1
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
2
|
Monzani PS, Sangalli JR, Sampaio RV, Guemra S, Zanin R, Adona PR, Berlingieri MA, Cunha-Filho LFC, Mora-Ocampo IY, Pirovani CP, Meirelles FV, Wheeler MB, Ohashi OM. Human proinsulin production in the milk of transgenic cattle. Biotechnol J 2024; 19:e2300307. [PMID: 38472101 DOI: 10.1002/biot.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk. METHODS AND RESULTS Pseudo-lentivirus containing the bovine β-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced. Recombinant protein in milk was evaluated using western blotting and mass spectrometry. One transgenic cow was generated, and in milk analysis, two bands were observed in western blotting with a molecular mass corresponding to the proinsulin and insulin. The mass spectrometry analysis showed the presence of human insulin more than proinsulin in the milk, and it identified proteases in the transgenic milk that could convert proinsulin into insulin and insulin-degrading enzyme that could degrade the recombinant protein. CONCLUSION The methodologies used for generating the transgenic cow allowed the detection of the production of recombinant protein in the milk at low relative expression compared to milk proteins, using mass spectrometry, which was efficient for detecting recombinant protein with low expression in milk. Milk proteases could act on protein processing converting recombinant protein to functional protein. On the other hand, some milk proteases could act in degrading the recombinant protein.
Collapse
Affiliation(s)
- Paulo S Monzani
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Juliano R Sangalli
- Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael V Sampaio
- Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Samuel Guemra
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Renato Zanin
- Laffranchi Agriculture, Tamarana, Paraná, Brazil
| | - Paulo R Adona
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Maria A Berlingieri
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Luiz F C Cunha-Filho
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Irma Y Mora-Ocampo
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Carlos P Pirovani
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Flávio V Meirelles
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Otavio M Ohashi
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
3
|
Knowles C, Petrie L, Warren C, Lillico SG, Carlisle A, Whitelaw CBA, Kolb AF. Site specific insertion of a transgene into the murine α-casein (CSN1S1) gene results in the predictable expression of a recombinant protein in milk. Biotechnol J 2024; 19:e2300287. [PMID: 38047759 DOI: 10.1002/biot.202300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.
Collapse
Affiliation(s)
- Christopher Knowles
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Yamashita MS, Melo EO. Animal Transgenesis and Cloning: Combined Development and Future Perspectives. Methods Mol Biol 2023; 2647:121-149. [PMID: 37041332 DOI: 10.1007/978-1-0716-3064-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The revolution in animal transgenesis began in 1981 and continues to become more efficient, cheaper, and faster to perform. New genome editing technologies, especially CRISPR-Cas9, are leading to a new era of genetically modified or edited organisms. Some researchers advocate this new era as the time of synthetic biology or re-engineering. Nonetheless, we are witnessing advances in high-throughput sequencing, artificial DNA synthesis, and design of artificial genomes at a fast pace. These advances in symbiosis with animal cloning by somatic cell nuclear transfer (SCNT) allow the development of improved livestock, animal models of human disease, and heterologous production of bioproducts for medical applications. In the context of genetic engineering, SCNT remains a useful technology to generate animals from genetically modified cells. This chapter addresses these fast-developing technologies driving this biotechnological revolution and their association with animal cloning technology.
Collapse
Affiliation(s)
- Melissa S Yamashita
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Graduation Program in Animal Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Eduardo O Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Graduation Program in Biotechnology, University of Tocantins, Gurupi, Tocantins, Brazil.
