1
|
Wang R, Huang X, Chen X, Zhang Y. Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:3568-3598. [PMID: 38815129 PMCID: PMC11167598 DOI: 10.1021/acsbiomaterials.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.
Collapse
Affiliation(s)
- Ruoyi Wang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xu Huang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xiaoxi Chen
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Yingchao Zhang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| |
Collapse
|
2
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Bahreyni A, Mohamud Y, Luo H. Recent advancements in immunotherapy of melanoma using nanotechnology-based strategies. Biomed Pharmacother 2023; 159:114243. [PMID: 36641926 DOI: 10.1016/j.biopha.2023.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Melanoma is a malignant tumor that accounts for the deadliest form of skin cancers. Despite the significant efforts made recently for development of immunotherapeutic strategies including using immune checkpoint inhibitors and cancer vaccines, the clinical outcomes are unsatisfying. Different factors affect efficient cancer immunotherapy such as side-effects, immunosuppressive tumor microenvironment, and tumor heterogeneity. In the past decades, various nanotechnology-based approaches have been developed to enhance the efficacy of cancer immunotherapy, in addition to diminishing the toxicity associated with it. Several studies have shown that proper application of nanomaterials can revolutionize the outcome of immunotherapy in diverse melanoma models. This review summarizes the recent advancement in the integration of nanotechnology and cancer immunotherapy in melanoma treatment. The importance of nanomaterials and their therapeutic advantages for patients with melanoma are also discussed.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
4
|
pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010201. [PMID: 36678830 PMCID: PMC9861370 DOI: 10.3390/pharmaceutics15010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Selective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the inclusion complex with β-cyclodextrin molecule, due to the presence of a planar fragment in its structure. The stability of such a complex is pH-dependent. The drug release profile at different pH values and the mechanism of C-2028 release from QDs-β-CD-FA nanoconjugates were investigated. Next, the intracellular fate of compounds and their influence on lysosomal content in the cells were also studied. Confocal Laser Scanning Microscopy studies proved that all investigated compounds were delivered to acidic organelles, the pH of which promoted an increased release of C-2028 from its nanoconjugates. Since the pH in normal cells is higher than in cancer cells, the release of C-2028 from its nanoconjugates is decreased in these cells. Additionally, we obtained the concentration profiles of C-2028 in the selected cells treated with unbound C-2028 or nanoconjugate by the HPLC analysis.
Collapse
|
5
|
Yu H, Wu M, Chen S, Song M, Yue Y. Biomimetic nanoparticles for tumor immunotherapy. Front Bioeng Biotechnol 2022; 10:989881. [PMID: 36440446 PMCID: PMC9682960 DOI: 10.3389/fbioe.2022.989881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2023] Open
Abstract
Currently, tumor treatment research still focuses on the cancer cells themselves, but the fact that the immune system plays an important role in inhibiting tumor development cannot be ignored. The activation of the immune system depends on the difference between self and non-self. Unfortunately, cancer is characterized by genetic changes in the host cells that lead to uncontrolled cell proliferation and evade immune surveillance. Cancer immunotherapy aims to coordinate a patient's immune system to target, fight, and destroy cancer cells without destroying the normal cells. Nevertheless, antitumor immunity driven by the autoimmune system alone may be inadequate for treatment. The development of drug delivery systems (DDS) based on nanoparticles can not only promote immunotherapy but also improve the immunosuppressive tumor microenvironment (ITM), which provides promising strategies for cancer treatment. However, conventional nano drug delivery systems (NDDS) are subject to several limitations in clinical transformation, such as immunogenicity and the potential toxicity risks of the carrier materials, premature drug leakage at off-target sites during circulation and drug load content. In order to address these limitations, this paper reviews the trends and progress of biomimetic NDDS and discusses the applications of each biomimetic system in tumor immunotherapy. Furthermore, we review the various combination immunotherapies based on biomimetic NDDS and key considerations for clinical transformation.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Szewczyk OK, Roszczenko P, Czarnomysy R, Bielawska A, Bielawski K. An Overview of the Importance of Transition-Metal Nanoparticles in Cancer Research. Int J Mol Sci 2022; 23:6688. [PMID: 35743130 PMCID: PMC9223356 DOI: 10.3390/ijms23126688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Several authorities have implied that nanotechnology has a significant future in the development of advanced cancer therapies. Nanotechnology makes it possible to simultaneously administer drug combinations and engage the immune system to fight cancer. Nanoparticles can locate metastases in different organs and deliver medications to them. Using them allows for the effective reduction of tumors with minimal toxicity to healthy tissue. Transition-metal nanoparticles, through Fenton-type or Haber-Weiss-type reactions, generate reactive oxygen species. Through oxidative stress, the particles induce cell death via different pathways. The main limitation of the particles is their toxicity. Certain factors can control toxicity, such as route of administration, size, aggregation state, surface functionalization, or oxidation state. In this review, we attempt to discuss the effects and toxicity of transition-metal nanoparticles.
