1
|
Wang Z, Wang Y, Dong C, Miao K, Jiang B, Zhou D, Dong K, Wang Y, Zhang Z. Po-Ge-Jiu-Xin decoction alleviate sepsis-induced cardiomyopathy via regulating phosphatase and tensin homolog-induced putative kinase 1 /parkin-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118952. [PMID: 39426573 DOI: 10.1016/j.jep.2024.118952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis is a life-threatening systemic syndrome usually accompanied by myocardial dysfunction. Po-Ge-Jiu-Xin decoction (PGJXD), a traditional Chinese prescription medicine, has been used clinically to treat cardiovascular disease including heart failure, sepsis-induced cardiomyopathy (SIC) and even septic shock. Previous clinical studies suggested PGJXD has shown promising results in improving cardiac function and treating heart failure in sepsis. However, more research is needed to elucidate the mechanisms underlying PGJXD's therapeutic effects in sepsis-induced cardiomyopathy. MATERIALS AND METHODS Initially, we identified the major compounds of PGJXD through ultra-performance liquid chromatography-mass spectrometry technology analysis. We established in a SIC rat model using cecal ligation and puncture(CLP) and treated by PGJXD and levosimendan. We evaluated pathological damage by hematoxylin and eosin staining and measured serum myocardial injury biomarkers. Myocardial apoptosis was detected by Tunel staining and quantifying specific biomarker protein levels. Subsequently, we evaluated myocardium mitochondrial quality using Transmission electron microscope (TEM), antioxidant stress indexes and tissue adenosine triphosphate(ATP) content. We detected the expression of phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), parkin, LC3, and p62 using Western blotting and Quantitative real time polymerase chain reaction(qRT-PCR). (Lipopolysaccharides, LPS)-induced H9c2 cell model was established to further explore the mechanism of PGJXD on SIC. In addition to measuring cell viability, we measured mitochondrial membrane potential using JC-1 staining. Additionally, Parkin-siRNA transfected into H9c2 cells to validate whether PGJXD conducted protective effects against SIC through PINK1/Parkin-mediated mitophagy. RESULTS It has been demonstrated that PGJXD reduced mortality in septic rat, contributed to ameliorating myocardium injury, suppressed inflammatory response and ameliorated the myocardial apoptosis. PGJXD could also alleviate mitochondrial structural abnormality, mitigated oxidative stress injury and promoted energy synthesis in CLP models. Western blotting and qRT-PCR have further confirmed that PGJXD can activate PINK1/parkin pathway-mediated mitophagy, resulting in preserving mitochondrial quality in the myocardium. Furthermore, Parkin siRNA partially reversed the beneficial effect of PGJXD on mitochondrial fission/fusion and mitophagy in vitro. Therefore, the cardioprotective effect of PGJXD is achieved by inducing PINK1/Parkin-mediated mitophagy in maintaining mitochondrial homeostasis. CONCLUSIONS These results suggest that the potential therapeutic effect of PGJXD on cardiac dysfunction during sepsis and support its mechanism of targeted induction of PINK1-Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Zheng Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China; Department of Critical Care, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Yu Wang
- Department of Critical Care, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Chen Dong
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Kaihui Miao
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Dan Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Kang Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Yanjun Wang
- Department of Critical Care, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Key Laboratory of Cardiovascular Diseases of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Maiese K. Cardiovascular and nonalcoholic fatty liver disease: Sharing common ground through SIRT1 pathways. World J Cardiol 2024; 16:632-643. [PMID: 39600987 PMCID: PMC11586725 DOI: 10.4330/wjc.v16.i11.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
As a non-communicable disease, cardiovascular disorders have become the leading cause of death for men and women. Of additional concern is that cardiovascular disease is linked to chronic comorbidity disorders that include nonalcoholic fatty liver disease (NAFLD). NAFLD, also termed metabolic-dysfunction-associated steatotic liver disease, is the greatest cause of liver disease throughout the world, increasing in prevalence concurrently with diabetes mellitus (DM), and can progress to nonalcoholic steatohepatitis that leads to cirrhosis and liver fibrosis. Individuals with metabolic disorders, such as DM, are more than two times likely to experience cardiac disease, stroke, and liver disease that includes NAFLD when compared individuals without metabolic disorders. Interestingly, cardiovascular disorders and NAFLD share a common underlying cellular mechanism for disease pathology, namely the silent mating type information regulation 2 homolog 1 (SIRT1; Saccharomyces cerevisiae). SIRT1, a histone deacetylase, is linked to metabolic pathways through nicotinamide adenine dinucleotide and can offer cellular protection though multiple avenues, including trophic factors such as erythropoietin, stem cells, and AMP-activated protein kinase. Translating SIRT1 pathways into clinical care for cardiovascular and hepatic disease can offer significant hope for patients, but further insights into the complexity of SIRT1 pathways are necessary for effective treatment regimens.