| |
Collapse
|
5
|
Jiang X, Yang H, Jing Q, He X. A “selective secondary tissue attachment” method for isolation and purification of mammary epithelial cells. Acta Histochem 2022; 124:151972. [DOI: 10.1016/j.acthis.2022.151972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/01/2022]
|
6
|
Tharmalingam T, Han X, Wozniak A, Saward L. Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Hum Vaccin Immunother 2022; 18:1886560. [PMID: 34010089 PMCID: PMC9090292 DOI: 10.1080/21645515.2021.1886560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Passive immunization with polyclonal hyper immunoglobulin (HIG) therapy represents a proven strategy by transferring immunoglobulins to patients to confer immediate protection against a range of pathogens including infectious agents and toxins. Distinct from active immunization, the protection is passive and the immunoglobulins will clear from the system; therefore, administration of an effective dose must be maintained for prophylaxis or treatment until a natural adaptive immune response is mounted or the pathogen/agent is cleared. The current review provides an overview of this technology, key considerations to address different pathogens, and suggested improvements. The review will reflect on key learnings from development of HIGs in the response to public health threats due to Zika, influenza, and severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Xiaobing Han
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ashley Wozniak
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Laura Saward
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Lu R, Li X, Hu J, Zhang Y, Wang Y, Jin L. Expression of a triple mutational des-pGlu brazzein in transgenic mouse milk. FEBS Open Bio 2022; 12:1336-1343. [PMID: 35417094 PMCID: PMC9249319 DOI: 10.1002/2211-5463.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Brazzein has excellent potential for use as a sweetener because of its high level of sweetening potency and stability against extreme temperature and pH. It is extracted from the tropical and difficult—to‐cultivate African plant Pentadiplandra brazzeana, which hampers its commercial viability. Here we report the mammary‐specific expression of wildtype or triple mutational (H31R/E36D/E41A) des‐pGlu brazzeins in the milk of transgenic mice. Using enzyme‐linked immunoassay (ELISA), western blot, and sweetness intensity testing, we confirmed that the triple mutation made the des‐pGlu brazzein molecule 10,000 times sweeter than sucrose in a weight base, even after 10 min of incubation at 100 °C; in addition, the triple mutant was also significantly sweeter than the wildtype des‐pGlu brazzein. This study provides new insights for producing brazzein or brazzein‐sweetened milk from animals for use in food and healthcare applications.
Collapse
Affiliation(s)
- Rui Lu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Xiaoming Li
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Jian Hu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yong Zhang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yancui Wang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Le Jin
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| |
Collapse
|
8
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
9
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
10
|
Monzani PS, Adona PR, Long SA, Wheeler MB. Cows as Bioreactors for the Production of Nutritionally and Biomedically Significant Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:299-314. [PMID: 34807448 DOI: 10.1007/978-3-030-85686-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dairy and beef cattle make a vital contribution to global nutrition, and since their domestication, they have been continuously exposed to natural and artificial selection to improve production characteristics. The technologies of transgenesis and gene editing used in cattle are responsible for generating news characteristics in bovine breeding, such as alteration of nutritional components of milk and meat enhancing human health benefits, disease resistance decreasing production costs and offering safe products for human food, as well as the recombinant protein production of biomedical significance. Different methodologies have been used to generate transgenic cattle as bioreactors. These methods include the microinjection of vectors in pronuclear, oocyte or zygote, sperm-mediate transgenesis, and somatic cell nuclear transfer. Gene editing has been applied to eliminate unwanted genes related to human and animal health, such as allergy, infection, or disease, and to insert transgenes into specific sites in the host genome. Methodologies for the generation of genetically modified cattle are laborious and not very efficient. However, in the last 30 years, transgenic animals were produced using many biotechnological tools. The result of these modifications includes (1) the change of nutritional components, including proteins, amino acids and lipids for human nutrition; (2) the removal allergic proteins milk; (3) the production of cows resistant to disease; or (4) the production of essential proteins used in biomedicine (biomedical proteins) in milk and blood plasma. The genetic modification of cattle is a powerful tool for biotechnology. It allows for the generation of new or modified products and functionality that are not currently available in this species.
Collapse
Affiliation(s)
- P S Monzani
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Pirassununga, SP, Brasil.
| | - P R Adona
- Saúde e Produção de Ruminantes, Universidade Norte do Paraná, Arapongas, PR, Brasil
| | - S A Long
- Departments of Animal Sciences and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M B Wheeler
- Departments of Animal Sciences and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Ajingi YS, Rukying N, Aroonsri A, Jongruja N. Recombinant active Peptides and their Therapeutic functions. Curr Pharm Biotechnol 2021; 23:645-663. [PMID: 34225618 DOI: 10.2174/1389201022666210702123934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/22/2022]
Abstract
Recombinant active peptides are utilized as diagnostic and biotherapeutics in various maladies and as bacterial growth inhibitors in the food industry. This consequently stimulated the need for recombinant peptides' production, which resulted in about 19 approved biotech peptides of 1-100 amino acids commercially available. While most peptides have been produced by chemical synthesis, the production of lengthy and complicated peptides comprising natural amino acids has been problematic with low quantity. Recombinant peptide production has become very vital, cost-effective, simple, environmentally friendly with satisfactory yields. Several reviews have focused on discussing expression systems, advantages, disadvantages, and alternatives strategies. Additionally, the information on the antimicrobial activities and other functions of multiple recombinant peptides is challenging to access and is scattered in literature apart from the food and drug administration (FDA) approved ones. From the reports that come to our knowledge, there is no existing review that offers substantial information on recombinant active peptides developed by researchers and their functions. This review provides an overview of some successfully produced recombinant active peptides of ≤100 amino acids by focusing on their antibacterial, antifungal, antiviral, anticancer, antioxidant, antimalarial, and immune-modulatory functions. It also elucidates their modes of expression that could be adopted and applied in future investigations. We expect that the knowledge available in this review would help researchers involved in recombinant active peptide development for therapeutic uses and other applications.