Collapse
Affiliation(s)
- Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| |
Collapse
|
7
|
Mitarotonda R, Giorgi E, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Mishra YK, Khademhosseini A, Desimone MF, De Marzi M, Orive G. Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. BIOMATERIALS ADVANCES 2022; 135:212726. [PMID: 35475005 PMCID: PMC9023085 DOI: 10.1016/j.bioadv.2022.212726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
The development of nanoparticles (NPs) with potential therapeutic uses represents an area of vast interest in the scientific community during the last years. Recently, the pandemic caused by COVID-19 motivated a race for vaccines creation to overcome the crisis generated. This is a good demonstration that nanotechnology will most likely be the basis of future immunotherapy. Moreover, the number of publications based on nanosystems has significantly increased in recent years and it is expected that most of these developments can go on to experimentation in clinical stages soon. The therapeutic use of NPs to combat different diseases such as cancer, allergies or autoimmune diseases will depend on their characteristics, their targets, and the transported molecules. This review presents an in-depth analysis of recent advances that have been developed in order to obtain novel nanoparticulate based tools for the treatment of allergies, autoimmune diseases and for their use in vaccines. Moreover, it is highlighted that by providing targeted delivery an increase in the potential of vaccines to induce an immune response is expected in the future. Definitively, the here gathered analysis is a good demonstration that nanotechnology will be the basis of future immunotherapy.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Tatiane Eufrasio-da-Silva
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands
| | | | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, CA 90095, USA
| | - Martin F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mauricio De Marzi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
8
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
9
|
Pilch J, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Augustin E, Nowicka AM. Foliate-Targeting Quantum Dots- β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms23031261. [PMID: 35163186 PMCID: PMC8835877 DOI: 10.3390/ijms23031261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
Targeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound C-2028. C-2028 was bound to the nanoconjugate via an inclusion complex with β-CD. The effect of using FA in QDs-β-CD(C-2028)-FA nanoconjugates on cytotoxicity, cellular uptake, and the mechanism of internalization in cancer (H460, Du-145, and LNCaP) and normal (MRC-5 and PNT1A) cells was investigated. The QDs-β-CD(C-2028)-FA were characterized using DLS (dynamic light scattering), ZP (zeta potential), quartz crystal microbalance with dissipation (QCM-D), and UV-vis spectroscopy. The conjugation of C-2028 with non-toxic QDs or QDs-β-CD-FA did not change the cytotoxicity of this compound. Confocal microscopy studies proved that the use of FA in nanoconjugates significantly increased the amount of delivered compound, especially to cancer cells. QDgreen-β-CD(C-2028)-FA enters the cells through multiple endocytosis pathways in different levels, depending on the cell line. To conclude, the use of FA is a good self-navigating molecule in the QDs platform for drug delivery to cancer cells.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| | - Patrycja Kowalik
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Anna M. Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| |
Collapse
|
10
|
Wu S, Xia Y, Hu Y, Ma G. Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Adv Drug Deliv Rev 2021; 176:113871. [PMID: 34311014 DOI: 10.1016/j.addr.2021.113871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
In the combat against pathogens, the immune systems were evolved with the immune recognitions against the various danger signals, which responded vigorously upon the pathogen invasions and elicited potent antibodies or T cell engagement against the re-infections. Envisage with the prevailing pandemics and increasing demands for cancer vaccines, bio-mimic particles were developed to imitate the natural traits of the pathogens, which conferred the optimal strategies to stimulate the immune engagement and let to the increased vaccine efficacy. Here, the recent development in bio-mimic particles, as well as the natural cues from the pathogens were discussed. As such, the designing principles that adapted from the physiochemical properties of the pathogens were unfolded as the surface characteristics (hydrophobic, nano-pattern, antigen display, charge), properties (size, shape, softness) and the delivered components (peptide, protein, nuclear acids, toll-like receptor (TLR) agonist, antibody). Additionally, the strategies for the efficient delivery, regarding the biodistribution, internalization and presentation of the antigens were also illustrated. Through reviewing the state-of-art in biomimetic particles, the lesson learnt from the natural traits and pathogenic invasion may shed light on the rational design for the enhanced vaccinations.
