1
|
Levison LS, Blicher JU, Andersen H. Incidence and mortality of ALS: a 42-year population-based nationwide study. J Neurol 2024; 272:44. [PMID: 39666144 PMCID: PMC11638285 DOI: 10.1007/s00415-024-12743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND AIM Recent studies have suggested that the incidence rate (IR) and the rate of death (MR) of amyotrophic lateral sclerosis (ALS) are increasing. Still, it remains unclear whether this is due to improved case ascertainment or represents a true increase. We examined the development in the incidence and mortality of ALS in Denmark for 42 years. METHODS We retrieved individual-level data of all patients aged above 18 years with first-time ALS diagnosed at any Danish department of neurology. The IR and MR were calculated based on data from 1980 to 2021, stratified by gender and age. RESULTS We identified 5,943 patients with ALS and identified a total of 5,069 deaths in the nationwide population. Overall, the IR was 3.4 per 100,000 persons per year (95% CI 3.4-3.5). ALS incidence rose gradually during the study period, and the IR was 2.8 times higher (95% CI 2.4-3.2) when comparing the latest period (2018-2021) with the first (1980-1983). Parallel to the IR, the MR increased over time and was associated with male gender and rose with age at diagnosis, peaking in the 70-79-year age group. CONCLUSION In Denmark, the IR and MR of ALS increased threefold from 1980 to 2021, with steadily increasing risk related to male gender and in particular to higher age. Considering our aging societies, the number of elderly patients with ALS can be expected to increase considerably.
Collapse
Affiliation(s)
| | | | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Rizea RE, Corlatescu AD, Costin HP, Dumitru A, Ciurea AV. Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:9966. [PMID: 39337454 PMCID: PMC11432652 DOI: 10.3390/ijms25189966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This review offers an in-depth examination of amyotrophic lateral sclerosis (ALS), addressing its epidemiology, pathophysiology, clinical presentation, diagnostic techniques, and current as well as emerging treatments. The purpose is to condense key findings and illustrate the complexity of ALS, which is shaped by both genetic and environmental influences. We reviewed the literature to discuss recent advancements in understanding molecular mechanisms such as protein misfolding, mitochondrial dysfunction, oxidative stress, and axonal transport defects, which are critical for identifying potential therapeutic targets. Significant progress has been made in refining diagnostic criteria and identifying biomarkers, leading to earlier and more precise diagnoses. Although current drug treatments provide some benefits, there is a clear need for more effective therapies. Emerging treatments, such as gene therapy and stem cell therapy, show potential in modifying disease progression and improving the quality of life for ALS patients. The review emphasizes the importance of continued research to address challenges such as disease variability and the limited effectiveness of existing treatments. Future research should concentrate on further exploring the molecular foundations of ALS and developing new therapeutic approaches. The implications for clinical practice include ensuring the accessibility of new treatments and that healthcare systems are equipped to support ongoing research and patient care.
Collapse
Affiliation(s)
- Radu Eugen Rizea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Neurosurgery, "Bagdasar-Arseni" Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Adrian Dumitru
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Morphopathology, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
3
|
Rostás R, Fekete I, Horváth L, Márton S, Fekete K. Correlation of single-fiber electromyography studies and functional status in patients with amyotrophic lateral sclerosis. Open Med (Wars) 2024; 19:20240990. [PMID: 38953009 PMCID: PMC11215301 DOI: 10.1515/med-2024-0990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
Objective Our aim was to examine the significance of single-fiber electromyography (SFEMG) in patients diagnosed with amyotrophic lateral sclerosis (ALS) and determine the best correlating parameter with SFEMG parameters and clinical scales across different muscles including facial muscles. Methods SFEMG examinations were conducted on the extensor digitorum (ED), frontalis, and orbicularis oculi muscles. Mean jitter, percentage of increased jitter, fiber density (FD), and impulse blocking percentage were compared to reference values and functional scales. Results Significant differences (p < 0.001) were observed between the patients' SFEMG results and reference values in all muscles. Significant correlations were found between SFEMG parameters and clinical scales, particularly when considering both FD and jitter. A notable value of the ALS Functional Rating Scale Revised (ALSFRS-R) was detected in all muscles: 31 points in the ED muscle, 30 in the orbicularis oculi muscle, and 31 in the frontalis muscle. Below this ALSFRS-R threshold, the percentage of increased jitter was higher, while FD remained relatively low. Conclusion SFEMG examination emerges as a valuable tool for better understanding ALS and holds potential for assessing prognosis. Combined jitter and FD analysis showed the strongest correlation with clinical scales. In addition to the ED muscle, the orbicularis oculi muscle may be important in the assessment.
