1
|
Hou FF, Mi JH, Wang Q, Tao YL, Guo SB, Ran GH, Wang JC. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Int Immunopharmacol 2025; 144:113715. [PMID: 39626538 DOI: 10.1016/j.intimp.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
Collapse
Affiliation(s)
- Fei Fei Hou
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Jun Hao Mi
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Qiong Wang
- Burn and Plastic Surgery Department of Hohhot First Hospital, Hohhot 010030, China
| | - Yan Lin Tao
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Shuai Bin Guo
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Guang He Ran
- Chongqing Changshou Traditional Cinese Medicine Hospital, 401200 Chongqing, China.
| | - Jing Chao Wang
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China.
| |
Collapse
|
2
|
Li J, Ma W, Tang Z, Li Y, Zheng R, Xie Y, Li G. Macrophage‑driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review). Mol Med Rep 2025; 31:16. [PMID: 39513609 PMCID: PMC11551695 DOI: 10.3892/mmr.2024.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by hypoxemia and respiratory distress. It is associated with high morbidity and mortality. Due to the complex pathogenesis of ALI, the clinical management of patients with ALI/ARDS is challenging, resulting in numerous post‑treatment sequelae and compromising the quality of life of patients. Macrophages, as a class of innate immune cells, play an important role in ALI/ARDS. In recent years, the functions and phenotypes of macrophages have been better understood due to the development of flow cytometry, immunofluorescence, single‑cell sequencing and spatial genomics. However, no macrophage‑targeted drugs for the treatment of ALI/ARDS currently exist in clinical practice. Natural products are important for drug development, and it has been shown that numerous natural compounds from herbal medicine can alleviate ALI/ARDS caused by various factors by modulating macrophage abnormalities. In the present review, the natural products from herbal medicine that can modulate macrophage abnormalities in ALI/ARDS to treat ALI/ARDS are introduced, and their mechanisms of action, discovered in the previous five years (2019‑2024), are presented. This will provide novel ideas and directions for further research, to develop new drugs for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jincun Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenyu Ma
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yuhuan Xie
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Yu X, Song Y, Dong T, Ouyang W, Shao L, Quan C, Lee KE, Tan T, Tsung A, Kurabayashi K, Alam HB, Zhang M, Ma J, Li Y. Loss of PADI2 and PADI4 ameliorates sepsis-induced acute lung injury by suppressing NLRP3+ macrophages. JCI Insight 2024; 9:e181686. [PMID: 39405117 PMCID: PMC11601939 DOI: 10.1172/jci.insight.181686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is prevalent in patients with sepsis and has a high mortality rate. Peptidyl arginine deiminase 2 (PADI2) and PADI4 play crucial roles in mediating the host's immune response in sepsis, but their specific functions remain unclear. Our study shows that Padi2-/- Padi4-/- double KO (DKO) improved survival, reduced lung injury, and decreased bacterial load in Pseudomonas aeruginosa (PA) pneumonia-induced sepsis mice. Using single-cell RNA-Seq (scRNA-Seq), we found that the deletion of Padi2 and Padi4 reduced the Nlrp3+ proinflammatory macrophages and fostered Chil3+ myeloid cell differentiation into antiinflammatory macrophages. Additionally, we observed the regulatory role of the NLRP3/Ym1 axis upon DKO, confirmed by Chil3 knockdown and Nlrp3-KO experiments. Thus, eliminating Padi2 and Padi4 enhanced the polarization of Ym1+ M2 macrophages by suppressing NLRP3, aiding in inflammation resolution and lung tissue repair. This study unveils the PADIs/NLRP3/Ym1 pathway as a potential target in treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Xin Yu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yujing Song
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Tao Dong
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Physiology, Xuzhou Medical University, Xu Zhou, Jiangsu, China
| | - Wenlu Ouyang
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Changsha, China
| | - Liujiazi Shao
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Chao Quan
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Urology, The Xiangya Hospital, Changsha, China
| | - Kyung Eun Lee
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, Virginia, USA