Collapse
Affiliation(s)
- Kenneth Maiese
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States.
| |
Collapse
|
3
|
Shen Z, Zhao M, Lu J, Chen H, Zhang Y, Chen S, Wang Z, Wang M, Liu X, Fu G, Huang H. Integrated multi-omic high-throughput strategies across-species identified potential key diagnostic, prognostic, and therapeutic targets for atherosclerosis under high glucose conditions. Mol Cell Biochem 2024:10.1007/s11010-024-05097-8. [PMID: 39223351 DOI: 10.1007/s11010-024-05097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is a well-known risk factor for atherosclerosis (AS), but the underlying molecular mechanism remains unknown. The dysregulated immune response is an important reason. High glucose is proven to induce foam cell formation under lipidemia situations in clinical patients. Exploring the potential regulatory programs of accelerated foam cell formation stimulated by high glucose is meaningful. Macrophage-derived foam cells were induced in vitro, and high-throughput sequencing was performed. Coexpression gene modules were constructed using weighted gene co-expression network analysis (WGCNA). Highly related modules were identified. Hub genes were identified by multiple integrative strategies. The potential roles of selected genes were further validated in bulk-RNA and scRNA datasets of human plaques. By transfection of the siRNA, the role of the screened gene during foam cell formation was further explored. Two modules were found to be both positively related to high glucose and ox-LDL. Further enrichment analyses confirmed the association between the brown module and AS. The high correlation between the brown module and macrophages was identified and 4 hub genes (Aldoa, Creg1, Lgmn, and Pkm) were screened. Further validation in external bulk-RNA and scRNA revealed the potential diagnostic and therapeutic value of selected genes. In addition, the survival analysis confirmed the prognostic value of Aldoa while knocking down Aldoa expression alleviated the foam cell formation in vitro. We systematically investigated the synergetic effects of high glucose and ox-LDL during macrophage-derived foam cell formation and identified that ALDOA might be an important diagnostic, prognostic, and therapeutic target in these patients.
Collapse
Affiliation(s)
- Zhida Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Meng Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Jiangting Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Huanhuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yicheng Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Songzan Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Zhaojing Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xianglan Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| | - He Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| |
Collapse
|
4
|
Chen J, Li J, Wang F, Ge R, Wang L, Huang J. Metabolite profiling of liquiritin in acute myocardial infarction model rat after intragastric administration using an information-dependent acquisition-mediated ultra-high-performance liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr 2024; 38:e5933. [PMID: 38863152 DOI: 10.1002/bmc.5933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Liquiritin (LQ), a kind of flavonoid isolated from licorice, was proven to have great potential in treating heart failure. Pharmacokinetic evaluation is important for demonstrating clinical efficacy and mechanisms, and the prototype drug and its metabolite profiling are important for drug discovery and development. However, the metabolism of LQ in acute myocardial infarction (AMI) model rats still needs to be studied in depth. An information-dependent acquisition (IDA)-ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was applied to profile LQ metabolites in AMI model rat plasma. Protein precipitation and extraction were used for sample preparation. Chromatographic separation was achieved using an XSelect BEH C18 column (2.1 × 150 mm, 2.5 μm) using gradient elution method combining 0.1% formic acid and acetonitrile with a flow rate of 0.3 mL/min. Twelve metabolites were identified in IDA mode, sulfation, glucuronidation, methylation, methyl esterification, glutamine conjugation, and valine conjugation, and their composite reactions were presumed as the primary pathways of LQ metabolism. The variation in the peak areas showed that the time to reach the peak drug concentration of LQ and 12 metabolites was within 5 h. In summary, IDA-bridged UHPLC-MS/MS from characteristic fragment ions toward confidence-enhanced identification could effectively screen and profile metabolites.
