1
|
Sadeghi L, Mohit E, Moallemi S, Ahmadi FM, Bolhassani A. Recent advances in various bio-applications of bacteria-derived outer membrane vesicles. Microb Pathog 2023; 185:106440. [PMID: 37931826 DOI: 10.1016/j.micpath.2023.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles released from gram-negative bacteria. OMVs were originally classified into native 'nOMVs' (produced naturally from budding of bacteria) and non-native (produced by mechanical means). nOMVs and detergent (dOMVs) are isolated from cell supernatant without any detergent cell disruption techniques and through detergent extraction, respectively. Growth stages and conditions e.g. different stress factors, including temperature, nutrition deficiency, and exposure to hazardous chemical agents can affect the yield of OMVs production and OMVs content. Because of the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), various proteins and the vesicle structure, OMVs have been developed in many biomedical applications. OMVs due to their size can be phagocytized by APCs, enter lymph vessels, transport antigens efficiently, and induce both T and B cells immune responses. Non-engineered OMVs have been frequently used as vaccines against different bacterial and viral infections, and various cancers. OMVs can also be used in combination with different antigens as an attractive vaccine adjuvant. Indeed, foreign antigens from target microorganisms can be trapped in the lumen of nonpathogenic vesicles or can be displayed on the surface through bacterial membrane protein to increase the immunogenicity of the antigens. In this review, different factors affecting OMV production including time of cultivation, growth media, stress conditions and genetic manipulations to enhance vesiculation will be described. Furthermore, recent advances in various biological applications of OMVs such as vaccine, drug delivery, cancer therapy, and enzyme carrier are discussed. Generally, the application of OMVs as vaccine carrier in three categories (i.e., non-engineered OMVs, OMVs as an adjuvant, recombinant OMVs (rOMVs)), as delivery system for small interfering RNA and therapeutic agents, and as enzymes carrier will be discussed.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Zambrano B, Peterson J, Deseda C, Julien K, Spiegel CA, Seyler C, Simon M, Hoki R, Anderson M, Brabec B, Áñez G, Shi J, Pan J, Hagenbach A, Von Barbier D, Varghese K, Jordanov E, Dhingra MS. Quadrivalent meningococcal tetanus toxoid-conjugate booster vaccination in adolescents and adults: phase III randomized study. Pediatr Res 2023; 94:1035-1043. [PMID: 36899125 PMCID: PMC10000353 DOI: 10.1038/s41390-023-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND The immunogenicity and safety of a booster dose of tetanus toxoid-conjugate quadrivalent meningococcal vaccine (MenACYW-TT), alone or co-administered with MenB vaccine, were assessed in healthy 13-25-year olds who received MenACYW-TT or a CRM-conjugate vaccine (MCV4-CRM) 3-6 years earlier. METHODS This phase IIIb open-label trial (NCT04084769) evaluated MenACYW-TT-primed participants, randomized to receive MenACYW-TT alone or with a MenB vaccine, and MCV4-CRM-primed participants who received MenACYW-TT alone. Functional antibodies against serogroups A, C, W and Y were measured using human complement serum bactericidal antibody assay (hSBA). The primary endpoint was vaccine seroresponse (post-vaccination titers ≥1:16 if pre-vaccination titers <1:8; or a ≥4-fold increase if pre-vaccination titers ≥1:8) 30 days post booster. Safety was evaluated throughout the study. RESULTS The persistence of the immune response following primary vaccination with MenACYW-TT was demonstrated. Seroresponse after MenACYW-TT booster was high regardless of priming vaccine (serogroup A: 94.8% vs 93.2%; C: 97.1% vs 98.9%; W: 97.7% vs 98.9%; and Y; 98.9% vs 100% for MenACWY-TT-primed and MCV4-CRM-primed groups, respectively). Co-administration with MenB vaccines did not affect MenACWY-TT immunogenicity. No vaccine-related serious adverse events were reported. CONCLUSIONS MenACYW-TT booster induced robust immunogenicity against all serogroups, regardless of the primary vaccine received, and had an acceptable safety profile. IMPACT A booster dose of MenACYW-TT induces robust immune responses in children and adolescents primed with MenACYW-TT or another MCV4 (MCV4-DT or MCV4-CRM), respectively. Here, we demonstrate that MenACYW-TT booster 3-6 years after primary vaccination induced robust immunogenicity against all serogroups, regardless of the priming vaccine (MenACWY-TT or MCV4-CRM), and was well tolerated. Persistence of the immune response following previous primary vaccination with MenACYW-TT was demonstrated. MenACYW-TT booster with MenB vaccine co-administration did not affect MenACWY-TT immunogenicity and was well tolerated. These findings will facilitate the provision of broader protection against IMD particularly in higher-risk groups such as adolescents.