| | - Tao Tan
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, Virginia, USA
| | - Allan Tsung
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, Virginia, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York, USA
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA
| | - Hasan B. Alam
- Department of Surgery, Northwestern University, Arkes Pavilion, Chicago, Illinois, USA
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, Virginia, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Bao S, Li S, Sun Y. Hederagenin regulates the migration and invasion of hepatocellular carcinoma cells through FOXO signaling pathway. PLoS One 2024; 19:e0310930. [PMID: 39383136 PMCID: PMC11463763 DOI: 10.1371/journal.pone.0310930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
OBJECTIVE This study aimed to elucidate the effects of Hederagenin (HG) on hepatocellular carcinoma (HCC) and explore its potential molecular mechanisms. MATERIALS AND METHODS Virtual screening was employed to identify potential targets within core pathways of liver cancer and to analyze the possible mechanisms of HG. CCK-8 assays were used to assess the viability of HCC cells, while Hoechst 33342/PI staining was utilized to evaluate apoptosis. The migration and invasion abilities of HCC cells were examined using Transwell and scratch assays, and single-cell cloning ability was assessed via colony formation assays. Subsequent qRT-PCR was conducted to determine the mRNA expression levels of FOXO1 and FOXO6 following HG treatment. Western blot (WB) analysis was employed to measure the protein expression levels of IGF1R, FOXO1, FOXO6, MMP2, MMP9, and VEGFA, as well as the phosphorylation status of FOXO1 Ser249. RESULTS Virtual screening indicated that HG might exert antitumor effects through the FOXO signaling pathway. Experimental results demonstrated that HG induces apoptosis in a dose-dependent manner and inhibits the proliferation, migration, invasion, and single-cell cloning ability of HCC cells. After HG treatment, FOXO1 expression was upregulated, while the expression levels of IGF1R, phosphorylated FOXO1 Ser249, MMP2, MMP9, and VEGFA were downregulated. CONCLUSION In summary, our study is the first to demonstrate that HG regulates the phosphorylation of FOXO1, affecting the proliferation, migration, and invasion of HCC cells. The findings suggest that HG can inhibit the migration of HCC cells in vitro. The data indicate that HG-mediated targeting of the FOXO1/FOXO6 pathway holds promise as a novel therapeutic approach.
Collapse
Affiliation(s)
- Shuchang Bao
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songzhe Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Sun
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Zhang H, Li Y, Liu Y. An updated review of the pharmacological effects and potential mechanisms of hederagenin and its derivatives. Front Pharmacol 2024; 15:1374264. [PMID: 38962311 PMCID: PMC11220241 DOI: 10.3389/fphar.2024.1374264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Hederagenin (HG) is a natural pentacyclic triterpenoid that can be isolated from various medicinal herbs. By modifying the structure of HG, multiple derivatives with superior biological activities and safety profiles have been designed and synthesized. Accumulating evidence has demonstrated that HG and its derivatives display multiple pharmacological activities against cancers, inflammatory diseases, infectious diseases, metabolic diseases, fibrotic diseases, cerebrovascular and neurodegenerative diseases, and depression. Previous studies have confirmed that HG and its derivatives combat cancer by exerting cytotoxicity, inhibiting proliferation, inducing apoptosis, modulating autophagy, and reversing chemotherapy resistance in cancer cells, and the action targets involved mainly include STAT3, Aurora B, KIF7, PI3K/AKT, NF-κB, Nrf2/ARE, Drp1, and P-gp. In addition, HG and its derivatives antagonize inflammation through inhibiting the production and release of pro-inflammatory cytokines and inflammatory mediators by regulating inflammation-related pathways and targets, such as NF-κB, MAPK, JAK2/STAT3, Keap1-Nrf2/HO-1, and LncRNA A33/Axin2/β-catenin. Moreover, anti-pathogen, anti-metabolic disorder, anti-fibrosis, neuroprotection, and anti-depression mechanisms of HG and its derivatives have been partially elucidated. The diverse pharmacological properties of HG and its derivatives hold significant implications for future research and development of new drugs derived from HG, which can lead to improved effectiveness and safety profiles.