Collapse
|
11
|
Paus C, van der Voort R, Cambi A. Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limitations of current cancer treatments have stimulated the application of nanotechnology to develop more effective and safer cancer therapies. Remarkable progress has been made in the development of nanomedicine to overcome issues associated with conventional cancer treatment, including low drug solubility, insufficient targeting, and drug resistance. The modulation of nanoparticles allows the improvement of drug pharmacokinetics, leading to improved targeting and reduced side effects. In addition, nanoparticles can be conjugated to ligands that specifically target cancer cells. Furthermore, strategies that exploit tumor characteristics to locally trigger drug release have shown to increase targeted drug delivery. However, although some clinical successes have been achieved, most nanomedicines fail to reach the clinic. Factors that hinder clinical translation vary from the complexity of design, incomplete understanding of biological mechanisms, and high demands during the manufacturing process. Clinical translation might be improved by combining knowledge from different disciplines such as cell biology, chemistry, and tumor pathophysiology. An increased understanding on how nanoparticle modifications affect biological systems is pivotal to improve design, eventually aiding development of more effective nanomedicines. This review summarizes the key successes that have been made in nanomedicine, including improved drug delivery and release by polymeric nanoparticles as well as the introduction of strategies that overcome drug resistance. In addition, the application of nanomedicine in immunotherapy is discussed, and several remaining challenges addressed.
Collapse
|
12
|
Surface chemistry modification of silica nanoparticles alters the activation of monocytes. Ther Deliv 2021; 12:443-459. [PMID: 33902308 DOI: 10.4155/tde-2021-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Nanoparticles (NPs) interaction with immune system is a growing topic of study. Materials & methods: Bare and amine grafted silica NPs effects on monocytes/macrophages cells were analyzed by flow cytometry, MTT test and LIVE/DEAD® viability/cytotoxicity assay. Results: Bare silica NPs inhibited proliferation and induced monocyte/macrophages activation (increasing CD40/CD80 expression besides pro-inflammatory cytokines and nitrite secretion). Furthermore, silica NPs increased cell membrane damage and reduced the number of living cells. In contrast, amine grafted silica NPs did not alter these parameters. Conclusion: Cell activation properties of bare silica NPs could be hindered after grafting with amine moieties. This strategy is useful to tune the immune system stimulation by NPs or to design NPs suitable to transport therapeutic molecules.
Collapse
|
13
|
Khan M, Sherwani S, Khan S, Alouffi S, Alam M, Al-Motair K, Khan S. Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment. Molecules 2021; 26:molecules26082262. [PMID: 33919694 PMCID: PMC8069805 DOI: 10.3390/molecules26082262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood-brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.
Collapse
Affiliation(s)
- Mohd Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Correspondence: or
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Sultan Alouffi
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Mohammad Alam
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Khalid Al-Motair
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
| | - Shahper Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, U.P., India;
| |
Collapse
|
14
|
Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021; 13:206. [PMID: 33540942 PMCID: PMC7913163 DOI: 10.3390/pharmaceutics13020206] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines promising alternatives to conventional vaccine technologies. However, efficient delivery of these vaccines requires that the mRNA be protected against extracellular degradation. Lipid nanoparticles (LNPs) have been extensively studied as non-viral vectors for the delivery of mRNA to target cells because of their relatively easy and scalable manufacturing processes. This review highlights key advances in the development of LNPs and reviews the application of mRNA-based vaccines formulated in LNPs for use against infectious diseases and cancer.
Collapse
Affiliation(s)
| | - Iman M. Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (B.N.A.); (A.S.A.)
| | | |
Collapse
|
15
|
Lagopati N, Evangelou K, Falaras P, Tsilibary EPC, Vasileiou PVS, Havaki S, Angelopoulou A, Pavlatou EA, Gorgoulis VG. Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. Pharmacol Ther 2020; 222:107795. [PMID: 33358928 DOI: 10.1016/j.pharmthera.2020.107795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The multivariate condition of cancer disease has been approached in various ways, by the scientific community. Recent studies focus on individualized treatments, minimizing the undesirable consequences of the conventional methods, but the development of an alternative effective therapeutic scheme remains to be held. Nanomedicine could provide a solution, filling this gap, exploiting the unique properties of innovative nanostructured materials. Nanostructured titanium dioxide (TiO2) has a variety of applications of daily routine and of advanced technology. Due to its biocompatibility, it has also a great number of biomedical applications. It is now clear that photo-excited TiO2 nanoparticles, induce generation of pairs of electrons and holes which react with water and oxygen to yield reactive oxygen species (ROS) that have been proven to damage cancer cells, triggering controlled cellular processes. The aim of this review is to provide insights into the field of nanomedicine and particularly into the wide context of TiO2-NP-mediated anticancer effect, shedding light on the achievements of nanotechnology and proposing this nanostructured material as a promising anticancer photosensitizer.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece; Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., GR 15780 Zografou, Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece.