Collapse
Affiliation(s)
- Róbert Rostás
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, 4032Debrecen, Hungary
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032Debrecen, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032Debrecen, Hungary
| | - László Horváth
- Department of Pharmaceutical Surveillance and Economy, Faculty of Pharmacy, University of Debrecen, 4032Debrecen, Hungary
| | - Sándor Márton
- Institute of Political Science and Sociology, Faculty of Humanities, University of Debrecen, Debrecen, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032Debrecen, Hungary
| |
Collapse
|
4
|
Borrego-Hernández D, Vázquez-Costa JF, Domínguez-Rubio R, Expósito-Blázquez L, Aller E, Padró-Miquel A, García-Casanova P, Colomina MJ, Martín-Arriscado C, Osta R, Cordero-Vázquez P, Esteban-Pérez J, Povedano-Panadés M, García-Redondo A. Intermediate Repeat Expansion in the ATXN2 Gene as a Risk Factor in the ALS and FTD Spanish Population. Biomedicines 2024; 12:356. [PMID: 38397958 PMCID: PMC10886453 DOI: 10.3390/biomedicines12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Intermediate CAG expansions in the gene ataxin-2 (ATXN2) are a known risk factor for ALS, but little is known about their role in FTD risk. Moreover, their contribution to the risk and phenotype of patients might vary in populations with different genetic backgrounds. The aim of this study was to assess the relationship of intermediate CAG expansions in ATXN2 with the risk and phenotype of ALS and FTD in the Spanish population. Repeat-primed PCR was performed in 620 ALS and 137 FTD patients in three referral centers in Spain to determine the exact number of CAG repeats. In our cohort, ≥27 CAG repeats in ATXN2 were associated with a higher risk of developing ALS (odds ratio [OR] = 2.666 [1.471-4.882]; p = 0.0013) but not FTD (odds ratio [OR] = 1.446 [0.558-3.574]; p = 0.44). Moreover, ALS patients with ≥27 CAG repeats in ATXN2 showed a shorter survival rate compared to those with <27 repeats (hazard ratio [HR] 1.74 [1.18, 2.56], p = 0.005), more frequent limb onset (odds ratio [OR] = 2.34 [1.093-4.936]; p = 0.028) and a family history of ALS (odds ratio [OR] = 2.538 [1.375-4.634]; p = 0.002). Intermediate CAG expansions of ≥27 repeats in ATXN2 are associated with ALS risk but not with FTD in the Spanish population. ALS patients carrying an intermediate expansion in ATXN2 show more frequent limb onset but a worse prognosis than those without expansions. In patients carrying C9orf72 expansions, the intermediate ATXN2 expansion might increase the penetrance and modify the phenotype.
Collapse
Affiliation(s)
- Daniel Borrego-Hernández
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Raúl Domínguez-Rubio
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Laura Expósito-Blázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Elena Aller
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Genetics Department, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ariadna Padró-Miquel
- Genetics Laboratory (LCTMS), Bellvitge University Hospital-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Pilar García-Casanova
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
| | - María J. Colomina
- Anesthesia Service Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain;
| | | | - Rosario Osta
- Laboratório de Genética e Biotecnologia (LAGENBIO), Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Aragon Institute for Health Research (IIS Aragon), Zaragoza University, 50013 Zaragoza, Spain;
| | - Pilar Cordero-Vázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Jesús Esteban-Pérez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Mónica Povedano-Panadés
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Alberto García-Redondo
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
5
|
Sancho-Cantus D, Cubero-Plazas L, Privado J, García-Iturrospe EJA, Cañabate Ros M, Navarro-Illana E, Ortí JEDLR. Spanish adaptation and validation of the ALS Depression Inventory-12 (ADI-12) in patients with Amyotrophic Lateral Sclerosis. Arch Med Res 2024; 55:102936. [PMID: 38141272 DOI: 10.1016/j.arcmed.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Patients with Amyotrophic Lateral Sclerosis (ALS) have a higher prevalence of mood disorders, including depression, than the general population. Non-specific measurement instruments have been used to evaluate depression in these patients, which complicates accurate diagnosis. The ALS Depression Inventory (ADI-12) exclusively assesses depressive symptoms in patients with ALS. AIM To adapt and validate the ADI-12 in a Spanish sample. METHODS A selective design was used with 74 patients with ALS, using the ADI-12 questionnaire. The original instrument was translated and back-translated into Spanish. The internal structure, temporal stability, convergent, and discriminant validity of the instrument were analyzed. RESULTS Two confirmatory models showed internal validity (p = 0.502 for the one-factor model, p = 0.507 for the two-factor model). The Cronbach's alpha (0.900 in the first measurement and 0.889 in the second one) indicated a high internal consistency of the test. The Pearson correlation (0.90) indicated high temporal stability. In terms of convergent validity, the ADI-12 showed moderate correlations with the Beck Anxiety Inventory (BAI) (0.51-0.58), and low correlations with time since ALS diagnosis (-0.26 to -0.27). LIMITATIONS The main limitation of the present study was the small sample size. CONCLUSIONS The ADI-12 is fitted to a single general factor of depression, and the scale shows high internal consistency and high temporal stability, therefore, its use is recommended for the diagnosis of depression in patients with ALS.