Collapse
Affiliation(s)
- Huize Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Chi K, Yang S, Zhang Y, Zhao Y, Zhao J, Chen Q, Ge Y, Liu J. Exploring the mechanism of Tingli Pill in the treatment of HFpEF based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37727. [PMID: 38640300 PMCID: PMC11029988 DOI: 10.1097/md.0000000000037727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/21/2024] Open
Abstract
To explore the mechanism of action of Tingli Pill (TLP) in the treatment of heart failure with preserved ejection fraction (HFpEF) by using network pharmacology and molecular docking technology. The active components and targets of TLP were screened using the TCMSP and UniProt databases. HFpEF-related targets were identified using the OMIM and GeneCards databases. Drug-disease intersection targets were obtained via Venny 2.1.0, as well as establishing the "component-target" network and screening out the core active components. Construct a protein-protein interaction network of intersecting targets using the STRING database as well as Cytoscape software and filter the core targets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of core targets were performed using the Metascape database. The core active components of TLP for HFpEF were quercetin, kaempferol, β-sitosterol, isorhamnetin and hederagenin. The core targets of TLP for HFpEF were JUN, MAPK1, TP53, AKT1, RELA, TNF, MAPK14, and IL16. Gene ontology enrichment analysis obtained 1528 biological processes, 85 cell components, and 140 molecular functions. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded 1940 signaling pathways, mainly involved in lipid and atherosclerosis, regulation of apoptotic signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, oxidative stress, TNF signaling pathway, and IL-17 signaling pathway. TLP has the characteristics of multi-component, multi-target, and multi-pathway in the treatment of HFpEF. This study lays the foundation for revealing the pharmacodynamic substances and mechanism of TLP in the treatment of HFpEF.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Saisai Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongfa Zhao
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiahe Zhao
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| | - Qiuhan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuan Ge
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Chen J, Zhou L, Li X, Wu X, Li Y, Si L, Deng Y. Protective effect of zerumbone on sepsis-induced acute lung injury through anti-inflammatory and antioxidative activity via NF-κB pathway inhibition and HO-1 activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2241-2255. [PMID: 37812239 DOI: 10.1007/s00210-023-02706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Sepsis is a systemic illness for which there are no effective preventive or therapeutic therapies. Zerumbone, a natural molecule, has anti-oxidative and anti-inflammatory properties that may help to prevent sepsis. In the present study, we have assessed the protective effect of zerumbone against sepsis-induced acute lung injury (ALI) and its underlying mechanisms. During the experiment, mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups that are pre-treated with zerumbone at different concentrations. We found that zerumbone greatly decreased the sepsis-induced ALI using histological investigations. Also, zerumbone treatment reduced the sepsis-induced inflammatory cytokine concentrations as well as the number of infiltrating inflammatory cells in BALF compared to non-treated sepsis animals. The zerumbone-pretreated sepsis groups had reduced pulmonary myeloperoxidase (MPO) activity than the sepsis groups. Moreover, the mechanism underlying the protective action of zerumbone on sepsis is accomplished by the activation of antioxidant genes such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD), and heme oxygenase 1 (HO-1). The obtained results revealed that zerumbone inhibited the sepsis-induced ALI through its anti-inflammatory and antioxidative activity via inhibition of the NF-κB pathway and activation of HO-1 pathway. Our findings demonstrate that zerumbone pretreatment suppresses sepsis-induced ALI via antioxidative activities and anti-inflammatory, implying that zerumbone could be a viable preventive agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Jianjun Chen
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Liangliang Zhou
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xinxin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xufeng Wu
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yingbin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yijun Deng
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China.
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China.