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, Laboratory of Nanotechnology Processes for Solar Energy Conversion and Environmental Protection, National Centre for Scientific Research "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str., GR 15341 Agia Paraskevi, Athens, Greece.
| | | | - Panagiotis V S Vasileiou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece
| | - Sofia Havaki
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece.
| | - Andriani Angelopoulou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece
| | - Evangelia A Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., GR 15780 Zografou, Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece; Biomedical Research Foundation Academy of Athens, Athens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
16
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
17
|
Nasirmoghadas P, Mousakhani A, Behzad F, Beheshtkhoo N, Hassanzadeh A, Nikoo M, Mehrabi M, Kouhbanani MAJ. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol Prog 2020; 37:e3070. [PMID: 32829506 DOI: 10.1002/btpr.3070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
Cancer has been one of the most significant causes of mortality, worldwide. Cancer immunotherapy has recently emerged as a competent, cancer-fighting clinical strategy. Nevertheless, due to the difficulty of such treatments, costs, and off-target adverse effects, the implementation of cancer immunotherapy described by the antigen-presenting cell (APC) vaccine and chimeric antigen receptor T cell therapy ex vivo in large clinical trials have been limited. Nowadays, the nanoparticles theranostic system as a promising target-based modality provides new opportunities to improve cancer immunotherapy difficulties and reduce their adverse effects. Meanwhile, the appropriate engineering of nanoparticles taking into consideration nanoparticle characteristics, such as, size, shape, and surface features, as well as the use of these physicochemical properties for suitable biological interactions, provides new possibilities for the application of nanoparticles in cancer immunotherapy. In this review article, we focus on the latest state-of-the-art nanoparticle-based antigen/adjuvant delivery vehicle strategies to professional APCs and engineering specific T lymphocyte required for improving the efficiency of tumor-specific immunotherapy.
Collapse
Affiliation(s)
- Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Helal Iran Pharmaceutical and Clinical Complex, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Hasan MN, Maji TK, Pal U, Bera A, Bagchi D, Halder A, Ahmed SA, Al-Fahemi JH, Bawazeer TM, Saha-Dasgupta T, Pal SK. Wide bandgap semiconductor-based novel nanohybrid for potential antibacterial activity: ultrafast spectroscopy and computational studies. RSC Adv 2020; 10:38890-38899. [PMID: 35518422 PMCID: PMC9057326 DOI: 10.1039/d0ra07441a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
The properties of nanomaterials generated by external stimuli are considered an innovative and promising replacement for the annihilation of bacterial infectious diseases. The present study demonstrates the possibility of getting the antibiotic-like drug action from our newly synthesized nanohybrid (NH), which consists of norfloxacin (NF) as the photosensitive material covalently attached to the ZnO nanoparticle (NP). The synthesized NH has been characterized using various microscopic and spectroscopic techniques. Steady state fluorescence and time-correlated single photon counting (TCSPC)-based spectroscopic studies demonstrate the efficient electron transfer from NF to ZnO. This enhances the reactive oxygen species (ROS) production capability of the system. First principles density functional theory has been calculated to gain insight into the charge separation mechanism. To explore the electron densities of the occupied and unoccupied levels of NH, we have verified the nature of the electronic structure. It is observed that there is a very high possibility of electron transfer from NF to ZnO in the NH system, which validates the experimental findings. Finally, the efficacy of NH compared to NF and ZnO has been estimated on the in vitro culture of E. coli bacteria. We have obtained a significant reduction in the bacterial viability by NH with respect to control in the presence of light. These results suggest that the synthesized NH could be a potential candidate in the new generation alternative antibacterial drugs. Overall, the study depicts a detailed physical insight for nanohybrid systems that can be beneficial for manifold application purposes.