Collapse
Affiliation(s)
| | | | - Jesús Privado
- Department of Methodology of Behavioral Sciences, Universidad Complutense de Madrid, Campus de Somosaguas, Pozuelo de Alarcón, Madrid, Spain
| | - Eduardo Jesús Aguilar García-Iturrospe
- Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain. CIBERSAM: Spanish National Network for Research in Mental Health, Madrid, Spain
| | - Montserrat Cañabate Ros
- Department of Nursing, Catholic University of Valencia, Valencia, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain. CIBERSAM: Spanish National Network for Research in Mental Health, Madrid, Spain
| | | | | |
Collapse
|
6
|
Rostás R, Fekete I, Horváth L, Fekete K. Blink Reflex Examination in Patients with Amyotrophic Lateral Sclerosis Compared to Diseases Affecting the Peripheral Nervous System and Healthy Controls. Brain Sci 2023; 13:1384. [PMID: 37891753 PMCID: PMC10605916 DOI: 10.3390/brainsci13101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal form of neuromuscular disease. The aim of this study was to assess changes in the blink reflex (BR) parameters as a valid and easy-to-use tool in ALS patients. We assessed the BR test in patients with a definitive diagnosis of ALS, healthy volunteers, and patients with diseases affecting the peripheral nervous system. The BR was studied in 29 patients who met the Awaji criteria. Latencies were compared with our healthy controls (N = 50) and other diseases of the peripheral nervous system (N = 61). The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to evaluate functional status. Significantly prolonged R2i and R2c latencies were found in the ALS group compared with the healthy control group (p < 0.001). The latencies of R1, R2i, R2c were all increased in the bulbar subtype compared to the limb-onset subtype (p < 0.05). According to our results, BR examination might be a promising tool to monitor the course of the disease or serve as a prognostic biomarker in patients with ALS, but it should be assessed in further studies. The abnormalities detected through BR might help perform earlier interventions in ALS patients and might be useful in other diseases affecting the peripheral nervous system.
Collapse
Affiliation(s)
- Róbert Rostás
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
- Department of Neurology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond krt 22, 4032 Debrecen, Hungary; (I.F.); (K.F.)
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond krt 22, 4032 Debrecen, Hungary; (I.F.); (K.F.)
| | - László Horváth
- Department of Pharmaceutical Surveillance and Economy, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary;
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond krt 22, 4032 Debrecen, Hungary; (I.F.); (K.F.)
| |
Collapse
|
7
|
Yamashita S, Tawara N, Hara K, Ueda M. Gender differences in clinical features at the initial examination of late-onset amyotrophic lateral sclerosis. J Neurol Sci 2023; 451:120697. [PMID: 37295193 DOI: 10.1016/j.jns.2023.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that mainly affects motor neurons in the brain and spinal cord. With the advent of aging societies, the proportion of elderly patients with ALS is expected to increase. METHODS We retrospectively compared the clinical characteristics at the initial examination of patients with onset of ALS at age 74 years or younger (early onset) and those aged 75 years or older at onset (late-onset) at a single regional ALS diagnostic center in Japan. RESULTS The phenotype of late-onset ALS differed between males and females, with late-onset females having more bulbar-onset ALS and significantly lower body mass index, late-onset males having more frequent bulbar and respiratory symptoms at the initial examination, and significantly lower forced vital capacity at the initial examination in both groups compared to early onset patients. CONCLUSION For late-onset patients, maintenance of skeletal muscle mass by early intervention for bulbar and respiratory symptoms may be useful for prolonging survival; however, a prospective analysis is warranted.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Japan.