| |
Collapse
|
8
|
Li Z, Yu Y, Bu Y, Liu C, Jin J, Li W, Chen G, Liu E, Zhang Y, Gong W, Luo J, Yue Z. QiShenYiQi pills preserve endothelial barrier integrity to mitigate sepsis-induced acute lung injury by inhibiting ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117610. [PMID: 38122915 DOI: 10.1016/j.jep.2023.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The QiShengYiQi pill (QSYQ) is a traditional Chinese medicinal formulation. The effectiveness and safety of QSYQ in treating respiratory system disorders have been confirmed. Its pharmacological actions include anti-inflammation, antioxidative stress, and improving energy metabolism. However, the mechanism of QSYQ in treating sepsis-induced acute lung injury (si-ALI) remains unclear. AIM OF THE STUDY Si-ALI presents a clinical challenge with high incidence and mortality rates. This study aims to confirm the efficacy of QSYQ in si-ALI and to explore the potential mechanisms, providing a scientific foundation for its application and insights for optimizing treatment strategies and identifying potential active components. MATERIALS AND METHODS The impact of QSYQ on si-ALI was evaluated using the cecal ligation and puncture (CLP) experimental sepsis animal model. The effects of QSYQ on endothelial cells were observed through coculturing with LPS-stimulated macrophage-conditioned medium. Inflammatory cytokine levels, HE staining, Evans blue staining, lung wet/dry ratio, and cell count and protein content in bronchoalveolar lavage fluid were used to assess the degree of lung injury. Network pharmacology was utilized to investigate the potential mechanisms of QSYQ in treating si-ALI. Western blot and immunofluorescence analyses were used to evaluate barrier integrity and validate mechanistically relevant proteins. RESULTS QSYQ reduced the inflammation and alleviated pulmonary vascular barrier damage in CLP mice (all P < 0.05). A total of 127 potential targets through which QSYQ regulates si-ALI were identified, predominantly enriched in the RAGE pathway. The results of protein-protein interaction analysis suggest that COX2, a well-established critical marker of ferroptosis, is among the key targets. In vitro and in vivo studies demonstrated that QSYQ mitigated ferroptosis and vascular barrier damage in sepsis (all P < 0.05), accompanied by a reduction in oxidative stress and the inhibition of the COX2 and RAGE (all P < 0.05). CONCLUSIONS This study demonstrated that QSYQ maintains pulmonary vascular barrier integrity by inhibiting ferroptosis in CLP mice. These findings partially elucidate the mechanism of QSYQ in si-ALI and further clarify the active components of QSYQ, thereby providing a scientific theoretical basis for treating si-ALI with QSYQ.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China
| | - Yongjing Yu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China
| | - Yue Bu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; Department of Pain Medicine, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China
| | - Chang Liu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China
| | - Jiaqi Jin
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China; Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Road, Beijing, 100053, PR China
| | - Wenqiang Li
- Department of Vascular Surgery, Jinshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Guangmin Chen
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, 199 Dazhi Road, Harbin, 150001, PR China
| | - Enran Liu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Yan Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Weidong Gong
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Juan Luo
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Ziyong Yue
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China.
| |
Collapse
|
9
|
Liu R, Xu R, Yan S, Li P, Jia C, Sun H, Sheng K, Wang Y, Zhang Q, Guo J, Xin X, Li X, Guo D. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells. Front Genet 2024; 15:1377238. [PMID: 38586584 PMCID: PMC10995239 DOI: 10.3389/fgene.2024.1377238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Sun B, Bai L, Li Q, Sun Y, Li M, Wang J, Shi X, Zhao M. Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis. Toxicol In Vitro 2024; 94:105709. [PMID: 37820748 DOI: 10.1016/j.tiv.2023.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Sepsis-induced acute lung injury (ALI) is a life-threatening disease. Macrophage pyroptosis has been reported to exert function in ALI. We aimed to investigate the mechanisms of ANGPTL4-mediated cell pyroptosis in sepsis-induced ALI, thus providing new insights into the pathogenesis and prevention and treatment measures of sepsis-induced ALI. METHODS In vivo animal models and in vitro cell models were established by cecal ligation and puncture (CLP) method and lipopolysaccharide-induced macrophages RAW264.7. ANGPTL4 was silenced in CLP mice or macrophages, followed by the determination of ANGPTL4 expression in bronchoalveolar lavage fluid (BALF) or macrophages. Lung histopathology was observed by H&E staining, with pathological injury scores evaluated and lung wet and dry weight ratio recorded. M1/M2 macrophage marker levels (iNOS/CD86/Arg1), inflammatory factor (TNF-α/IL-6/IL-1β/iNOS) expression in BALF, cell death and pyroptosis, NLRP3 inflammasome, cell pyroptosis-related protein (NLRP3/Cleaved-caspase-1/caspase-1/GSDMD-N) levels, NF-κB pathway activation were assessed by RT-qPCR/ELISA/flow cytometry/Western blot, respectively. RESULTS ANGPTL4 was highly expressed in mice with sepsis-induced ALI, and ANGPTL4 silencing ameliorated sepsis-induced ALI in mice. In vivo, ANGPTL4 silencing repressed M1 macrophage polarization and macrophage pyroptosis in mice with sepsis-induced ALI. In vitro, ANGPTL4 knockout impeded LPS-induced activation and pyroptosis of M1 macrophages and hindered LPS-induced activation of the NF-κB pathway in macrophages. CONCLUSION Knockdown of ANGPTL4 blocks the NF-κB pathway activation, hinders macrophage M1 polarization and pyroptosis, thereby suppressing sepsis-induced ALI.