Collapse
Affiliation(s)
- Ya'u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok. Thailand
| | - Neeranuch Rukying
- Department of Biology, Faculty of Science, Kano University of Science and Technology (KUST), Wudil. Nigeria
| | - Aiyada Aroonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani. Thailand
| | - Nujarin Jongruja
- Department of Biology, Faculty of Science, Kano University of Science and Technology (KUST), Wudil. Nigeria
| |
Collapse
|
12
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
13
|
Characterization of the regulatory 5'-flanking region of bovine mucin 2 (MUC2) gene. Mol Cell Biochem 2021; 476:2847-2856. [PMID: 33730299 DOI: 10.1007/s11010-021-04133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Throughout the intestinal epithelium surface there is an intricate polymer network composed by gel-forming mucins, which plays a protective role due to the formation of a physical, chemical and immunological barrier between the organism and the environment. Mucin 2 (MUC2) is the main mucin in the small and large intestine, and it is expressed specifically in the gastrointestinal tract (GIT), which makes its promoter region an important candidate for expression of heterologous genes of biotechnological interest in the GIT of bovine and other ruminants. In order to characterize the bovine MUC2 promoter we designed primers to amplify and isolate a candidate region for this promoter. The amplified sequence was confirmed by sequencing and cloned into a plasmid vector containing the luciferase (LUC) reporter gene. The regulatory sites of the MUC2 promoter already described in the literature were used to find the putative regulatory sites in the bovine MUC2 promoter region. With these data, some deletions were performed in order to find the promoter sequence with greatest expression capacity and specificity. The constructions were tested by transient transfection assays in LoVo cells (human colorectal adenocarcinoma) and bovine fibroblasts. The quantification of the relative expression of the promoter was measured using dual-luciferase assays. Real-time PCR was performed to analyze the expression of endogenous MUC2. The results presented herein prove that the isolated sequence corresponds to the promoter of bovine MUC2 gene, since it was able to induce expression of a reporter gene in an in vitro cell culture experimental platform.
Collapse
|
14
|
Duarte FB, Brígido MDM, Melo EDO, Báo SN, Martins CF. Strategies for transfection of bovine mesenchymal stem cells with pBC1-anti-CD3 vector. Anim Biotechnol 2020; 33:1014-1024. [PMID: 33380273 DOI: 10.1080/10495398.2020.1862137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cells from different origins behave differently regarding the incorporation of exogenous DNA and formation of transgenic cells. Milk production of recombinant antibody may benefit from efficient transfection protocols to produce transgenic animals. In this context, the objective of this study was to verify the transfection potential of bovine mesenchymal stem cells from Wharton's jelly (MSC-WJ) and adipose tissue (MSC-AT), comparing co-transfection protocols with vectors pBC1-anti-CD3 and pEF-NEO-GFP, using transfection reagents Lipofectamine LTX with Plus Reagent or Xfect. Skin fibroblasts (FIB) were used as the control group. Forty-eight hours after transfection, neomycin was added and cells cultured for 2 weeks. Treated cells were submitted to fluorescence microscopy, flow cytometry, and PCR evaluations. Wharton's jelly cells were sensitive to treatments and started necrosis. In the flow cytometry assay, the median fluorescence was higher in adipocytes than fibroblasts, for both the Xfect (20.057 ± 1.620,7 and 10.601 ± 702,86, respectively, p < 0.05) and LTX (19.590 ± 113,84 and 10.518 ± 442,65, respectively, p < 0.05). These results, associated with evaluation of epifluorescence, demonstrated that adipocytes presented a better response to transfection than other cells, independent of the kit used. Performing PCR on co-transfected cells demonstrated the presence of anti-CD3, making this approach feasible for future experiments.
