1
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
2
|
Shen Y, Yang Y, Zhao Y, Nuerlan S, Zhan Y, Liu C. YY1/circCTNNB1/miR-186-5p/YY1 positive loop aggravates lung cancer progression through the Wnt pathway. Epigenetics 2024; 19:2369006. [PMID: 38913848 PMCID: PMC11197906 DOI: 10.1080/15592294.2024.2369006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Lung cancer is one familiar cancer that threatens the lives of humans. circCTNNB1 has been disclosed to have regulatory functions in some diseases. However, the functions and related regulatory mechanisms of circCTNNB1 in lung cancer remain largely indistinct. The mRNA and protein expression levels were examined through real-time polymerase chain reaction (RT-qPCR) and western blot. The cell proliferation was tested through CCK-8 assay. The cell migration and invasion were confirmed through Transwell assays. The cell senescence was evaluated through SA-β-gal assay. The binding ability between miR-186-5p and circCTNNB1 (or YY1) was verified through luciferase reporter and RIP assays. In this study, the higher expression of circCTNNB1 was discovered in lung cancer tissues and cell lines and resulted in poor prognosis. In addition, circCTNNB1 facilitated lung cancer cell proliferation, migration, invasion, and suppressed cell senescence. Knockdown of circCTNNB1 retarded the Wnt pathway. Mechanism-related experiments revealed that circCTNNB1 combined with miR-186-5p to target YY1. Through rescue assays, YY1 overexpression could rescue decreased cell proliferation, migration, invasion, increased cell senescence, and retarded Wnt pathway mediated by circCTNNB1 suppression. Furthermore, YY1 acts as a transcription factor that can transcriptionally activate circCTNNB1 to form YY1/circCTNNB1/miR-186-5p/YY1 positive loop. Through in vivo assays, circCTNNB1 accelerated tumour growth in vivo. All findings revealed that a positive loop YY1/circCTNNB1/miR-186-5p/YY1 aggravated lung cancer progression by modulating the Wnt pathway.
Collapse
Affiliation(s)
- Yanli Shen
- Department of Pulmonary Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yan Yang
- Department of Pulmonary Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yan Zhao
- Department of Pulmonary Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Saiteer Nuerlan
- Department of Pulmonary Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yiyi Zhan
- Department of Pulmonary Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunling Liu
- Department of Pulmonary Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Long CM, Li Z, Song W, Zeng X, Yang R, Lu L. The Roles of Non-coding RNA Targeting Astrocytes in Cerebral Ischemia. Mol Neurobiol 2024; 61:5814-5825. [PMID: 38236344 DOI: 10.1007/s12035-023-03898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Astrocytes are key targets for treating cerebral ischemia in the central nervous system. Non-coding RNAs (ncRNAs) participate in the pathological processes of astrocytes in cerebral ischemia. Recent reports suggest that ncRNAs ameliorate the outcome of cerebral ischemia by mediating astrocytes' inflammatory reaction, oxidative stress, excitotoxicity, autophagy, and apoptosis. Reconstructing cellular systems might offer a promising strategy for treating cerebral ischemia. This review briefly discusses the potential of ncRNAs as drug targets and explores the molecular regulatory mechanisms through which ncRNAs target astrocytes in cerebral ischemia. It provides an overview of the current research, discusses ncRNAs' implications as clinical markers for cerebral ischemia, and anticipates that ongoing research on ncRNAs may contribute to novel therapeutic approaches for treating this condition.
Collapse
Affiliation(s)
- Chun-Mei Long
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Zhen Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Wang Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Xin Zeng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Rui Yang
- The Endocrinology Department, Lanzhou Hospital of Traditional Chinese Medicine, Lanzhou, 73000, Gansu, China
| | - Li Lu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China.
- Medical College of Lanzhou University, 199 Dong gang West Road, Cheng guan District, Lanzhou, China.
| |
Collapse
|
4
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
MicroRNA miR-188-5p enhances SUMO2/3 conjugation by targeting SENP3 and alleviates focal cerebral ischemia/reperfusion injury in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1260-1267. [PMID: 39229582 PMCID: PMC11366937 DOI: 10.22038/ijbms.2024.76165.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 09/05/2024]
Abstract
Objectives Expression of miR-188-5p changes upon experiencing cerebral I/R injury. SENP3 is a predicted target of miR-188-5p. The study aimed to examine the potential mechanism underlying the miR-188-5p mediated enhancement of SUMO2/3 conjugation via targeting SENP3 and alleviation against cerebral I/R injury. Materials and Methods Focal cerebral I/R was established in Sprague-Dawley rats using the MCAO model. The expression of miR-188-5p was modulated through intracerebroventricular (ICV) administration of its mimics or inhibitors. The expression of miR-188-5p, SENP3, and SUMO2/3 was detected using RT-qPCR or western blot analysis. Dual luciferase reporter assays were conducted to demonstrate the targeting effect of miR-188-5p on SENP3 in N2a cells. HE staining and TUNEL staining were performed to evaluate neurocellular morphological changes and detect neurocellular apoptosis, respectively. The extent of neurological deficits was evaluated using mNSS. TTC staining was used to evaluate the infarct area. Results In the cerebral ischemic penumbra, the expression of miR-188-5p declined and SENP3 levels increased following I/R. Dual luciferase reporter assays confirmed that miR-188-5p directly acted on SENP3 in N2a cells. As a self-protective mechanism, SUMO2/3 conjugation increased after reperfusion. After ICV administration of miR-188-5p inhibitor, the expression of miR-188-5p was down-regulated, the expression of SENP3 was up-regulated, the SUMO2/3 conjugation decreased, and cerebral I/R injury was exacerbated. However, ICV administration of small hairpin RNA targeting SENP3 partially reversed the effects of the miR-188-5p inhibitor. Conclusion MiR-188-5p mitigated cerebral I/R injury by down-regulating SENP3 expression and consequently enhancing SUMO2/3 conjugation in rats.