Collapse
Affiliation(s)
- Baisheng Sun
- Medical School of Chinese PLA, Beijing, China; Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lina Bai
- Department of Emergency, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Qinglin Li
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yubo Sun
- The Third Sanatorium, Dalian Rehabilitation and Recuperation Center of Joint Logistic Support Force, Dalian, China
| | - Mei Li
- Department of Radiography, General Hospital of Central Theater Command, PLA, Wuhan 430070, China
| | - Jiazhi Wang
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Xiaoli Shi
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Meng Zhao
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Yang G, Yang W, Jiang H, Yi Q, Ma W. Hederagenin inhibits high glucose-induced fibrosis in human renal cells by suppression of NLRP3 inflammasome activation through reducing cathepsin B expression. Chem Biol Drug Des 2023; 102:1409-1420. [PMID: 37599208 DOI: 10.1111/cbdd.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Diabetic nephropathy is a major complication of diabetes mellitus and is related to dysfunction of renal cells. Hederagenin is a triterpenoid saponin from some Chinese herbs with anti-inflammatory and anti-diabetic activities. However, its role in diabetic nephropathy progression is still obscure. This study aimed to explore the effects of hederagenin on renal cell dysfunction in vitro. Human renal mesangial cells (HRMCs) and human renal proximal tubular epithelial cells (HRPTEpiCs) were cultured under high glucose (HG) conditions to mimic diabetic nephropathy-like injury. Cell proliferation was evaluated by CCK-8. mRNA and protein levels were determined by qRT-PCR and western blotting, respectively. The secretion levels of fibrosis-related biomarkers were analyzed by ELISA. Results showed that hederagenin reduced HG-induced proliferation increase in HRMCs and HRPTEpiCs. Hederagenin attenuated HG-induced increase in mRNA and protein expression of NLRP3, ASC, and IL-1β. Hederagenin also suppressed HG-induced increase in mRNA and secretion levels of FN, Col. IV, PAI-1, and TGF-β1. NLRP3 inhibitor MCC950 attenuated HG-induced fibrosis of renal cells, and its activator nigericin reversed the suppressive effect of hederagenin on HG-induced fibrosis. Bioinformatics analysis predicted cathepsin B (CTSB) as a target of hederagenin to modulate NOD-like receptor (NLR) pathway. Hederagenin decreased CTSB level, and CTSB overexpression reversed the suppressive effect of hederagenin on HG-induced NLRP3 inflammasome activation and fibrosis in HRMCs and HRPTEpiCs. In conclusion, hederagenin attenuates HG-induced fibrosis of renal cells by inhibiting NLRP3 inflammasome activation via reducing CTSB expression, indicating a therapeutic potential of hederagenin in diabetic nephropathy.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Endocrinology, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Wang Yang
- Department of Internal Medicine, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Hairong Jiang
- Dispensary, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Qing Yi
- Department of Internal Medicine, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Wei Ma
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an, China
| |
Collapse
|
12
|
Yang G, Yang Y, Liu Y, Liu X. Regulation of alveolar macrophage death in pulmonary fibrosis: a review. Apoptosis 2023; 28:1505-1519. [PMID: 37707713 PMCID: PMC10618387 DOI: 10.1007/s10495-023-01888-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Ganghao Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yiping Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
13
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
14
|
Huang X, Shen QK, Guo HY, Li X, Quan ZS. Pharmacological overview of hederagenin and its derivatives. RSC Med Chem 2023; 14:1858-1884. [PMID: 37859723 PMCID: PMC10583830 DOI: 10.1039/d3md00296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023] Open
Abstract
Hederagenin is a pentacyclic triterpenoid isolated from plants and widely distributed in a variety of medicinal plants. By integrating and analyzing external related literature reports, the latest research progress on the pharmacological effects and structural modification of hederagenin was reviewed. Hederagenin has a wide range of pharmacological activities, including antitumor, anti-inflammatory, antidepressant, anti-neurodegenerative, antihyperlipidemic, antidiabetic, anti-leishmaniasis, and antiviral activities. Among them, it shows high potential in the field of anti-tumor treatment. This paper also reviews the structural modifications of hederagenin, including carboxyl group modifications and two hydroxyl group modifications. Future research on hederagenin will focus on prolonging its half-life, improving its bioavailability and structural modification to enhance its pharmacological activity, accelerating the preclinical research stage of hederagenin for it to enter the clinical research stage as soon as possible.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| |