Collapse
Affiliation(s)
- Jian Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jing Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Feng Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Ruirui Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Zhou G, Liu Y, Wu H, Zhang D, Yang Q, Li Y. Research Progress on Histone Deacetylases Regulating Programmed Cell Death in Atherosclerosis. J Cardiovasc Transl Res 2024; 17:308-321. [PMID: 37821683 DOI: 10.1007/s12265-023-10444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Histone deacetylases (HDACs) are epigenetic modifying enzyme that is closely related to chromatin structure and gene transcription, and numerous studies have found that HDACs play an important regulatory role in atherosclerosis disease. Apoptosis, autophagy and programmed necrosis as the three typical programmed cell death modalities that can lead to cell loss and are closely related to the developmental process of atherosclerosis. In recent years, accumulating evidence has shown that the programmed cell death mediated by HDACs is increasingly important in the pathophysiology of atherosclerosis. This paper first gives a brief overview of HDACs, the mechanism of programmed cell death, and their role in atherosclerosis, and then further elaborates on the role and mechanism of HDACs in regulating apoptosis, autophagy, and programmed necrosis in atherosclerosis, respectively, to provide new effective measures and theoretical basis for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gang Zhou
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Yanfang Liu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Hui Wu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China.
- Department of Cardiology, Yichang Central People's Hospital, Yiling Road 183, Yichang, 443003, Hubei, China.
| | - Dong Zhang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Qingzhuo Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Yi Li
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| |
Collapse
|
6
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
7
|
Li Y, Zhang J, He J, Chen X, Zhang X, Wu H, Ding Y. Association of the L3MBTL3 rs1125970 and rs4897367 Gene Polymorphisms With Coronary Heart Disease Susceptibility in the Chinese Population: A Case-Control Study. J Cardiovasc Pharmacol 2023; 82:350-363. [PMID: 37523690 DOI: 10.1097/fjc.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023]
Abstract
ABSTRACT Coronary heart disease (CHD) is a prevalent heart disease with high incidence and mortality rates worldwide, and its pathogenesis is related to genetic factors. L3MBTL3 has been reported to be potentially linked to CHD susceptibility. This study aims to explore the correlation between L3MBTL3 single nucleotide polymorphisms (SNPs) and CHD risk in the Chinese population. Three SNPs (rs1125970 A/T, rs4897367 T/C, and rs2068957 A/G) in L3MBTL3 from 649 patients with CHD and 649 healthy controls were genotyped using the Agena MassARRAY platform. The relationship between SNPs and CHD risk was evaluated by logistic regression analysis. Our study indicated that rs1125970 (TT: odds ratio [OR] = 0.76, P = 0.014) and rs4897367 (TT: OR = 0.74, P = 0.021) were related to a decreased susceptibility to CHD. Stratified analyses showed that rs1125970 could reduce the risk of CHD in males, subjects aged <60 years, with a body mass index <24 kg/m 2 , and nonhypertensive patients. rs4897367 exerted a risk-decreasing influence on CHD in nondiabetic patients. In the haplotype analysis, individuals with the T rs4897367 A rs2068957 haplotype were less likely to develop CHD (OR = 0.74, P = 0.024). In summary, L3MBTL3 rs1125970 and rs4897367 were significantly correlated with a decreased susceptibility to CHD in the Chinese population.
