1
|
Abitbol V, Martinón-Torres F, Taha MK, Nolan T, Muzzi A, Bambini S, Borrow R, Toneatto D, Serino L, Rappuoli R, Pizza M. 4CMenB journey to the 10-year anniversary and beyond. Hum Vaccin Immunother 2024; 20:2357924. [PMID: 38976659 PMCID: PMC11232649 DOI: 10.1080/21645515.2024.2357924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/17/2024] [Indexed: 07/10/2024] Open
Abstract
The 4-component meningococcal serogroup B (MenB) vaccine, 4CMenB, the first broadly protective, protein-based MenB vaccine to be licensed, is now registered in more than 50 countries worldwide. Real-world evidence (RWE) from the last decade confirms its effectiveness and impact, with infant immunization programs showing vaccine effectiveness of 71-95% against invasive MenB disease and cross-protection against non-B serogroups, including a 69% decrease in serogroup W cases in 4CMenB-eligible cohorts in England. RWE from different countries also demonstrates the potential for additional moderate protection against gonorrhea in adolescents. The real-world safety profile of 4CMenB is consistent with prelicensure reports. Use of the endogenous complement human serum bactericidal antibody (enc-hSBA) assay against 110 MenB strains may enable assessment of the immunological effectiveness of multicomponent MenB vaccines in clinical trial settings. Equitable access to 4CMenB vaccination is required to better protect all age groups, including older adults, and vulnerable groups through comprehensive immunization policies.
Collapse
Affiliation(s)
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Muhamed-Kheir Taha
- Institut Pasteur, Université Paris Cité, Invasive Bacterial Infections Unit, National Reference Center for Meningococci and Haemophilus influenzae, Paris, France
| | - Terry Nolan
- Peter Doherty Institute for Infection & Immunity at University of Melbourne and Murdoch Children's Research Institute, Melbourne, Australia
| | | | | | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, UK
| | | | | | | | | |
Collapse
|
2
|
Efron A, Brozzi A, Biolchi A, Bodini M, Giuliani M, Guidotti S, Lorenzo F, Moscoloni MA, Muzzi A, Nocita F, Pizza M, Rappuoli R, Tomei S, Vidal G, Vizzotti C, Campos J, Sorhouet Pereira C. Genetic characterization and estimated 4CMenB vaccine strain coverage of 284 Neisseria meningitidis isolates causing invasive meningococcal disease in Argentina in 2010-2014. Hum Vaccin Immunother 2024; 20:2378537. [PMID: 39037011 DOI: 10.1080/21645515.2024.2378537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
Meningococcal (Neisseria meningitidis) serogroup B (MenB) strain antigens are diverse and a limited number of strains can be evaluated using the human serum bactericidal antibody (hSBA) assay. The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict the likelihood of coverage for large numbers of isolates by the 4CMenB vaccine, which includes antigens Neisseria adhesin A (NadA), Neisserial Heparin-Binding Antigen (NHBA), factor H-binding protein (fHbp), and Porin A (PorA). In this study, we characterized by whole-genome analyses 284 invasive MenB isolates collected from 2010 to 2014 by the Argentinian National Laboratories Network (52-61 isolates per year). Strain coverage was estimated by gMATS on all isolates and by hSBA assay on 74 randomly selected isolates, representative of the whole panel. The four most common clonal complexes (CCs), accounting for 81.3% of isolates, were CC-865 (75 isolates, 26.4%), CC-32 (59, 20.8%), CC-35 (59, 20.8%), and CC-41/44 (38, 13.4%). Vaccine antigen genotyping showed diversity. The most prevalent variants/peptides were fHbp variant 2, NHBA peptides 24, 21, and 2, and PorA variable region 2 profiles 16-36 and 14. The nadA gene was present in 66 (23.2%) isolates. Estimated strain coverage by hSBA assay showed 78.4% of isolates were killed by pooled adolescent sera, and 51.4% and 64.9% (based on two different thresholds) were killed by pooled infant sera. Estimated coverage by gMATS (61.3%; prediction interval: 55.5%, 66.7%) was consistent with the infant hSBA assay results. Continued genomic surveillance is needed to evaluate the persistence of major MenB CCs in Argentina.