Collapse
|
15
|
Gong Y, Wang J. Monotropein alleviates sepsis-elicited acute lung injury via the NF-κB pathway. J Pharm Pharmacol 2023; 75:1249-1258. [PMID: 37279779 DOI: 10.1093/jpp/rgad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To address the effect and mechanism of Monotropein (Mon) on sepsis-induced acute lung injury (ALI). METHODS ALI model was established by lipopolysaccharide (LPS)-stimulated mouse lung epithelial cell lines (MLE-12) and cecal ligation and puncture (CLP)-treated mice, respectively. The function of Mon was examined by cell counting kit-8 (CCK-8), pathological staining, the pulmonary function examination, flow cytometry, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labellingand western blot. RESULTS Mon increased the LPS-reduced viability but decreased the LPS-evoked apoptosis rate in MLE-12 cells. Mon suppressed the concentrations and protein expressions of proinflammatory factors, and the expressions of fibrosis-related proteins in LPS-challenged MLE-12 cells compared with LPS treatment alone. Mechanically, Mon downregulated the levels of NF-κB pathway, which was confirmed with the application of the receptor activator of nuclear factor-κB ligand (RANKL). Correspondingly, RANKL reversed the ameliorative effect of Mon on the proliferation, apoptosis, inflammation and fibrosis. Moreover, Mon improved the pathological manifestations, apoptosis, the W/D ratio and pulmonary function indicators in CLP-treated mice. Consistently, Mon attenuated inflammation, fibrosis and NF-κB pathway in CLP-treated mice. CONCLUSION Mon inhibited apoptosis, inflammation and fibrosis to alleviate sepsis-evoked ALI via the NF-κB pathway.
Collapse
Affiliation(s)
- Yuanzhong Gong
- Department of Infectious Diseases, Nanping First Hospital affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Junyi Wang
- Department of ICU, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| |
Collapse
|
16
|
Ye H, He B, Zhang Y, Yu Z, Feng Y, Wen C, Xi C, Feng Q. Herb-symptom analysis of Erchen decoction combined with Xiebai powder formula and its mechanism in the treatment of chronic obstructive pulmonary disease. Front Pharmacol 2023; 14:1117238. [PMID: 37274103 PMCID: PMC10235815 DOI: 10.3389/fphar.2023.1117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Background: In recent years, the incidence and mortality rates of chronic obstructive pulmonary disease (COPD) have increased significantly. Erchen Decoction combined with Xiebai Powder (ECXB) formula is mainly used to treat lung diseases in traditional Chinese medicine (TCM). However, the active ingredients of ECXB formula, COPD treatment-related molecular targets, and the mechanisms are still unclear. To reveal its underlying action of mechanism, network pharmacology, molecular docking, and molecular dynamic (MD) simulation approaches were used to predict the active ingredients and potential targets of ECXB formula in treating COPD. As a result, Herb-Symptom analysis showed that the symptoms treated by both TCM and modern medicine of ECXB formula were similar to the symptoms of COPD. Network pharmacology identified 170 active ingredients with 137 targets, and 7,002 COPD targets was obtained. 120 targets were obtained by intersection mapping, among which the core targets include MAPK8, ESR1, TP53, MAPK3, JUN, RELA, MAPK1, and AKT1. Functional enrichment analysis suggested that ECXB formula might exert its treat COPD pharmacological effects in multiple biological processes, such as cell proliferation, apoptosis, inflammatory response, and synaptic connections, and ECXB formula treated COPD of the KEGG potential pathways might be associated with the TNF signaling pathway, cAMP signaling pathway, and VEGF signaling pathway. Molecular docking showed that ECXB formula treatment COPD core active ingredients can bind well to core targets. MD simulations showed that the RELA-beta-sitosterol complex and ESR1-stigmasterol complex exhibited higher conformational stability and lower interaction energy, further confirming the role of ECXB formula in the treatment of COPD through these core components and core targets. Our study analyzed the medication rule of ECXB formula in the treatment of COPD from a new perspective and found that the symptoms treated by both TCM and modern medicine of ECXB formula were similar to the symptoms of COPD. ECXB formula could treat COPD through multi-component, multi-target, and multi-pathway synergistic effects, providing a scientific basis for further study on the mechanism of ECXB formula treatment of COPD. It also provides new ideas for drug development.