Collapse
Affiliation(s)
- Md Nur Hasan
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
| | - Tuhin Kumar Maji
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
| | - Arpan Bera
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
| | - Damayanti Bagchi
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
| | - Animesh Halder
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
- Department of Applied Optics & Photonics, University of Calcutta Block JD, Sector-III, Salt Lake Kolkata 700106 India
| | - Saleh A Ahmed
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Jabir H Al-Fahemi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Tahani M Bawazeer
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Tanusri Saha-Dasgupta
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science Raja S. C. Mullick Road Kolkata 700032 India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector-III, Salt Lake Kolkata 700106 India
| |
Collapse
|
19
|
Ahmad KS, Talat M, Jaffri SB, Shaheen N. Innovatory role of nanomaterials as bio-tools for treatment of cancer. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Conventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Muntaha Talat
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | | |
Collapse
|
20
|
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15:576-590. [PMID: 33193861 PMCID: PMC7610208 DOI: 10.1016/j.ajps.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Vaccines therapeutics manipulate host's immune system and have broad potential for cancer prevention and treatment. However, due to poor immunogenicity and limited safety, fewer cancer vaccines have been successful in clinical trials. Over the past decades, nanotechnology has been exploited to deliver cancer vaccines, eliciting long-lasting and effective immune responses. Compared to traditional vaccines, cancer vaccines delivered by nanomaterials can be tuned towards desired immune profiles by (1) optimizing the physicochemical properties of the nanomaterial carriers, (2) modifying the nanomaterials with targeting molecules, or (3) co-encapsulating with immunostimulators. In order to develop vaccines with desired immunogenicity, a thorough understanding of parameters that affect immune responses is required. Herein, we discussed the effects of physicochemical properties on antigen presentation and immune response, including but not limited to size, particle rigidity, intrinsic immunogenicity. Furthermore, we provided a detailed overview of recent preclinical and clinical advances in nanotechnology for cancer vaccines, and considerations for future directions in advancing the vaccine platform to widespread anti-cancer applications.
Collapse
Affiliation(s)
- Jingjing Liu
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Jiying Sui
- Affiliated Hospital of Shandong Academy of Medical Sciences, Ji'nan 250012, China
| | - Yanyun Hao
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Guihua Huang
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
21
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
22
|
Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P, Valizadeh H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int J Pharm 2020; 581:119269. [PMID: 32234427 DOI: 10.1016/j.ijpharm.2020.119269] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
Evaluation of axial properties including preparation, surface functionalization, and pharmacokinetics for delivery of pharmacologically active molecules and genes lead to pharmaceutical development of liposome in cancer therapy. Here, analysis of effects of the axial properties of liposome based on cancer treatment modalities as individually and coherently is vital and shows deserving further investigation for the future. In this review, recent progress in the analysis of preparation approaches, optimizing pharmacokinetic parameters, functionalization and targeting improvement and modulation of biological factors and components resulting in a better function of liposome in cancer for drug/gene delivery and immunotherapy are discussed. Here, recent developments on liposome with vaccines and immunoadjuvant carriers, and antigen-carrier system to cancer immunotherapy are introduced.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Khaleseh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Allahyari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Taheri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
23
|
Imai J, Ohashi S, Sakai T. Endoplasmic Reticulum-Associated Degradation-Dependent Processing in Cross-Presentation and Its Potential for Dendritic Cell Vaccinations: A Review. Pharmaceutics 2020; 12:pharmaceutics12020153. [PMID: 32070016 PMCID: PMC7076524 DOI: 10.3390/pharmaceutics12020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
24
|
Quintella CM, Quintella HM, Rohweder M, Quintella GM. Advances in patent applications related to cancer vaccine using CpG-ODN and OX40 association. Expert Opin Ther Pat 2020; 30:287-301. [PMID: 32008403 DOI: 10.1080/13543776.2020.1724960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: This review aims to assess the available technologies, advances, and trends from technological readiness level 4 to level 8 for cancer immunologic therapeutics using the association of OX40 and CPG-ODN, usually known as cancer vaccine.Areas covered: Patent documents and clinic studies referring to the use of CpG-ODN and of OX40 association for cancer therapeutics. Patent data were obtained within the worldwide basis of the European Patent Office (EPO). The 138 patents of 36 patent families found were analyzed focusing on word distribution of technology developers and potential markets, legal status, annual evolution of first priority, technological domains, applicants and co-applicants and detailed analysis of each technology. Two clinical studies are in progress.Expert opinion: Traditional methods in post cancer diagnosis are being replaced by immunological association therapies. It is expected that the development of cancer vaccines will expand the scope of cancer-specific immunotherapy, especially if associated with alternative systems for expression and delivery with future potential. It is expected that genetic and controlled and/or specific nano delivery are improved. Furthermore, these new developments will likely address the problem of long-term treatments, reducing cancer mortality and reducing patient numbers worldwide.