Collapse
Affiliation(s)
- Betzana Zambrano
- Global Clinical Development Strategy, Sanofi, Montevideo, Uruguay
| | | | - Carmen Deseda
- Caribbean Travel Medicine Clinic, San Juan, Puerto Rico
| | | | | | | | | | | | | | - Brad Brabec
- Midwest Children's Health Research Institute, Lincoln, NE, USA
| | - Germán Áñez
- Global Clinical Development Strategy, Sanofi, Swiftwater, PA, USA
| | - Jiayuan Shi
- Global Biostatistical Sciences, Sanofi, Swiftwater, PA, USA
| | - Judy Pan
- Global Biostatistical Sciences, Sanofi, Swiftwater, PA, USA
| | | | | | | | - Emilia Jordanov
- Global Clinical Development Strategy, Sanofi, Swiftwater, PA, USA
| | | |
Collapse
|
3
|
Abitbol V, Sohn WY, Horn M, Safadi MAP. Safety and immunogenicity of co-administered meningococcal serogroup B (4CMenB) vaccine: A literature review. Hum Vaccin Immunother 2023; 19:2245705. [PMID: 37642229 PMCID: PMC10467517 DOI: 10.1080/21645515.2023.2245705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The four-component meningococcal serogroup B vaccine (4CMenB) is indicated for the prevention of invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup B. Co-administering 4CMenB with other vaccines may improve vaccine uptake provided that the safety and immunogenicity of either are not affected. Published literature on the immunogenicity and reactogenicity of 4CMenB co-administered with other routine childhood and adulthood vaccines was reviewed. From 282 publications identified, data were collated from 10 clinical studies, 3 real-world studies, and 3 reviews. The evidence showed that 4CMenB co-administration is not associated with significant safety concerns or clinically relevant immunological interferences. The increased reactogenicity (e.g., fever) associated with 4CMenB co-administration can be adequately managed with prophylactic paracetamol in children. Thus, 4CMenB co-administration has the potential to maximize vaccine coverage and improve protection against IMD globally.
Collapse
Affiliation(s)
| | | | | | - Marco Aurelio P. Safadi
- Department of Pediatrics, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| |
Collapse
|
4
|
Marshall HS, Vesikari T, Richmond PC, Wysocki J, Szenborn L, Beeslaar J, Maguire JD, Balmer P, O'Neill R, Anderson AS, Prégaldien JL, Maansson R, Jiang HQ, Perez JL. Safety and immunogenicity of a primary series and booster dose of the meningococcal serogroup B-factor H binding protein vaccine (MenB-FHbp) in healthy children aged 1-9 years: two phase 2 randomised, controlled, observer-blinded studies. THE LANCET. INFECTIOUS DISEASES 2023; 23:103-116. [PMID: 36087588 DOI: 10.1016/s1473-3099(22)00424-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The meningococcal serogroup B-factor H binding protein vaccine (MenB-FHbp) is licensed for use in children aged 10 years or older for protection against invasive serogroup B meningococcal disease. Because young children are at increased risk of invasive meningococcal disease, MenB-FHbp clinical data in this population are needed. METHODS We conducted two phase 2 randomised, controlled, observer-blinded studies including healthy toddlers (age 12-23 months) across 26 Australian, Czech, Finnish, and Polish centres, and older children (age 2-9 years) across 14 Finnish and Polish centres. Exclusion criteria included previous vaccinations against serogroup B meningococcus or hepatitis A virus (HAV), and chronic antibiotic use. Toddlers were randomly allocated (2:1) via an interactive response technology system to receive either 60 μg or 120 μg MenB-FHbp or HAV vaccine and saline (control). Older children were randomly allocated (3:1) to receive 120 μg MenB-FHbp or control, with stratification by age group (2-3 years and 4-9 years). All vaccinations were administered as three doses (0, 2, and 6 months, with only saline given at 2 months in the control group). Toddlers who received 120 μg MenB-FHbp could receive a 120 μg booster dose 24 months after the end of the primary series. The percentages of participants with serum bactericidal activity using human complement (hSBA) titres at or above the lower limit of quantification (LLOQ; all greater than the 1:4 correlate of protection) against four test strains of serogroup B meningococcus 1 month after the third dose (primary immunogenicity endpoint) were measured in the evaluable immunogenicity populations (participants who received the vaccine as randomised, had available and determinate hSBA results, and had no major protocol violations). Not all participants were tested against all strains because of serum sample volume constraints. The frequencies of reactogenicity and adverse events after each dose were recorded in the safety population (all participants who received at least one dose and had safety data available). These studies are registered with ClinicalTrials.gov (NCT02534935 and NCT02531698) and are completed. FINDINGS Between Aug 31, 2015, and Aug 22, 2016, for the toddler study and between Aug 27, 2015, and March 7, 2016, for the older children study, we enrolled and randomly allocated 396 toddlers (60 μg MenB-FHbp group n=44; 120 μg MenB-FHbp group n=220; control group n=132) and 400 older children (120 μg MenB-FHbp group n=294; control group n=106). 