Collapse
Affiliation(s)
- Fernanda Borges Duarte
- Embrapa Cerrados/Center of Technology for Zebu Dairy Cows (CTZL), Brazilian Agricultural Research Corporation, Brasilia, Brazil.,Cell Biology Department, Institute of Biological Sciences, University of Brasília, Brasilia, Brazil.,Postgraduate Program in Animal Biology, Institute of Biological Sciences, University of Brasília, Brasilia, Brazil
| | | | - Eduardo de Oliveira Melo
- Embrapa Cerrados/Center of Technology for Zebu Dairy Cows (CTZL), Brazilian Agricultural Research Corporation, Brasilia, Brazil
| | - Sônia Nair Báo
- Cell Biology Department, Institute of Biological Sciences, University of Brasília, Brasilia, Brazil
| | - Carlos Frederico Martins
- Embrapa Cerrados/Center of Technology for Zebu Dairy Cows (CTZL), Brazilian Agricultural Research Corporation, Brasilia, Brazil
| |
Collapse
|
15
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
16
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
17
|
Mehta P, Kaushik R, Singh KP, Sharma A, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. Comparative analysis of buffalo (Bubalus bubalis) non-transgenic and transgenic embryos containing human insulin gene, produced by SCNT. Theriogenology 2019; 135:25-32. [PMID: 31195358 DOI: 10.1016/j.theriogenology.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Somatic cell nuclear transfer (SCNT), using transgenic donor cells, is a highly efficient method for producing transgenic embryos. We compared the developmental competence, quality and gene expression of transgenic embryos produced by Hand-made cloning from buffalo fetal fibroblasts (BFFs) containing human insulin gene, with non-transgenic embryos produced from BFFs (Controls). The expression vector (pAcISUBC), constructed by inserting human insulin gene between DNA fragments containing mammary gland-specific buffalo β-lactoglobulin (buBLG) promoter and terminator buBLG 3'UTR regions into pAcGFP-N1 vector, was used for obtaining the 11 kb insert for transfection of BFFs by nucleofection. Presence of the transgene in embryos was confirmed by examining GFP expression by RT-PCR and immunofluorescence. The blastocyst rate was lower (P < 0.05) for transgenic embryos than for controls (35.7 ± 1.8% vs 48.7 ± 2.4%). The apoptotic index was higher (P < 0.05) for transgenic than for control blastocysts which, in turn, was higher (P < 0.05) than for IVF counterparts (6.9 ± 0.9, 3.8 ± 0.5 and 1.8 ± 0.3, respectively). The total cell number was similar for transgenic and non-transgenic blastocysts (143.2 ± 17.0 and 137.2 ± 7.6, respectively). The expression level of pro-apoptotic genes BAX and BID but not that of CASP3 and CASP9, and cell cycle check point control-related gene P53 was higher (P < 0.05), and that of development- (IGF-1R and G6PD) and pluripotency-related gene NANOG was lower (P < 0.05) in transgenic than in control embryos. The expression level of epigenetic-related genes DNMT1, DNMT3a and HDAC1 and pluripotency-related gene OCT4 was similar in the two groups. The expression level of BAX, BID, CASP9, P53, DNMT1 and DNMT3a was higher (P < 0.05) and that of OCT4, NANOG IGF-1R and G6PD was lower (P < 0.05) in cloned transgenic than in IVF blastocysts whereas, that of CASP3 and HDAC1 was similar between the two groups. In conclusion, these results suggest that transgenic embryos produced by SCNT have lower developmental competence and quality, and altered gene expression compared to non-transgenic embryos.
Collapse
Affiliation(s)
- P Mehta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - R Kaushik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - K P Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - A Sharma
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - M K Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - M S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - P Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - S K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - R S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
18
|
Sánchez-Villalba E, Arias ME, Loren P, Fuentes F, Pereyra-Bonnet F, Salamone D, Felmer R. Improved expression of green fluorescent protein in cattle embryos produced by ICSI-mediated gene transfer with spermatozoa treated with streptolysin-O. Anim Reprod Sci 2018; 196:130-137. [PMID: 30033189 DOI: 10.1016/j.anireprosci.2018.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
Abstract
The ICSI-sperm mediated gene transfer (ICSI-SMGT) has been used to produce transgenic mice with high efficiency; however, the efficiency of this technique in farm animals is still less than desirable. Pretreatment of sperm with membrane destabilizing agents can improve the efficiency of ICSI in cattle. The objective of the present study was to evaluate streptolysin-O (SLO) as a novel treatment to permeabilize the bovine sperm membrane and assess its effect on efficiency of generating transgenic embryos by ICSI-SMGT. First, there was evaluation of the plasma membrane integrity (SYBR/PI), acrosome membrane integrity (PNA/FITC), DNA damage (TUNEL) and binding capacity of exogenous DNA (Nick Translation) in bull sperm treated with SLO. Subsequently, there was assessment of embryonic development and the efficiency in generating transgenic embryos with enhanced expression of the gene for green fluorescent protein (EGFP). Results indicate that SLO efficiently permeabilizes the plasma and acrosome membranes of bull spermatozoa and increases binding of exogenous DNA mostly to the post-acrosomal region and tail without greatly affecting the integrity of the DNA. Furthermore, treatment of bull spermatozoa with SLO prior to the injection of oocytes by ICSI-SMGT significantly increased the rate of embryo expression of the EGFP gene. Future experiments are still needed to determine the effect of this treatment on the development and transgene expression in fetuses and animals produced by ICSI-SMGT.