Collapse
Affiliation(s)
- Cristina M Quintella
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil
| | - Heitor M Quintella
- PROFNIT - Postgraduate Program on Intellectual Property and Technology Transfer for Innovation, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil
| | - Mayla Rohweder
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil.,CEPARH - Research and Assistance Center on Human Reproduction, Salvador, BA, Brazil
| | - Guilherme M Quintella
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil.,Quintellar Legal Consulting Company, Salvador, BA, Brazil
| |
Collapse
|
25
|
Imai J, Otani M, Sakai T. Distinct Subcellular Compartments of Dendritic Cells Used for Cross-Presentation. Int J Mol Sci 2019; 20:ijms20225606. [PMID: 31717517 PMCID: PMC6888166 DOI: 10.3390/ijms20225606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) present exogenous protein-derived peptides on major histocompatibility complex class I molecules to prime naïve CD8+ T cells. This DC specific ability, called cross-presentation (CP), is important for the activation of cell-mediated immunity and the induction of self-tolerance. Recent research revealed that endoplasmic reticulum-associated degradation (ERAD), which was first identified as a part of the unfolded protein response—a quality control system in the ER—plays a pivotal role in the processing of exogenous proteins in CP. Moreover, DCs express a variety of immuno-modulatory molecules and cytokines to regulate T cell activation in response to the environment. Although both CP and immuno-modulation are indispensable, contrasting ER conditions are required for their correct activity. Since ERAD substrates are unfolded proteins, their accumulation may result in ER stress, impaired cell homeostasis, and eventually apoptosis. In contrast, activation of the unfolded protein response should be inhibited for DCs to express immuno-modulatory molecules and cytokines. Here, we review recent advances on antigen CP, focusing on intracellular transport routes for exogenous antigens and distinctive subcellular compartments involved in ERAD.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
26
|
Xu W, Qi M, Li X, Liu X, Wang L, Yu W, Liu M, A L, Zhou Y, Song Y. TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
La-Beck NM, Liu X, Wood LM. Harnessing Liposome Interactions With the Immune System for the Next Breakthrough in Cancer Drug Delivery. Front Pharmacol 2019; 10:220. [PMID: 30914953 PMCID: PMC6422978 DOI: 10.3389/fphar.2019.00220] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
Liposomal nanoparticles are a heterogeneous group of engineered drug carriers that have tremendous therapeutic potential in the treatment of cancer. They increase tumor drug delivery, significantly attenuate drug toxicity, and protect the drug from degradation. However, two decades after approval of the first nanoparticle-mediated anticancer drug, pegylated liposomal doxorubicin (Doxil), there has yet to be a major shift in cancer treatment paradigms. Only two anticancer nanoparticles are used in the first-line treatment of cancer patients, with all others relegated to the refractory or salvage setting. Herein, we discuss new insights into the mechanisms underlying in vivo interactions between liposomes and the tumor immunologic milieu, and the knowledge gaps that need to be addressed in order to realize the full clinical potential of cancer nanomedicines. We also discuss immunopharmacology insights from a parallel field, Cancer Immunotherapy, which have the potential to generate breakthroughs in Cancer Nanomedicine.