Collapse
Affiliation(s)
- Yongdong Li
- Department of Cardiovascular Medicine, People's Hospital of Wanning, Wanning, Hainan, China
| | - Jiaqiang Zhang
- Department of Science and Education, People's Hospital of Wanning, Wanning, Hainan, China; and
| | - Jun He
- Department of Cardiovascular Medicine, People's Hospital of Wanning, Wanning, Hainan, China
| | - Xiaoyu Chen
- Department of Cardiovascular Medicine, People's Hospital of Wanning, Wanning, Hainan, China
| | - Xianbo Zhang
- Department of Cardiovascular Medicine, People's Hospital of Wanning, Wanning, Hainan, China
| | - Haiqing Wu
- Department of Cardiovascular Medicine, People's Hospital of Wanning, Wanning, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
8
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
9
|
Sun S, Xun G, Zhang J, Gao Y, Ge J, Liu F, Qian Q, Liu X, Tian Y, Sun Q, Wang Q, Wang X. An integrated approach for investigating pharmacodynamic material basis of Lingguizhugan Decoction in the treatment of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115366. [PMID: 35551974 DOI: 10.1016/j.jep.2022.115366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical formula of traditional Chinese medicine (TCM), Lingguizhugan Decoction (LGZGD) has been used for treating heart failure (HF) because it has an efficiency of yang-warming and fluid-dispersing. However, the pharmacodynamic material basis of LGZGD responsible for the therapeutic benefits is not well understood. AIM OF THE STUDY The aim of this study was to elucidate the pharmacodynamic material basis of LGZGD by an integrated approach. MATERIALS AND METHODS Following oral administration of LGZGD in mice, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify prototype substances. A heart failure (HF) model was established, followed by an untargeted metabolomics study to determine potential targets of LGZGD. The network pharmacology method was performed to screen substances that interacted with potential targets of LGZGD treating HF. Molecular docking technology was applied to further screen substances based on binding energy. Cell viability assays were conducted to verify pharmacodynamic effects of selected substances. RESULTS In all, forty-two prototype substances were identified in the blood, urine, and fecal samples of mice. A total of fifty-five differential metabolites were identified using heart tissue untargeted metabolomics. Twenty-five substances of LGZGD were screened relating to thirty-three targets treating HF. Twenty-two substances were filtered according to their binding energy using molecular docking technology. Cell experiments revealed cinnamaldehyde, glycyrrhetinic acid, kaempferol, daidzein, caffeic acid, and catechin could significantly improve the survival rate of H9c2 cells, which might be the pharmacodynamic material basis of LGZGD. CONCLUSIONS A scientific approach that integrated in vivo substances identification, metabolomics, network pharmacology, molecular docking, and cell pharmacodynamic assay has been developed to study the pharmacodynamic material basis of LGZGD in the treatment of HF.
Collapse
Affiliation(s)
- Shuo Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Ge Xun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jia Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yanhua Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jiachen Ge
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Fangfang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qi Qian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xin Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yuhuan Tian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qian Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China.