Collapse
Affiliation(s)
- Adriana Efron
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | | | | | | | | | - Federico Lorenzo
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - María Alicia Moscoloni
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | | | | | | | | | | | - Carla Vizzotti
- National Ministry of Health (2010-2015 and 2019-2023), Buenos Aires, Argentina
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Cecilia Sorhouet Pereira
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
3
|
Arteta-Acosta C, Villena R, Hormazabal JC, Fernández J, Santolaya ME. Whole-genome sequencing of Neisseria meningitidis collected in Chile from pediatric patients during 2016-2019 and coverage vaccine prediction. Vaccine 2024; 42:126311. [PMID: 39276620 DOI: 10.1016/j.vaccine.2024.126311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Over the past few years, whole-genome sequencing (WGS) has become a valuable tool for global meningococcal surveillance. The objective of this study was to genetically characterize Neisseria meningitidis strains isolated from children in Chile through WGS and predicting potential vaccine coverage using gMATS and MenDeVAR. METHODS WGS of 42 N.meningitidis from pediatric patients were processed and assembled using different software. We analyzed genomes with BIGSdb platform hosted at PubMLST.org, and predicted vaccine coverage using MenDeVAR and gMATS tools. RESULTS Among 42 strains, 25 were MenB, 16 MenW, and 1 MenC. The cc11 and cc 41/44 were the most frequents. The main frequent deduced peptide sequence for PorA was P1.5,2 (40 %), peptide P1.4 was present in one MenB strain; NHBA-29 (64 %), none having peptide 2; fHbp-2 (76 %), one strain had peptide-1, and two had peptide 45; NadA was detected in 52 %, peptide-6 was present in 84 %, none had peptide 8. The MenDeVAR index predicted a coverage in MenB strains for 4CMenB 8 % exact matches, 12 % cross-reactivity, 8 % not coverage and 64 % had insufficient data. gMATS predicted 16 % was covered, 8 % not covered and 76 % unpredictable, and overall coverage of 54 %. For rLP2086-fHbp, the MenDeVAR index predicted exact match in 8 %, cross-reactivity in 64 %, and insufficient data in 28 % and an overall coverage of 72 %. In non-MenB strains, the MenDeVAR index predicted for 4CMenB vaccine: cross-reactivity 88 %, 6 % for not covered and insufficient data. For rLP2086-fHbp, predicted cross-reactivity 12 % and insufficient data in 88 %. gMATS predicted an overall coverage of 50 % for Non-MenB. CONCLUSION genetic variability of the Chilean strains that its different from other countries, and until now limit the coverage prediction of vaccine with the available tools like gMATS and MenDeVAR.
Collapse
Affiliation(s)
- Cindy Arteta-Acosta
- MD, MPH Epidemiology, PhD (c) Medical Science, Universidad de Chile, 8380453, Chile.
| | - Rodolfo Villena
- Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, 8900000, Chile; Department of Pediatrics, Faculty of Medicine, Universidad de Chile, 8380453, Chile.
| | | | | | - María Elena Santolaya
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, 8380453, Chile; Infectious Diseases Unit, Hospital de niños Dr. Luis Calvo Mackenna, 7500000, Chile.
| |
Collapse
|
4
|
Muzzi A, Lu MC, Mori E, Biolchi A, Fu T, Serino L. Prediction by genetic MATS of 4CMenB vaccine strain coverage of invasive meningococcal serogroup B isolates circulating in Taiwan between 2003 and 2020. mSphere 2024; 9:e0022024. [PMID: 38752729 PMCID: PMC11338074 DOI: 10.1128/msphere.00220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 06/26/2024] Open
Abstract
Neisseria meningitidis serogroup B (NmB) strains have diverse antigens, necessitating methods for predicting meningococcal serogroup B (MenB) vaccine strain coverage. The genetic Meningococcal Antigen Typing System (gMATS), a correlate of MATS estimates, predicts strain coverage by the 4-component MenB (4CMenB) vaccine in cultivable and non-cultivable NmB isolates. In Taiwan, 134 invasive, disease-causing NmB isolates were collected in 2003-2020 (23.1%, 4.5%, 5.2%, 29.8%, and 37.3% from individuals aged ≤11 months, 12-23 months, 2-4 years, 5-29 years, and ≥30 years, respectively). NmB isolates were characterized by whole-genome sequencing and vaccine antigen genotyping, and 4CMenB strain coverage was predicted using gMATS. Analysis of phylogenetic relationships with 502 global NmB genomes showed that most isolates belonged to three global hyperinvasive clonal complexes: ST-4821 (27.6%), ST-32 (23.9%), and ST-41/44 (14.9%). Predicted strain coverage by gMATS was 62.7%, with 27.6% isolates covered, 2.2% not covered, and 66.4% unpredictable by gMATS. Age group coverage point estimates ranged from 42.9% (2-4 years) to 66.1% (≤11 months). Antigen coverage estimates and percentages predicted as covered/not covered were highly variable, with higher estimates for isolates with one or more gMATS-positive antigens than for isolates positive for one 4CMenB antigen. In conclusion, this first study on NmB strain coverage by 4CMenB in Taiwan shows 62.7% coverage by gMATS, with predictable coverage for 29.8% of isolates. These could be underestimated since the gMATS calculation does not consider synergistic mechanisms associated with simultaneous antibody binding to multiple targets elicited by multicomponent vaccines or the contributions of minor outer membrane vesicle vaccine components.IMPORTANCEMeningococcal diseases, caused by the bacterium Neisseria meningitidis (meningococcus), include meningitis and septicemia. Although rare, invasive meningococcal disease is often severe and can be fatal. Nearly all cases are caused by six meningococcal serogroups (types), including meningococcal serogroup B. Vaccines are available against meningococcal serogroup B, but the antigens targeted by these vaccines have highly variable genetic features and expression levels, so the effectiveness of vaccination may vary depending on the strains circulating in particular countries. It is therefore important to test meningococcal serogroup B strains isolated from specific populations to estimate the percentage of bacterial strains that a vaccine can protect against (vaccine strain coverage). Meningococcal isolates were collected in Taiwan between 2003 and 2020, of which 134 were identified as serogroup B. We did further investigations on these isolates, including using a method (called gMATS) to predict vaccine strain coverage by the 4-component meningococcal serogroup B vaccine (4CMenB).