Collapse
Affiliation(s)
- Ninh M. La-Beck
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United States
| | - Laurence M. Wood
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
28
|
Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive Nanoparticles for Cancer Immunotherapy. Int J Mol Sci 2018; 19:E3877. [PMID: 30518139 PMCID: PMC6321368 DOI: 10.3390/ijms19123877] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/18/2022] Open
Abstract
Currently, immunotherapy is considered to be one of the effective treatment modalities for cancer. All the developments and discoveries in this field up to the recent Nobel Prize add to the interest for research into this vast area of study. Targeting tumor environment as well as the immune system is a suitable strategy to be applied for cancer treatment. Usage of nanoparticle systems for delivery of immunotherapeutic agents to the body being widely studied and found to be a promising area of research to be considered and investigated further. Nanoparticles for immunotherapy would be one of the effective treatment options for cancer therapy in the future due to their high specificity, efficacy, ability to diagnose, imaging, and therapeutic effect. Among the many nanoparticle systems, polylactic-co-glycolic acid (PLGA) nanoparticles, liposomes, micelles, gold nanoparticles, iron oxide, dendrimers, and artificial exosomes are widely used for immunotherapy of cancer. Moreover, the combination therapy found to be the more effective way of treating the tumor. Here, we review the current trends in nanoparticle therapy and efficiency of these nanosystems in delivering antigens, adjuvants, therapeutic drugs, and other immunotherapeutic agents. This review summarizes the currently available bioactive nanoparticle systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| |
Collapse
|
29
|
Morales-Orue I, Chicas-Sett R, Lara PC. Nanoparticles as a promising method to enhance the abscopal effect in the era of new targeted therapies. Rep Pract Oncol Radiother 2018; 24:86-91. [PMID: 30505238 DOI: 10.1016/j.rpor.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/20/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, immunotherapy has emerged as a hopeful alternative in cancer therapy. Different drugs are used to stimulate the immune system and block negative immune regulatory pathways, known as "immune checkpoint inhibitors (ICI)". Although clinical studies have reported efficacy and safety with the use of ICI, only a small group of patients have obtained a clinical benefit. Because of this, immunomodulation based on immunogenic cell death produced by radiotherapy (RT) has been well positioned as an alternative to increase the clinical effect on the primary neoplasm, but also in distant tumours, a phenomenon known as the "abscopal effect". Early clinical outcomes with RT-ICI combination are promising, but the rate of abscopal responses remains low. These developments have opened a path to evaluate the use of nanotechnology as antigen-capturing nanoparticles (AC-NPs) for improving clinical outcomes in metastatic disease treated with RT-ICI. In this review, we aim to highlight the basic characteristics of nanoparticles and its application in oncology, focusing on their potential to enhance abscopal responses.
Collapse
Affiliation(s)
- Ignacio Morales-Orue
- Department of Radiation Oncology, "Dr. Negrín" University Hospital of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, "Dr. Negrín" University Hospital of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Pedro C Lara
- Department of Radiation Oncology, "Dr. Negrín" University Hospital of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
30
|
Jiang D, Mu W, Pang X, Liu Y, Zhang N, Song Y, Garg S. Cascade Cytosol Delivery of Dual-Sensitive Micelle-Tailored Vaccine for Enhancing Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37797-37811. [PMID: 30360105 DOI: 10.1021/acsami.8b09946] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Enhancing cytosol delivery of exogenous antigens in antigen presenting cells can improve cross-presentation and CD8+ T cell-mediated immune response. The antigen cytosol delivery speed, which has great importance on the rate of MHC class I molecules (MHC I) antigen presentation pathway and cytotoxic T lymphocytes (CTLs) induction, has not been well studied. We hypothesized that micelle-tailored vaccine with multiple cascaded lysosomal responsive capabilities could accelerate lysosomal escape and enhance cancer immunotherapy. To test our hypothesis, we created a novel micellar cancer vaccine (ovalbumin-loaded pH/redox dual-sensitive micellar vaccine, OLM-D) by cleavable conjugation of an antigen with house-made amphiphilic poly(l-histidine)-poly(ethylene glycol) (PLH-PEG) in current study. OLM-D was supposed to achieve cascade cytosol delivery of ovalbumin through three steps in terms of (i) initial redox triggered ovalbumin release, (ii) promoted proton inflow and micelle disassembly, and (iii) speeded proton sponge effect and lysosome bulging/broke. Redox-sensitive antigen release and consequently accelerative OLM-D disassembly were confirmed by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), transmission electronic microscopy (TEM), particle sizes, zeta potentials, and in vitro Ova release evaluation. The speeded cytosol delivery of ovalbumin was visualized under a confocal laser scanning microscope (CLSM). The ability of OLM-D to increase the MHC I molecule combination rate and antigen cross-presentation efficiency was identified by antigen presentation assay