| | - Xu Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
10
|
Discovery of quality markers for Mailuoshutong Pill based on “spider web” mode of “Content-Pharmacokinetics-Pharmacology” network. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Chen S, Zhang L, Feng B, Wang W, Liu D, Zhao X, Yu C, Wang X, Gao Y. MiR-550a-3p restores damaged vascular smooth muscle cells by inhibiting thrombomodulin in an <em>in vitro</em> atherosclerosis model. Eur J Histochem 2022; 66. [PMID: 35855629 PMCID: PMC9335314 DOI: 10.4081/ejh.2022.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Thrombomodulin (TM) is involved in the pathological process of atherosclerosis; however, the underlying mechanism remains unclear. Oxidised low-density lipoprotein (Ox-LDL; 100 μg/mL) was used to induce human vascular smooth muscle cells (HVSMCs) into a stable atherosclerotic cell model. The expression levels of miR-550a-3p and TM were detected by real-time reverse transcription-polymerase chain reaction. Cell proliferation was estimated using CCK8 and EDU assays. Wound scratch and transwell assays were used to measure the ability of cells to invade and migrate. Propidium iodide fluorescence-activated cell sorting was used to detect apoptosis and cell cycle changes. A dual-luciferase reporter assay was performed to determine the binding of miR-550a-3p to TM. Our results suggested the successful development of a cellular atherosclerosis model. Our data revealed that TM overexpression significantly promoted the proliferation, invasion, migration, and apoptosis of HVSMCs as well as cell cycle changes. Upregulation of miR-550a-3p inhibited the growth and metastasis of HVSMCs. Furthermore, miR-550a-3p was confirmed to be a direct target of TM. Restoration of miR-550a-3p expression rescued the effects of TM overexpression. Thus, miR-550a-3p might play a role in atherosclerosis and, for the first time, normalised the function of injured vascular endothelial cells by simultaneous transfection of TM and miR-550a-3p. These results suggest that the miR-550a-3p/TM axis is a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Shiyuan Chen
- The First Clinical College, Jinan University, Guangzhou, Guangdong; Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Longfei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Benchi Feng
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Wei Wang
- Department of Oncological Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Delang Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Xinyu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Chaowen Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Xiaogao Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Yong Gao
- The First Clinical College, Jinan University, Guangzhou, Guangdong; Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| |
Collapse
|
12
|
Aiyasiding X, Liao HH, Feng H, Zhang N, Lin Z, Ding W, Yan H, Zhou ZY, Tang QZ. Liquiritin Attenuates Pathological Cardiac Hypertrophy by Activating the PKA/LKB1/AMPK Pathway. Front Pharmacol 2022; 13:870699. [PMID: 35592411 PMCID: PMC9110825 DOI: 10.3389/fphar.2022.870699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Liquiritin (LQ) is one of the main flavonoids extracted from the roots of Glycyrrhiza spp., which are widely used in traditional Chinese medicine. Studies in both cellular and animal disease models have shown that LQ attenuates or prevents oxidative stress, inflammation, and apoptosis. However, the potential therapeutic effects of LQ on pressure overload-induced cardiac hypertrophy have not been so far explored. Therefore, we investigated the cardioprotective role of LQ and its underlying mechanisms in the aortic banding (AB)-induced cardiac hypertrophy mouse model. Methods and Results: Starting 3 days after AB surgery, LQ (80 mg/kg/day) was administered daily over 4 weeks. Echocardiography and pressure-volume loop analysis indicated that LQ treatment markedly improved hypertrophy-related cardiac dysfunction. Moreover, hematoxylin and eosin, picrosirius red, and TUNEL staining showed that LQ significantly inhibited cardiomyocyte hypertrophy, interstitial fibrosis, and apoptosis. Western blot assays further showed that LQ activated LKB1/AMPKα2/ACC signaling and inhibited mTORC1 phosphorylation in cardiomyocytes. Notably, LQ treatment failed to prevent cardiac dysfunction, hypertrophy, and fibrosis in AMPKα2 knockout (AMPKα2−/−) mice. However, LQ still induced LKB1 phosphorylation in AMPKα2−/− mouse hearts. In vitro experiments further demonstrated that LQ inhibited Ang II-induced hypertrophy in neonatal rat cardiomyocytes (NRCMs) by increasing cAMP levels and PKA activity. Supporting the central involvement of the cAMP/PKA/LKB1/AMPKα2 signaling pathway in the cardioprotective effects of LQ, inhibition of Ang II-induced hypertrophy and induction of LKB1 and AMPKα phosphorylation were no longer observed after inhibiting PKA activity. Conclusion: This study revealed that LQ alleviates pressure overload-induced cardiac hypertrophy in vivo and inhibits Ang II-induced cardiomyocyte hypertrophy in vitro via activating cAMP/PKA/LKB1/AMPKα2 signaling. These findings suggest that LQ might be a valuable adjunct to therapeutic approaches for treating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|