1 month after the third dose, the proportions of participants with hSBA titres at or above the LLOQ ranged across test strains from 85·0% (95% CI 62·1-96·8; 17 of 20 participants) to 100·0% (82·4-100·0; 19 of 19) in toddlers receiving 60 μg MenB-FHbp, and from 71·6% (61·4-80·4; 68 of 95) to 100·0% (96·2-100·0; 95 of 95) in toddlers receiving 120 μg MenB-FHbp, and from 79·1% (71·2-85·6; 106 of 134) to 100·0% (97·4-100·0; 139 of 139) in children aged 2-9 years receiving 120 μg MenB-FHbp. hSBA titres peaked at 1 month after the third primary dose of MenB-FHbp and then declined over time. 24 months after the third dose in the toddler study, the proportions with hSBA titres at or above the LLOQ ranged from 0·0% (0·0-17·6; 0 of 19 participants) to 41·2% (18·4-67·1; seven of 17) in those who received 60 μg MenB-FHbp and from 3·7% (0·8-10·4; three of 81) to 22·8% (14·1-33·6; 18 of 79) in those who received 120 μg MenB-FHbp. 1 month after the booster dose in toddlers, the proportions with hSBA titres at or above the LLOQ were higher than at 1 month after the primary series. MenB-FHbp reactogenicity was mostly transient and of mild to moderate severity. Adverse event frequency was similar between the MenB-FHbp and control groups and less frequent following MenB-FHbp booster than following primary doses. Two participants from the toddler study (both from the 120 μg MenB-FHbp group) and four from the older children study (three from the 120 μg MenB-FHbp group and one from the control group) were withdrawn from the study because of adverse events. INTERPRETATION MenB-FHbp was well tolerated and induced protective immune responses in a high proportion of participants. These findings support a favourable MenB-FHbp immunogenicity and reactogenicity profile in young children, a population at increased risk of adverse invasive meningococcal disease outcomes. FUNDING Pfizer.
Collapse
Affiliation(s)
- Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, North Adelaide, SA, Australia; Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| | | | - Peter C Richmond
- University of Western Australia School of Medicine, Vaccine Trials Group, Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, WA, Australia; Perth Children's Hospital, Nedlands, WA, Australia
| | - Jacek Wysocki
- Poznań University of Medical Sciences, Poznań, Poland
| | - Leszek Szenborn
- Clinical Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jason D Maguire
- Pfizer Vaccine Clinical Research and Development, Pearl River, NY, USA
| | - Paul Balmer
- Pfizer Vaccine Medical Development and Scientific/Clinical Affairs, Collegeville, PA, USA
| | - Robert O'Neill
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | | | | | - Roger Maansson
- Pfizer Vaccine Clinical Research and Development, Collegeville, PA, USA
| | - Han-Qing Jiang
- Pfizer Vaccine Clinical Research and Development, Pearl River, NY, USA
| | - John L Perez
- Pfizer Vaccine Clinical Research and Development, Collegeville, PA, USA
| |
Collapse
|
5
|
Public health perspective of a pentavalent meningococcal vaccine combining antigens of MenACWY-CRM and 4CMenB. J Infect 2022; 85:481-491. [PMID: 36087745 DOI: 10.1016/j.jinf.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Invasive meningococcal disease (IMD) is a life-threatening disease that can rapidly progress to death or leave survivors with severe, life-long sequelae. Five meningococcal serogroups (A, B, C, W and Y) account for nearly all IMD. Meningococcal serogroup distribution fluctuates over time across the world and age groups. Here, we consider the potential public health impact of a pentavalent MenABCWY vaccine developed to help further control meningococcal disease and improve immunisation rates. RESULTS The GSK MenABCWY vaccine combines the antigenic components of MenACWY-CRM (Menveo®) and 4CMenB (Bexsero®), building on a wide body of clinical experience and real-world evidence. Both approved vaccines have acceptable safety profiles, demonstrate immunogenicity, and are broadly used, including in national immunisation programmes in several countries. Since the advent of quadrivalent vaccines, public health in relation to IMD has improved, with a decline in the overall incidence of IMD and an increase in vaccine coverage. CONCLUSION A pentavalent MenABCWY has the potential to provide further public health benefits through practical, broad IMD protection programmes encompassing serogroups A, B, C, W and Y, and is currently in late-stage development.