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kentaro Hara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Hedges EC, Cocks G, Shaw CE, Nishimura AL. Generation of an Open-Access Patient-Derived iPSC Biobank for Amyotrophic Lateral Sclerosis Disease Modelling. Genes (Basel) 2023; 14:1108. [PMID: 37239468 PMCID: PMC10218399 DOI: 10.3390/genes14051108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting the upper and lower motor neurons, causing patients to lose control over voluntary movement, and leading to gradual paralysis and death. There is no cure for ALS, and the development of viable therapeutics has proved challenging, demonstrated by a lack of positive results from clinical trials. One strategy to address this is to improve the tool kit available for pre-clinical research. Here, we describe the creation of an open-access ALS iPSC biobank generated from patients carrying mutations in the TARDBP, FUS, ANXA11, ARPP21, and C9ORF72 genes, alongside healthy controls. To demonstrate the utilisation of these lines for ALS disease modelling, a subset of FUS-ALS iPSCs were differentiated into functionally active motor neurons. Further characterisation revealed an increase in cytoplasmic FUS protein and reduced neurite outgrowth in FUS-ALS motor neurons compared to the control. This proof-of-principle study demonstrates that these novel patient-derived iPSC lines can recapitulate specific and early disease-related ALS phenotypes. This biobank provides a disease-relevant platform for discovery of ALS-associated cellular phenotypes to aid the development of novel treatment strategies.
Collapse
Affiliation(s)
- Erin C. Hedges
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK;
| | - Graham Cocks
- Genome Editing and Embryology Core, King’s College London, London SE1 1UL, UK;
| | - Christopher E. Shaw
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK;
- Centre for Brain Research, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Agnes L. Nishimura
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK;
- Blizard Institute, Neuroscience, Surgery and Trauma, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
9
|
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML. Therapeutic Effects of Coumarins with Different Substitution Patterns. Molecules 2023; 28:2413. [PMID: 36903660 PMCID: PMC10005689 DOI: 10.3390/molecules28052413] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.
Collapse
Affiliation(s)
- Virginia Flores-Morales
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
| | - Ana P. Villasana-Ruíz
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Samantha González-Delgado
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
10
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400:1363-1380. [PMID: 36116464 PMCID: PMC10089700 DOI: 10.1016/s0140-6736(22)01272-7] [Citation(s) in RCA: 372] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Letizia Mazzini
- ALS Centre, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy; Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Masha G Savelieff
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gen Sobue
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
11
|
Hampsey E, Meszaros M, Skirrow C, Strawbridge R, Taylor RH, Chok L, Aarsland D, Al-Chalabi A, Chaudhuri R, Weston J, Fristed E, Podlewska A, Awogbemila O, Young AH. Protocol for Rhapsody: a longitudinal observational study examining the feasibility of speech phenotyping for remote assessment of neurodegenerative and psychiatric disorders. BMJ Open 2022; 12:e061193. [PMID: 35667724 PMCID: PMC9171270 DOI: 10.1136/bmjopen-2022-061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Neurodegenerative and psychiatric disorders (NPDs) confer a huge health burden, which is set to increase as populations age. New, remotely delivered diagnostic assessments that can detect early stage NPDs by profiling speech could enable earlier intervention and fewer missed diagnoses. The feasibility of collecting speech data remotely in those with NPDs should be established. METHODS AND ANALYSIS The present study will assess the feasibility of obtaining speech data, collected remotely using a smartphone app, from individuals across three NPD cohorts: neurodegenerative cognitive diseases (n=50), other neurodegenerative diseases (n=50) and affective disorders (n=50), in addition to matched controls (n=75). Participants will complete audio-recorded speech tasks and both general and cohort-specific symptom scales. The battery of speech tasks will serve several purposes, such as measuring various elements of executive control (eg, attention and short-term memory), as well as measures of voice quality. Participants will then remotely self-administer speech tasks and follow-up symptom scales over a 4-week period. The primary objective is to assess the feasibility of remote collection of continuous narrative speech across a wide range of NPDs using self-administered speech tasks. Additionally, the study evaluates if acoustic and linguistic patterns can predict diagnostic group, as measured by the sensitivity, specificity, Cohen's kappa and area under the receiver operating characteristic curve of the binary classifiers distinguishing each diagnostic group from each other. Acoustic features analysed include mel-frequency cepstrum coefficients, formant frequencies, intensity and loudness, whereas text-based features such as number of words, noun and pronoun rate and idea density will also be used. ETHICS AND DISSEMINATION The study received ethical approval from the Health Research Authority and Health and Care Research Wales (REC reference: 21/PR/0070). Results will be disseminated through open access publication in academic journals, relevant conferences and other publicly accessible channels. Results will be made available to participants on request. TRIAL REGISTRATION NUMBER NCT04939818.