Collapse
|
6
|
Xu G, Liu G, Wang Z, Li Y, Fang W. Circular RNAs: Promising Treatment Targets and Biomarkers of Ischemic Stroke. Int J Mol Sci 2023; 25:178. [PMID: 38203348 PMCID: PMC10779226 DOI: 10.3390/ijms25010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ischemic stroke is one of the most significant causes of morbidity and mortality worldwide. However, there is a dearth of effective drugs and treatment methods for ischemic stroke. Significant numbers of circular RNAs (circRNAs) exhibit abnormal expression following ischemic stroke and are considered potential therapeutic targets. CircRNAs have emerged as promising biomarkers due to their stable expression in peripheral blood and their potential significance in ischemic stroke diagnosis and prognosis. This review provides a summary of 31 circRNAs involved in the pathophysiological processes of apoptosis, autophagy, inflammation, oxidative stress, and angiogenesis following ischemic stroke. Furthermore, we discuss the mechanisms of action of said circRNAs and their potential clinical applications. Ultimately, circRNAs exhibit promise as both therapeutic targets and biomarkers for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yunman Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| |
Collapse
|
7
|
Hu T, Li D, Fan T, Zhao X, Chen Z. CircCRIM1/microRNA-141-3p/thioredoxin-binding protein axis mediates neuronal apoptosis after cerebral ischemia-reperfusion. ENVIRONMENTAL TOXICOLOGY 2023; 38:2845-2856. [PMID: 37565716 DOI: 10.1002/tox.23916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have indicated enrichment of circular RNA (circRNA) in the brain takes on a momentous role in cerebral ischemia-reperfusion (CIR) injury. A recent study discovered a novel circCRIM1, was highly expressed in the middle cerebral artery occlusion-reperfusion (MCAO/R) model. Nevertheless, its specific biological function remained unknown. The study was to explore circCRIM1 in CIR-induced neuronal apoptosis. As measured, circCRIM1 and TXNIP were up-regulated, while miR-141-3p was down-regulated in MCAO/R mouse model and OGD/R SH-SY5Y cells. Depleting circCRIM1 reduced the number of apoptotic neurons in MCAO/R rats, increased the number of Nissl bodies, prevented reactive oxygen species production and oxidative stress imbalance in brain tissues, repressed cleaved caspase-3, Bax, and Cyto C protein levels and increased Bcl-2 levels. Overexpression of circCRIM1 further repressed neuronal activity and accelerated apoptosis in OGD/R model, disrupted redox balance. Depleting circCRIM1 had the opposite effect in OGD/R model. Knocking down miR-141-3p or TXNIP weakened the effects of knocking down circCRIM1 or overexpressing circCRIM1, separately. Mechanistically, circCRIM1 exerted an active role in CIR injury via miR-141-3p to mediate TXNIP. All in all, the circCRIM1/miR-141-3p/TXNIP axis might be a latent therapeutic target for CIR injury.