Collapse
|
6
|
Bauwens J, de Lusignan S, Weldesselassie YG, Sherlock J, Künzli N, Bonhoeffer J. Safety of routine childhood vaccine coadministration versus separate vaccination. BMJ Glob Health 2022; 7:bmjgh-2021-008215. [PMID: 36162867 PMCID: PMC9516064 DOI: 10.1136/bmjgh-2021-008215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/13/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION As new vaccines are developed more vaccine coadministrations vaccines are being offered to make delivery more practical for health systems and patients. We compared the safety of coadministered vaccines with separate vaccination for 20 coadministrations by considering nine types of adverse events following immunisation (AEFI). METHODS Real-life immunisation and adverse event data for this observational cohort study were extracted from the Oxford-Royal College of General Practitioners Research and Surveillance Centre for children registered in the database between 2008 and 2018. We applied the self-controlled case series method to calculate relative incidence ratios (RIR) for AEFI. These RIRs compare the RI of AEFI following coadministration with the RI following separate administration of the same vaccines. RESULTS We assessed 3 518 047 adverse events and included 5 993 290 vaccine doses given to 958 591 children. 17% of AEFI occurred less and 11% more frequently following coadministration than would have been expected based on the RIs following separate vaccinations, while there was no significant difference for 72% of AEFI. We found amplifying interaction effects for AEFI after five coadministrations comprising three vaccines: for fever (RIR 1.93 (95% CI 1.63 to 2.29)), rash (RIR 1.49 (95% CI 1.29 to 1.74)), gastrointestinal events (RIR 1.31 (95% CI 1.14 to 1.49)) and respiratory events (RIR 1.27 (1.17-1.38)) following DTaP/IPV/Hib+MenC+ PCV; gastrointestinal events (RIR 1.65 (95% CI 1.35 to 2.02)) following DTaP/IPV/Hib+MenC+ RV; fever (RIR 1.44 (95% CI 1.09 to 1.90)) and respiratory events (RIR 1.40 (95% CI 1.25 to 1.57)) following DTaP/IPV/Hib+PCV+ RV; gastrointestinal (RIR 1.48 (95% CI 1.20 to 1.82)) and respiratory events (RIR 1.43 (95% CI 1.26 to 1.63)) following MMR+Hib/MenC+PCV; gastrointestinal events (RIR 1.68 (95% CI 1.07 to 2.64)) and general symptoms (RIR 11.83 (95% CI 1.28 to 109.01)) following MMR+MenC+PCV. Coadministration of MMR+PCV led to more fever (RIR 1.91 (95% CI 1.83 to 1.99)), neurological events (RIR 2.04 (95% CI 1.67 to 2.49)) and rash (RIR 1.06 (95% CI 1.01 to 1.11)) compared with separate administration, DTaP/IPV/Hib+MMR to more musculoskeletal events (RIR 3.56 (95% CI 1.21 to 10.50)) and MMR+MenC to more fever (RIR 1.58 (95% CI 1.37 to 1.82)). There was no indication that unscheduled coadministrations are less safe than scheduled coadministrations. CONCLUSION Real-life RIRs of AEFI justify coadministering routine childhood vaccines according to the immunisation schedule. Further research into the severity of AEFI following coadministration is required for a complete understanding of the burden of these AEFI.
Collapse
Affiliation(s)
- Jorgen Bauwens
- University of Basel Children's Hospital, Basel, Switzerland .,University of Basel, Basel, Switzerland
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, UK.,Royal College of General Practitioners, London, UK
| | | | - Julian Sherlock
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, UK
| | - Nino Künzli
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jan Bonhoeffer
- University of Basel Children's Hospital, Basel, Switzerland
| |
Collapse
|
7
|
Bianchi FP, Stefanizzi P, Trerotoli P, Tafuri S. Sex and age as determinants of the seroprevalence of anti-measles IgG among European healthcare workers: A systematic review and meta-analysis. Vaccine 2022; 40:3127-3141. [PMID: 35491343 DOI: 10.1016/j.vaccine.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The international literature shows good evidence of a significant rate of measles susceptibility among healthcare workers (HCWs). As such, they are an important public health issue. METHODS We conducted a systematic review and meta-analysis to estimate the prevalence of susceptible HCWs in EU/EEA countries and in the UK and to explore the characteristics (sex and age differences) and management of those found to be susceptible. RESULTS Nineteen studies were included in the meta-analysis. The prevalence of measles-susceptible HCWs was 13.3% (95 %CI: 10.0-17.0%). In a comparison of serosusceptible female vs. male HCWs, the RR was 0.92 (95 %CI = 0.83-1.03), and in a comparison of age classes (born after vs. before 1980) the RR was 2.78 (95 %CI = 2.20-3.50). The most recent studies proposed the mandatory vaccination of HCWs. DISCUSSION According to our meta-analysis, the prevalence of serosusceptible European HCWs is 13%; HCWs born in the post-vaccination era seem to be at higher risk. Healthcare professionals susceptible to measles are a serious epidemiological concern. Greater efforts should therefore be made to identify those who have yet to be vaccinated and actively encourage their vaccination.