Collapse
Affiliation(s)
- Elliot Hampsey
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | | | | | - Rebecca Strawbridge
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Rosie H Taylor
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | | | - Dag Aarsland
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Ammar Al-Chalabi
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Ray Chaudhuri
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | | | | | - Aleksandra Podlewska
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Olabisi Awogbemila
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Allan H Young
- Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| |
Collapse
|
12
|
Burchardt JM, Mei XW, Ranger T, McDermott CJ, Radunovic A, Coupland C, Hippisley-Cox J. Analysis of incidence of motor neuron disease in England 1998-2019: use of three linked datasets. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:363-371. [PMID: 35103515 PMCID: PMC9344929 DOI: 10.1080/21678421.2021.2016837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: This study uses three linked datasets to provide an estimate of incidence of motor neuron disease (MND) in England from 1998 to 2019. Comparison is made to previous British studies. It examines age at diagnosis and ethnicity of those affected. Methods: The literature was searched for studies of MND incidence in Great Britain from 1995 to date. The QResearch and linked Hospital Episode Statistics and Death register databases were searched from 1998 to 2019 for cases of MND, and incidence calculated from 16.8 million adults and 112 million adult years of data. Results: We found 6437 adults with a diagnosis of MND giving an incidence of MND of 5.69/100,000 person years (95% CI 5.51–5.88); 6.57 (6.41–6.99) in men and 4.72 (4.49–4.97) in women when age-standardized to the 2011 UK population. The median age of diagnosis was 72 years. Peak incidence occurred in the 80–84 year age group in men and 75–79 in women. Age-standardized incidence was as high in Bangladeshi, Black Caribbean, Indian, other Asian and Pakistani people as in White people. Black African and Chinese people had a lower incidence. Conclusion: The use of three linked national datasets captured 33% more people than a primary care dataset alone. Patients were older than in previous studies and rates were high in all ethnic groups studied except Black African and Chinese people. We present the highest incidence of MND reported globally in the past 50 years. Methodological differences may in part explain differences with previous reports. The use of national datasets may have captured additional MND patients with serious comorbidities who have not seen a neurologist before death. A limitation of this approach is that unlike population registers, which minimize false positive diagnosis by neurologist review of each patient, we cannot review diagnosis for individuals as data are anonymized.
Collapse
Affiliation(s)
- Judith M Burchardt
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, England
| | - Xue W Mei
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, England
| | - Tom Ranger
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, England
| | | | | | - Carol Coupland
- School of Medicine, University of Nottingham, Nottingham, England
| | - Julia Hippisley-Cox
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, England
| |
Collapse
|
13
|
Cobos S, Torrente MP. Epidrugs in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia: Contextualizing a Role for Histone Kinase Inhibition in Neurodegenerative Disease. ACS Pharmacol Transl Sci 2022; 5:134-137. [PMID: 35187420 PMCID: PMC8844958 DOI: 10.1021/acsptsci.1c00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/23/2023]
Abstract
Breakthroughs in understanding the epigenetic mechanisms involved in neurodegenerative disease have highlighted "epidrugs" as a potential avenue for therapeutic development. Here, we expand on the future of epidrugs against neurodegeneration and discuss promising novel targets underexploited thus far: histone kinases.
Collapse
Affiliation(s)
- Samantha
N. Cobos
- Chemistry
Department of Brooklyn College, Brooklyn, New York 11210, United States,Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Mariana P. Torrente
- Chemistry
Department of Brooklyn College, Brooklyn, New York 11210, United States,Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States,Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States,Ph.D.