Collapse
Affiliation(s)
- Teng Hu
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - Di Li
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - TiePing Fan
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - XuSheng Zhao
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - ZhongJun Chen
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| |
Collapse
|
8
|
He W, Gu L, Yang J, Zhang R, Long J, Peng W, Liang B, Zhu L, Lv M, Nan A, Su L. Exosomal circCNOT6L Regulates Astrocyte Apoptotic Signals Induced by Hypoxia Exposure Through miR99a-5p/SERPINE1 and Alleviates Ischemic Stroke Injury. Mol Neurobiol 2023; 60:7118-7135. [PMID: 37531026 DOI: 10.1007/s12035-023-03518-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Circular RNAs are involved in intervention strategies for treating ischemic stroke (IS). However, circCNOT6L (hsa_circ_0006168) has not yet been reported in IS. Thus, we aimed to explore the potential role of circCNOT6L and its molecular mechanism in IS. In this study, we first found that the expression of both exosomal circCNOT6L (P = 0.0006) and plasma circCNOT6L (P = 0.0054) was down-regulated in IS patients compared with controls. Clinically, a negative correlation was observed between the relative expression level of circCNOT6L and the National Institutes of Health Stroke Scale (NIHSS) score and infarct volume of the brain. Simultaneously, the relative expression level of circCNOT6L was negatively associated with multiple risk factors for IS, such as mean platelet volume (MPV), red cell distribution width (RDW), very low-density lipoprotein (VLDL), and serum potassium, whereas it was positively correlated with high-density lipoprotein (HDL). In vitro, circCNOT6L silencing blocked cell viability and proliferation, while it promoted cell apoptosis of astrocytes undergoing oxygen-glucose deprivation/reperfusion (OGD/R) treatment. Mechanistically, the RNA antisense purification (RAP) assay and luciferase reporter assay revealed that circCNOT6L acts as a miRNA sponge to absorb miR-99a-5p and then regulates the expression of serine proteinase inhibitor (SERPINE1). In the further rescue experiment, overexpressing SERPINE1 could rescue the cell apoptotic signals due to circCNOT6L depletion. In conclusion, CircCNOT6L attenuated the cell apoptotic signal of astrocytes via the miR99a-5p/SERPINE1 axis and then alleviated injury after hypoxia induced by ischemic stroke.
Collapse
Affiliation(s)
- Wanting He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lian Gu
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Baoyun Liang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lulu Zhu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Miao Lv
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
9
|
Zheng C, Ding L, Xiang Z, Feng M, Zhao F, Zhou Z, She C. Circ_0001825 promotes osteogenic differentiation in human-derived mesenchymal stem cells via miR-1270/SMAD5 axis. J Orthop Surg Res 2023; 18:663. [PMID: 37674252 PMCID: PMC10481475 DOI: 10.1186/s13018-023-04133-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The implication of deregulated circular RNAs in osteoporosis (OP) has gradually been proposed. Herein, we aimed to study the function and mechanism of circ_0001825 in OP using osteogenic-induced human-derived mesenchymal stem cells (hMSCs). METHODS The content of genes and proteins was tested by quantitative real-time polymerase chain reaction and Western blotting. The osteogenic differentiation in hMSCs were evaluated by ALP activity and Alizarin Red staining, as well as the detection of osteogenesis-related markers. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry. The binding between miR-1270 and circ_0001825 or SMAD5 (SMAD Family Member 5) was confirmed by using dual-luciferase reporter assay and pull-down assay. RESULTS Circ_0001825 was lowly expressed in OP patients and osteogenic induced hMSCs. Knockdown of circ_0001825 suppressed hMSC viability and osteogenic differentiation, while circ_0001825 overexpression showed the exact opposite effects. Mechanistically, circ_0001825/miR-1270/SMAD5 formed a feedback loop. MiR-1270 was increased and SMAD5 was decreased in OP patients and osteogenic induced hMSCs. MiR-1270 up-regulation suppressed hMSC viability and osteogenic differentiation, which was reversed by SMAD5 overexpression. Moreover, miR-1270 deficiency abolished the effects of circ_0001825 knockdown on hMSCs. CONCLUSION Circ_0001825 promoted hMSC viability and osteogenic differentiation via miR-1270/SMAD5 axis, suggesting the potential involvement of circ_0001825 in osteoporosis.
Collapse
Affiliation(s)
- Changjun Zheng
- Department of Joint Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, China
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Lingzhi Ding
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Ziming Xiang
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Mingxuan Feng
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Fujiang Zhao
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Zhaoxin Zhou
- Department of Joint Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Chang She
- Department of Joint Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, China.
| |
Collapse
|
10
|
Wong R, Zhang Y, Zhao H, Ma D. Circular RNAs in organ injury: recent development. J Transl Med 2022; 20:533. [PMID: 36401311 PMCID: PMC9673305 DOI: 10.1186/s12967-022-03725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Collapse
|
11
|
Li X, Li L, Si X, Zhang Z, Ni Z, Zhou Y, Liu K, Xia W, Zhang Y, Gu X, Huang J, Yin C, Shao A, Jiang L. The regulatory roles of circular RNAs via autophagy in ischemic stroke. Front Neurol 2022; 13:963508. [PMID: 36330428 PMCID: PMC9623297 DOI: 10.3389/fneur.2022.963508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic stroke (IS) is a severe disease with a high disability, recurrence, and mortality rates. Autophagy, a highly conserved process that degrades damaged or aging organelles and excess cellular components to maintain homeostasis, is activated during IS. It influences the blood–brain barrier integrity and regulates apoptosis. Circular RNAs (circRNAs) are novel non-coding RNAs involved in IS-induced autophagy and participate in various pathological processes following IS. In addition, they play a role in autophagy regulation. This review summarizes current evidence on the roles of autophagy and circRNA in IS and the potential mechanisms by which circRNAs regulate autophagy to influence IS injury. This review serves as a basis for the clinical application of circRNAs as novel biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhumei Ni
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Congguo Yin
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China
- Anwen Shao
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Lin Jiang
| |
Collapse
|