Collapse
Affiliation(s)
| | - Min-Chi Lu
- School of Medicine,
China Medical University,
Taichung, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Epidemiology and Clinical Burden of Meningococcal Disease in France: Scoping Review. J Clin Med 2023; 12:jcm12030849. [PMID: 36769498 PMCID: PMC9917955 DOI: 10.3390/jcm12030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
Invasive meningococcal disease (IMD) remains a significant health concern due to its unpredictable nature and its rapid progression. Even if occurrence of IMD is strictly monitored by a national surveillance network, no information on long-term sequelae is reported, making it difficult to assess the entire clinical burden of IMD in France. The aim of this scoping review was to analyze the epidemiology and the clinical burden of IMD in France by reporting the main epidemiological parameters, and by describing the clinical consequences and the care pathway of patients. The process of the review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension to the Scoping Reviews guidelines. In France, the incidence of IMD cases has been fluctuating over time, characterized by an overall downward trend linked to a decrease in Sg B cases and the introduction of mandatory vaccination against Sg C. Sg W cases increased in recent years (from 5% to 21% in 2019). The case fatality rate remained constant (6-12.9%). The most frequently reported sequelae were severe neurological disorder, epilepsy, and anxiety. However, data on sequelae and care pathways were scarce. Further research should concentrate on providing robust identification of sequelae and the subsequent impact on quality of life, as well as on the organization of optimal care and support for patients and their families.
Collapse
|
6
|
Borrow R, Martinón-Torres F, Abitbol V, Andani A, Preiss S, Muzzi A, Serino L, Sohn WY. Use of expanded Neisseria meningitidis serogroup B panels with the serum bactericidal antibody assay for the evaluation of meningococcal B vaccine effectiveness. Expert Rev Vaccines 2023; 22:738-748. [PMID: 37622470 DOI: 10.1080/14760584.2023.2244596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Neisseria meningitidis serogroup B (NmB) antigens are inherently diverse with variable expression among strains. Prediction of meningococcal B (MenB) vaccine effectiveness therefore requires an assay suitable for use against large panels of epidemiologically representative disease-causing NmB strains. Traditional serum bactericidal antibody assay using exogenous human complement (hSBA) is limited to the quantification of MenB vaccine immunogenicity on a small number of indicator strains. AREAS COVERED Additional and complementary methods for assessing strain coverage developed previously include the Meningococcal Antigen Typing System (MATS), Meningococcal Antigen Surface Expression (MEASURE) assay, and genotyping approaches, but these do not estimate vaccine effectiveness. We provide a narrative review of these methods, highlighting a more recent approach involving the hSBA assay in conjunction with expanded NmB strain panels: hSBA assay using endogenous complement in each vaccinated person's serum (enc-hSBA) against a 110-strain NmB panel and the traditional hSBA assay against 14 (4 + 10) NmB strains. EXPERT OPINION The enc-hSBA is a highly standardized, robust method that can be used in clinical trials to measure the immunological effectiveness of MenB vaccines under conditions that mimic real-world settings as closely as possible, through the use of endogenous complement and a diverse, epidemiologically representative panel of NmB strains.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Federico Martinón-Torres
- Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de Santiago de Compostela, Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Sereikaitė E, Plepytė R, Petrutienė A, Stravinskienė D, Kučinskaitė-Kodzė I, Gėgžna V, Ivaškevičienė I, Žvirblienė A, Plečkaitytė M. Molecular characterization of invasive Neisseria meningitidis isolates collected in Lithuania (2009-2019) and estimation of serogroup B meningococcal vaccine 4CMenB and MenB-Fhbp coverage. Front Cell Infect Microbiol 2023; 13:1136211. [PMID: 36875527 PMCID: PMC9975601 DOI: 10.3389/fcimb.2023.1136211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Neisseria meningitidis causes invasive meningococcal disease (IMD), which is associated with significant mortality and long-term consequences, especially among young children. The incidence of IMD in Lithuania was among the highest in European Union/European Economic Area countries during the past two decades; however, the characterization of meningococcal isolates by molecular typing methods has not yet been performed. In this study, we characterized invasive meningococcal isolates (n=294) recovered in Lithuania from 