Collapse
Affiliation(s)
- Hua Ye
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Beibei He
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifan Feng
- Pharmaceutics Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongcheng Xi
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
18
|
Chen L, Zhou X, Deng Y, Yang Y, Chen X, Chen Q, Liu Y, Fu X, Kwan HY, You Y, Jin W, Zhao X. Zhenwu decoction ameliorates cardiac hypertrophy through activating sGC (soluble guanylate cyclase) - cGMP (cyclic guanosine monophosphate) - PKG (protein kinase G) pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115705. [PMID: 36099983 DOI: 10.1016/j.jep.2022.115705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhenwu Decoction (ZWD) is a traditional Chinese medicine (TCM) formula which has wide scope of indications related to Yang deficiency and dampness retention in TCM syndrome. Cardiac hypertrophy can induce similar symptoms and signs to the clinical features of Yang deficiency and dampness retention syndrome. ZWD can increase the left ventricular ejection fraction, reduce cardiac hypertrophy of patients with chronic heart failure. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY The study aimed to confirm the protective effects of ZWD on cardiac hypertrophy and explore the underlying mechanisms. MATERIALS AND METHODS The potential targets and pathways of ZWD in cardiac hypertrophy were highlighted by network pharmacology and validated by mechanistic and functional studies. RESULTS Our network pharmacology analysis suggests that the protective effects of ZWD on cardiac hypertrophy are related to cyclic guanosine monophosphate (cGMP) - protein kinase G (PKG) pathway. Subsequent animal studies showed that ZWD significantly ameliorated cardiac function decline, cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. To explore the underlying mechanisms of action, we performed Western blotting, immunohistochemical analysis, and detection of inflammatory response and oxidative stress. Our results showed that ZWD activated the soluble guanylate cyclase (sGC) - cGMP - PKG signaling pathway. The sGC inhibitor ODQ that blocks the sGC-cGMP-PKG signaling pathway in zebrafish abolished the protective effects of ZWD, suggesting sGC-cGMP-PKG is the main signaling pathway mediates the protective effect of ZWD in cardiac hypertrophy. In addition, three major ingredients from ZWD, poricoic acid C, hederagenin and dehydrotumulosic acid, showed a high binding energy with prototype sGC. CONCLUSION ZWD reduces oxidative stress and inflammation and exerts cardioprotective effects by activating the sGC-cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xinghong Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Qinghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China.