Collapse
Affiliation(s)
- Esther Sánchez-Villalba
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Student of Doctoral Program in Sciences in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Student of Doctoral Program in Sciences in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Federico Pereyra-Bonnet
- Basic Science and Experimental Medicine Institute, University Institute, Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Daniel Salamone
- Laboratory of Animal Biotechnology, Faculty of Agricultural Sciences, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
19
|
Yum SY, Youn KY, Choi WJ, Jang G. Development of genome engineering technologies in cattle: from random to specific. J Anim Sci Biotechnol 2018; 9:16. [PMID: 29423215 PMCID: PMC5789629 DOI: 10.1186/s40104-018-0232-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The production of transgenic farm animals (e.g., cattle) via genome engineering for the gain or loss of gene functions is an important undertaking. In the initial stages of genome engineering, DNA micro-injection into one-cell stage embryos (zygotes) followed by embryo transfer into a recipient was performed because of the ease of the procedure. However, as this approach resulted in severe mosaicism and has a low efficiency, it is not typically employed in the cattle as priority, unlike in mice. To overcome the above issue with micro-injection in cattle, somatic cell nuclear transfer (SCNT) was introduced and successfully used to produce cloned livestock. The application of SCNT for the production of transgenic livestock represents a significant advancement, but its development speed is relatively slow because of abnormal reprogramming and low gene targeting efficiency. Recent genome editing technologies (e.g., ZFN, TALEN, and CRISPR-Cas9) have been rapidly adapted for applications in cattle and great results have been achieved in several fields such as disease models and bioreactors. In the future, genome engineering technologies will accelerate our understanding of genetic traits in bovine and will be readily adapted for bio-medical applications in cattle.
Collapse
Affiliation(s)
- Soo-Young Yum
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ki-Young Youn
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Woo-Jae Choi
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Goo Jang
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea.,2Farm Animal Clinical Training and Research Center, Institute of GreenBio Science Technology, Seoul National University, PyeongChang-Gun, Gangwon-do 25354 Republic of Korea.,3Emergence Center for Food-Medicine Personalized Therapy System, Advanced Institutes of Convergence Technology, Seoul National University, SuWon, Gyeonggi-do 16629 Republic of Korea.,4College of Veterinary Medicine, Seoul National University, #85, Room631, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
20
|
Shrock E, Güell M. CRISPR in Animals and Animal Models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:95-114. [PMID: 29150007 DOI: 10.1016/bs.pmbts.2017.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas9 has revolutionized the generation of transgenic animals. This system has demonstrated an unprecedented efficiency, multiplexability, and ease of use, thereby reducing the time and cost required for genome editing and enabling the production of animals with more extensive genetic modifications. It has also been shown to be applicable to a wide variety of animals, from early-branching metazoans to primates. Genome-wide screens in model organisms have been performed, accurate models of human diseases have been constructed, and potential therapies have been tested and validated in animal models. Several achievements in genetic modification of animals have been translated into products for the agricultural and pharmaceutical industries. Based on the remarkable progress to date, one may anticipate that in the future, CRISPR-Cas9 technology will enable additional far-reaching advances, including understanding the bases of diseases with complex genetic origins, engineering animals to produce organs for human transplantation, and genetically transforming entire populations of organisms to prevent the spread of disease.
Collapse
Affiliation(s)
- Ellen Shrock
- Biological and Biomedical Sciences, Harvard University, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Marc Güell
- Harvard Medical School, Boston, MA, United States; Pompeu Fabra University, Barcelona, Spain.
| |
Collapse
|