2009 to 2019 by multilocus sequence typing (MLST) and typing of antigens FetA and PorA. The more recent (2017-2019) serogroup B isolates (n=60) were genotyped by analyzing vaccine-related antigens to evaluate their coverage by four-component (4CMenB) and two-component (MenB-Fhbp) vaccines using the genetic Meningococcal Antigen Typing System (gMATS) and Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index methods, respectively. The vast majority (90.5%) of isolates belonged to serogroup B. MLST revealed a predominance of clonal complex 32 (74.02%). Serogroup B strain P1.19,15: F4-28: ST-34 (cc32) accounted for 64.1% of IMD isolates. The overall level of strain coverage by the 4MenB vaccine was 94.8% (CI 85.9-98.2%). Most serogroup B isolates (87.9%) were covered by a single vaccine antigen, most commonly Fhbp peptide variant 1 (84.5% of isolates). The Fhbp peptides included in the MenB-Fhbp vaccine were not detected among the analyzed invasive isolates; however, the identified predominant variant 1 was considered cross-reactive. In total, 88.1% (CI 77.5-94.1) of isolates were predicted to be covered by the MenB-Fhbp vaccine. In conclusion, both serogroup B vaccines demonstrate potential to protect against IMD in Lithuania.
Collapse
Affiliation(s)
- Emilija Sereikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Plepytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Petrutienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Bacteriology, National Public Health Surveillance Laboratory, Vilnius, Lithuania
| | - Dovilė Stravinskienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Vilmantas Gėgžna
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Inga Ivaškevičienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Pediatric Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- *Correspondence: Milda Plečkaitytė,
| |
Collapse
|
8
|
Genetic Features of a Representative Panel of 110 Meningococcal B Isolates to Assess the Efficacy of Meningococcal B Vaccines. mSphere 2022; 7:e0038522. [PMID: 36129279 PMCID: PMC9599336 DOI: 10.1128/msphere.00385-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Predictions of vaccine efficacy against Neisseria meningitidis serogroup B (NmB) disease are hindered by antigenic variability, limiting the representativeness of individual NmB isolates. A qualitative human serum bactericidal assay using endogenous complements of individual subjects (enc-hSBA) enables large panels of NmB isolates to be tested. A 110-isolate panel was randomly selected from 442 invasive NmB isolates from United States cases reported to the Centers for Disease Control (CDC) from 2000 to 2008. Typing analyses confirmed the 110-isolate panel is representative of the 442 isolates. The genetic features of the 110-isolate panel were compared against over 4,200 invasive NmB isolates collected from 2000 to 2018 in the United States, Australia, Canada, and nine European countries. Clonal complexes in the 110-isolate panel are also present in each geographical region; cumulative percentages show that these account for around 81% of the clonal complexes found in NmB isolates in other panels. For the antigens (fHbp, NHBA, PorA1.4, NadA) included in the currently licensed meningococcal serogroup B (MenB) vaccines, specifically considering the presence of at least one antigen with a matched genotype, the 110-isolate panel represents approximately 89% of the NmB isolates circulating worldwide, ranging from 87% for the European isolates to 95% and 97% for NmB isolates in the United States and Australia, respectively. The 110-isolate panel includes the most prevalent clonal complexes and genetic variants of MenB vaccine antigens found in a multinational collection of invasive NmB isolates. This panel is useful for assessing the efficacy of MenB vaccines in clinical trials worldwide. IMPORTANCENeisseria meningitidis serogroup B (NmB) is a major cause of invasive meningococcal disease (IMD). Predicting the effectiveness of vaccines against NmB is difficult because NmB is an uncommon disease and because antigens targeted by meningococcal serogroup B (MenB) vaccines have highly variable genetic features and expression levels. Therefore, a large number of NmB isolates from different regions would need to be tested to comprehensively assess vaccine effectiveness. We examined a panel of 110 isolates obtained from NmB IMD cases in the United States and compared the genetic features of this panel with those of panels from different countries around the world. We found the 110-isolate panel included the most common clonal complexes and genetic variants of MenB vaccine antigens that exist in the global collections of invasive NmB isolates. This confirms the value of the NmB 110-isolate panel in understanding the effectiveness of MenB vaccines in clinical trials worldwide.
Collapse
|