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
19
|
Zhang Y, Sun W, Zhang L. Heparin-Binding Protein Aggravates Acute Lung Injury in Septic Rats by Promoting Macrophage M1 Polarization and NF- κB Signaling Pathway Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3315601. [PMID: 36225185 PMCID: PMC9550450 DOI: 10.1155/2022/3315601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Objective Heparin-binding protein (HBP) plays an important role in sepsis and is a prognostic biomarker in patients with sepsis, but the role of HBP in the pathogenesis of sepsis-associated acute lung injury (ALI) remains unclear. This study aimed to investigate the role of HBP in sepsis-induced ALI and its underlying molecular mechanisms. Methods The cecal ligation and puncture (CLP) model was used to induce ALI in mice and randomly divided into 4 groups: control group, CLP (rats treated with cecal ligation and puncture), HBP (rats treated with CLP and HBP injection), and HBP + UFH (rats treated with CLP and injection of HBP and unfractionated heparin). Subsequently, HBP expression in rat serum and lung tissues was detected by qRT-PCR, edema and pathological changes in lung tissue by lung wet-to-dry weight ratio (W/D) and HE staining, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities in lung tissues by detection kits. Additionally, ELISA and western blot were applied for the determination of IL-6, TNF-α, and IL-1β expression in rat bronchoalveolar lavage fluid, and iNOS, Arg-1, Mrc1, NF-κBp65, IKKα, IκBα, and p-IκBα expression in lung tissues. Results The expression levels of HBP in serum and lung tissues of rats in the HBP group were significantly increased, the lung tissues were severely injured, accompanied by a significant increase in MPO activity but a significant decrease in SOD activity, and the levels of IL-6, TNF-α, and IL-1β in bronchoalveolar lavage fluid were significantly increased. In addition, the expression levels of iNOS, NF-κB p65, IKKα, and p-IκBα in the lung tissues of rats in the HBP group were significantly increased, while the addition of unfractionated heparin reversed the above results. Conclusion HBP aggravates ALI in septic rats, and its mechanism may be related to the promotion of macrophage M1 polarization and activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Diagnostic Ultrasound, Southern War Zone General Hospital, Guangzhou, Guangdong, China
| | - Wenqiao Sun
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Licheng Zhang
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Xie KH, Liu XH, Jia J, Zhong X, Han RY, Tan RZ, Wang L. Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. Int Immunopharmacol 2022; 112:109247. [PMID: 36155281 DOI: 10.1016/j.intimp.2022.109247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute kidney injury (AKI), a kidney disease with high morbidity and mortality, is characterized by a dramatic decline in renal function. Hederagenin (HDG), a pentacyclic triterpenoid saponin isolated from astragalus membranaceus, has been shown to have significant anti-inflammatory effects on various diseases. However, the effects of HDG on renal injury and inflammation in AKI has not been elucidated. METHODS In this research, mice model of AKI was established by intraperitoneal injection of cisplatin in vivo, the inflammatory model of renal tubular epithelial cells was established by LPS stimulation in vitro, and HDG was used to intervene in vitro and in vivo models. Transcriptome sequencing was used to analyze the alterations of LncRNA and mRNA expression in AKI model and LncRNA-A330074k22Rik (A33) knockdown cells, respectively. Renal in situ electrotransfer knockdown plasmid was used to establish mice model of AKI with low expression of A33 in kidney. RESULTS The results showed that HDG effectively alleviate cisplatin-induced kidney injury and inflammation in mice. Transcriptome sequencing results showed that multiple LncRNAs in kidney of AKI model exhibited significant changes, among which LncRNA-A33 had the most obvious change trend. Subsequent results showed that A33 was highly expressed in kidney of AKI mice and LPS-induced renal tubular cells. After in situ renal electroporation knockdown plasmid down-regulated A33 in kidney of AKI mice, it was found that inhibition of A33 could significantly relieve cisplatin-induced kidney injury and inflammation of AKI, while HDG could effectively suppress the expression of A33 in vitro and in vivo, respectively. Subsequently, transcriptome sequencing was again used to analyze the changes in mRNA expression of renal tubular cells after A33 knockdown by siRNA. The results showed that a large number of inflammation-related signaling pathways were down-regulated, Axin2 and its downstream β-catenin signal were significantly inhibited. Cell recovery test showed that HDG inhibited Axin2/β-catenin signal by down-regulating A33, and improved kidney injury and inflammation of AKI. CONCLUSION Taken together, HDG significantly ameliorated cisplatin-induced kidney injury through LncRNA-A330074k22Rik/Axin2/β-catenin signal axis, which providing a potential therapeutic approach for the treatment of AKI.
Collapse
Affiliation(s)
- Ke-Huan Xie
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiao-Heng Liu
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rang-Yue Han
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|