and maturation assay in bone marrow-derived dendritic cells (BMDCs). In vivo, the capability of OLM-D to accumulate in draining lymph nodes (LNs) after injection was visualized by real-time near infrared fluorescence imaging (NIRF) and the distribution order in different LNs was first observed (a, d, c, b). Enhanced cancer immunity of OLM-D was confirmed by increased CD3+CD8+ T cell quantity, CD3+CD8+25D11.6+ T cells quantity, and IFN-γ, IL-2 secretion post subcutaneous or intraperitoneal injection ( p < 0.05). Taken together, our results indicated that OLM-D provided a promising cascade cytosol delivery strategy, which held great potential to guide further design of nano-particulate cancer vaccines for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Xiuping Pang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Yunmei Song
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| |
Collapse
|
31
|
da Silva NIO, Salvador EA, Rodrigues Franco I, de Souza GAP, de Souza Morais SM, Prado Rocha R, Dias Novaes R, Paiva Corsetti P, Malaquias LCC, Leomil Coelho LF. Bovine serum albumin nanoparticles induce histopathological changes and inflammatory cell recruitment in the skin of treated mice. Biomed Pharmacother 2018; 107:1311-1317. [PMID: 30257346 DOI: 10.1016/j.biopha.2018.08.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/04/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Albumin is a natural, biocompatible, biodegradable and nontoxic polymer and due to these features, nanoparticles made of albumin are a good system for drug or antigen delivery. Polymeric nanoparticles are being widely explored as new vaccines platforms due to the capacity of those nanoparticles to prime the immune system by providing sustained release of the antigen after injection. Biodegradable nanoparticles associated with proteins represent a promising method for in vivo delivery of vaccines. In our previous studies, bovine serum albumin nanoparticles (BSA-NPs) were identified as a promising system for in vivo delivery of microbial antigens. The aim of this work was to show the effect of BSA-NPs on skin after nanoparticles administration. The pro-inflammatory activity of BSA-NPs was evaluated using in vivo models. BSA-NPs are easily uptake by macrophagic RAW 264.7 and BHK-21 cells without any significant cytotoxicity. Histological examination of skin sections from BSA-NPs-treated mice revealed intense cellular infiltration, increased skin thickness, follicular hypertrophy, vascular congestion and marked collagenesis. Mice immunized with recombinant non-structural protein 1 (rNS1) from Dengue virus 1 and BSA-NPs showed a high seroconversion rate if compared to animals immunized only with rNS1. Therefore, the effect of BSA-NPs on skin after BSA-NPs administration has a biotechnological relevance to the rational design of vaccine formulations based on albumin nanocarriers. However in the next years future studies should be carried out to best characterize the effect of BSA-NPs on dendritic cells and establish the role of these nanoparticles as a new vaccine platform for infectious diseases or cancer.
Collapse
Affiliation(s)
- Natalia Ingrid Oliveira da Silva
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Ezequiel Aparecido Salvador
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Isabella Rodrigues Franco
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Gabriel Augusto Pires de Souza
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Stella Maria de Souza Morais
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Raissa Prado Rocha
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department Structural Biology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Patrícia Paiva Corsetti
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil; University Jose Rosário Vellano, Alfenas, Minas Gerais, Brazil
| | - Luiz Cosme Cotta Malaquias
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Yin Y, Hu Q, Xu C, Qiao Q, Qin X, Song Q, Peng Y, Zhao Y, Zhang Z. Co-delivery of Doxorubicin and Interferon-γ by Thermosensitive Nanoparticles for Cancer Immunochemotherapy. Mol Pharm 2018; 15:4161-4172. [PMID: 30011369 DOI: 10.1021/acs.molpharmaceut.8b00564] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-sensitive nanoparticle delivery system was constructed by incorporating an acid sensitive hydrazone linker into thermosensitive nanoparticles (TSNs) for co-encapsulating doxorubicin (DOX) and interferon γ (IFNγ) and to realize the co-delivery of chemotherapy and immunotherapy agents against melanoma. DOX, a chemotherapeutic drug, was conjugated to TSNs by a pH-sensitive chemical bond, and IFNγ, a potent immune-modulator, was absorbed into TSNs through the thermosensitivity and electrostatics of nanoparticles. Consequently, the dual sensitive drug-loaded TSN delivery systems were successfully built and showed an obvious core-shell structure, good encapsulation efficiency of drugs, sustained and sensitive drug release, prolonged circulation time, as well as excellent synergistic antitumor efficiency against B16F10 tumor bearing mice. Moreover, the combinational antitumor immune responses of hydrazone bearing DOX/IFNγ-TSN (hyd) were strengthened by activating Th1-type CD4+ T cells, cytotoxic T lymphocytes, and natural killer cells, downregulating the expression levels of immunosuppressive cytokines, such as IL10 and TGFβ, and upregulating the secretion of IL2 and TNFα. Taken together, the multifunctional TSNs system provides a promising strategy for multiple drugs co-delivery with distinct properties.
Collapse
|