1aCD3 (TILT-321). TILT-321 is engineered to replicate only in cancer cells, leading to a high concentration of the aMUC1aCD3 molecule in the tumor microenvironment. Infection and cell viability assays were performed to determine the oncolytic potential of the novel construct. The functionality of the virus-derived aMUC1aCD3 was evaluated in vitro. When TILT-321 was combined with allogeneic T cells, rapid tumor cell lysis was observed. TILT-321-infected cells secreted functional aMUC1aCD3, as shown by increased T cell activity and its binding to MUC1 and CD3. In vivo, TILT-321 treatment led to effective antitumor efficacy mediated by increased intratumoral T cell activity in an A549 and patient-derived ovarian cancer xenograft mouse model humanized with peripheral blood mononuclear cells (PBMC). This study provides a proof of concept for an effective strategy to overcome the key limitations of recombinant bispecific T cell engager delivery for solid tumor treatment.
Collapse
Affiliation(s)
- Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Susanna A M Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,Helsinki University Hospital (HUS), 00029, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,Helsinki University Hospital (HUS), 00029, Helsinki, Finland
| | - Tatiana V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Marjukka Anttila
- Department of Pathology, Finnish Food Authority, 00790, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,Department of Gynecology and Obstetrics, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland.,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, and University of Helsinki, 00029, Helsinki, Finland
| |
Collapse
|
18
|
Deregulated E2F Activity as a Cancer-Cell Specific Therapeutic Tool. Genes (Basel) 2023; 14:genes14020393. [PMID: 36833320 PMCID: PMC9956157 DOI: 10.3390/genes14020393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F, the principal target of the tumor suppressor pRB, plays crucial roles in cell proliferation and tumor suppression. In almost all cancers, pRB function is disabled, and E2F activity is enhanced. To specifically target cancer cells, trials have been undertaken to suppress enhanced E2F activity to restrain cell proliferation or selectively kill cancer cells, utilizing enhanced E2F activity. However, these approaches may also impact normal growing cells, since growth stimulation also inactivates pRB and enhances E2F activity. E2F activated upon the loss of pRB control (deregulated E2F) activates tumor suppressor genes, which are not activated by E2F induced by growth stimulation, inducing cellular senescence or apoptosis to protect cells from tumorigenesis. Deregulated E2F activity is tolerated in cancer cells due to inactivation of the ARF-p53 pathway, thus representing a feature unique to cancer cells. Deregulated E2F activity, which activates tumor suppressor genes, is distinct from enhanced E2F activity, which activates growth-related genes, in that deregulated E2F activity does not depend on the heterodimeric partner DP. Indeed, the ARF promoter, which is specifically activated by deregulated E2F, showed higher cancer-cell specific activity, compared to the E2F1 promoter, which is also activated by E2F induced by growth stimulation. Thus, deregulated E2F activity is an attractive potential therapeutic tool to specifically target cancer cells.
Collapse
|
19
|
Clubb JHA, Kudling TV, Girych M, Haybout L, Pakola S, Hamdan F, Cervera-Carrascon V, Hemmes A, Grönberg-Vähä-Koskela S, Santos JM, Quixabeira DCA, Basnet S, Heiniö C, Arias V, Jirovec E, Kaptan S, Havunen R, Sorsa S, Erikat A, Schwartz J, Anttila M, Aro K, Viitala T, Vattulainen I, Cerullo V, Kanerva A, Hemminki A. Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting. Front Immunol 2023; 14:1060540. [PMID: 36817448 PMCID: PMC9936529 DOI: 10.3389/fimmu.2023.1060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). Methods Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). Results Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. Conclusions Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles.
Collapse
Affiliation(s)
- James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,R&D Department, TILT Biotherapeutics Ltd, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Tatiana V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Víctor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,R&D Department, TILT Biotherapeutics Ltd, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Susanna Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - João Manuel Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,R&D Department, TILT Biotherapeutics Ltd, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,R&D Department, TILT Biotherapeutics Ltd, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Shreyas Kaptan
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,R&D Department, TILT Biotherapeutics Ltd, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,R&D Department, TILT Biotherapeutics Ltd, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Abdullah Erikat
- Department of Chemistry and the Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Joel Schwartz
- Chicago Department of Oral Medicine and Diagnostic Science, University of Illinois, Chicago, IL, United States
| | | | - Katri Aro
- Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland.,Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Department of Gynecology and Obstetrics, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,R&D Department, TILT Biotherapeutics Ltd, Helsinki, Finland.,Research Program Unit (RPU), University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
21
|
Cancer Immunotherapy and Delivery System: An Update. Pharmaceutics 2022; 14:pharmaceutics14081630. [PMID: 36015256 PMCID: PMC9413869 DOI: 10.3390/pharmaceutics14081630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
With an understanding of immunity in the tumor microenvironment, immunotherapy turns out to be a powerful tool in the clinic to treat many cancers. The strategies applied in cancer immunotherapy mainly include blockade of immune checkpoints, adoptive transfer of engineered cells, such as T cells, natural killer cells, and macrophages, cytokine therapy, cancer vaccines, and oncolytic virotherapy. Many factors, such as product price, off-target side effects, immunosuppressive tumor microenvironment, and cancer cell heterogeneity, affect the treatment efficacy of immunotherapies against cancers. In addition, some treatments, such as chimeric antigen receptor (CAR) T cell therapy, are more effective in treating patients with lymphoma, leukemia, and multiple myeloma rather than solid tumors. To improve the efficacy of targeted immunotherapy and reduce off-target effects, delivery systems for immunotherapies have been developed in past decades using tools such as nanoparticles, hydrogel matrix, and implantable scaffolds. This review first summarizes the currently common immunotherapies and their limitations. It then synopsizes the relative delivery systems that can be applied to improve treatment efficacy and minimize side effects. The challenges, frontiers, and prospects for applying these delivery systems in cancer immunotherapy are also discussed. Finally, the application of these approaches in clinical trials is reviewed.
Collapse
|