Collapse
Affiliation(s)
| | - Pasquale Stefanizzi
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Italy
| | - Paolo Trerotoli
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Italy
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Italy.
| |
Collapse
|
8
|
van den Boogaard J, de Gier B, de Oliveira Bressane Lima P, Desai S, de Melker HE, Hahné SJM, Veldhuijzen IK. Immunogenicity, duration of protection, effectiveness and safety of rubella containing vaccines: A systematic literature review and meta-analysis. Vaccine 2021; 39:889-900. [PMID: 33454135 DOI: 10.1016/j.vaccine.2020.12.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Rubella containing vaccines (RCV) prevent rubella virus infection and subsequent congenital rubella syndrome (CRS). To update the evidence on immunogenicity, duration of protection, effectiveness and safety of RCV, we conducted a systematic literature review. METHODS We searched EMBASE and SCOPUS, using keywords for rubella vaccine in combination with immunogenicity (seroconversion and seropositivity), duration of protection, efficacy/effectiveness, and safety. Original research papers involving at least one dose of RCV (at any age), published between 1-1-2010 and 17-5-2019 were included. Where appropriate, meta-analyses were performed. Quality of included studies was assessed using GRADE methodology. RESULTS We included 36 papers (32 randomized controlled trials (RCTs) and 4 observational studies) on immunogenicity (RA27/3 strain) in children and adolescent girls, 14 papers (5 RCTs and 9 observational studies) on duration of protection, one paper on vaccine effectiveness (VE) (BRDII strain), and 74 studies on safety, including three on safety in pregnancy. Meta-analysis of immunogenicity data showed 99% seroconversion (95% CI: 98-99%) after a single dose of RCV in children, independent of co-administration with other vaccines. Seroconversion after RCV1 below 9 months of age (BRDII strain, at 8 months) was 93% (95% CI: 92-95%). For duration of protection, the included studies showed a seropositivity of 88%-100% measured 1-20 years after one or two RCV doses. The single study on VE of BRDII strain, reported 100% VE after one and two doses. Among 34,332 individuals participating in the RCTs, 140 severe adverse events (SAEs) were reported as possibly related to RCV. Among the case reports on SAEs, the association with RCV was confirmed in one report (on fulminant encephalitis). Among 3,000 pregnant women who were inadvertently vaccinated, no SAEs were reported. CONCLUSIONS One and two doses of RCV are highly immunogenic for a long period of time, effective in preventing rubella and CRS, and safe.
Collapse
Affiliation(s)
- Jossy van den Boogaard
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands; European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | - Brechje de Gier
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Priscila de Oliveira Bressane Lima
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Shalini Desai
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| | - Hester E de Melker
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Susan J M Hahné
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Irene K Veldhuijzen
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review highlights the recent impacts of vaccines against the major bacterial causes of meningitis in children, and the challenges for further prevention of bacterial meningitis, with a focus on Streptococcus pneumoniae, Neisseria meningitidis and group B Streptococcus. RECENT FINDINGS Conjugate vaccines against S. pneumoniae and N. meningitidis have resulted in dramatic reductions in bacterial meningitis globally where they have been used. Recent licensure and use of capsular group B meningococcal protein vaccines have further reduced meningococcal meningitis in infants, young children and adolescents for countries with endemic disease and during outbreaks. SUMMARY Existing vaccines to prevent bacterial meningitis in children should be utilized in countries with significant numbers of cases of pneumococcal and/or meningococcal meningitis. Vaccines, which are able to protect against more than 13 serotypes of S. pneumoniae are in clinical trials and should be able to further reduce pneumococcal meningitis cases. Cost effective meningococcal vaccines against non-A capsular groups are needed for low-resource countries. There remains an urgent need for a vaccine against group B Streptococcus, which is a major cause of neonatal meningitis globally and for which no vaccine currently exists.
Collapse
|