Program in Biology, The Graduate Center
of the City University of New York, New York, New York 10016, United States,
| |
Collapse
|
14
|
Informal Caregivers in Amyotrophic Lateral Sclerosis: A Multi-Centre, Exploratory Study of Burden and Difficulties. Brain Sci 2021; 11:brainsci11081094. [PMID: 34439713 PMCID: PMC8394559 DOI: 10.3390/brainsci11081094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) is a systemic and fatal neurodegenerative condition for which there is currently no cure. Informal caregivers play a vital role in supporting the person with ALS, and it is essential to support their wellbeing. This multi-centre, mixed methods descriptive exploratory study describes the complexity of burden and self-defined difficulties as described by the caregivers themselves. Quantitative and qualitative data were collected during face-to-face interviews with informal caregivers from centres in the Netherlands, England, and Ireland. Standardised measures assessed burden, quality of life, and psychological distress; furthermore, an open-ended question was asked about difficult aspects of caregiving. Most caregivers were female, spouse/partners, and lived with the person with ALS for whom they provided care. Significant differences between national cohorts were identified for burden, quality of life, and anxiety. Among the difficulties described were the practical issues associated with the caregiver role and emotional factors such as witnessing a patient’s health decline, relationship change, and their own distress. The mixed-methods approach allows for a more nuanced understanding of the burden and difficulties experienced. It is important to generate an evidence base to support the psychosocial wellbeing and brain health of informal caregivers.
Collapse
|
15
|
Grogan J, Simmons Z. Physician-hastened death in California for patients with amyotrophic lateral sclerosis: Part of a bigger picture. Muscle Nerve 2021; 64:381-384. [PMID: 34368965 DOI: 10.1002/mus.27388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/05/2022]
Affiliation(s)
- James Grogan
- Department of Neurology, Penn State University, Hershey, Pennsylvania, USA
| | - Zachary Simmons
- Department of Neurology, Penn State University, Hershey, Pennsylvania, USA
| |
Collapse
|
16
|
Miller C, Apple S, Paige JS, Grabowsky T, Shukla O, Agnese W, Merrill C. Current and Future Projections of Amyotrophic Lateral Sclerosis in the United States Using Administrative Claims Data. Neuroepidemiology 2021; 55:275-285. [PMID: 34153964 DOI: 10.1159/000515203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various methodologies have been reported to assess the real-world epidemiology of amyotrophic lateral sclerosis (ALS) in the United States. The aim of this study was to estimate the prevalence, incidence, and geographical distribution of ALS using administrative claims data and to model future trends in ALS epidemiology. METHODS We performed a retrospective analysis of deidentified administrative claims data for >100 million patients, using 2 separate databases (IBM MarketScan Research Databases and Symphony Health Integrated DataVerse [IDV]), to identify patients with ALS. We evaluated disease prevalence, annual incidence, age- and population-controlled geographical distribution, and expected future trends. RESULTS From 2013 to 2017, we identified 7,316 and 35,208 ALS patients from the MarketScan databases and IDV, respectively. Average annual incidence estimates were 1.48 and 1.37 per 100,000 and point prevalence estimates were 6.85 and 5.16 per 100,000 and in the United States for the MarketScan databases and IDV, respectively. Predictive modeling estimates are reported out to the year 2060 and demonstrate an increasing trend in both incident and prevalent cases. CONCLUSIONS This study provides incidence and prevalence estimates as well as geographical distribution for what the authors believe to be the largest ALS population studied to date. By using 2 separate administrative claims data sets, confidence in our estimates is increased. Future projections based on either database demonstrate an increase in ALS cases, which has also been seen in other large-scale ALS studies. These results can be used to help improve the allocation of healthcare resources in the future.
Collapse
Affiliation(s)
- Chris Miller
- HVH Precision Analytics LL, Wayne, Pennsylvania, USA
| | - Stephen Apple
- Mitsubishi Tanabe Pharma America, Inc., Jersey City, New Jersey, USA
| | | | | | - Oodaye Shukla
- HVH Precision Analytics LL, Wayne, Pennsylvania, USA
| | - Wendy Agnese
- Formerly Employed by Mitsubishi Tanabe Pharma America, Inc., Jersey City, New Jersey, USA
| | - Charlotte Merrill
- Formerly Employed by Mitsubishi Tanabe Pharma America, Inc., Jersey City, New Jersey, USA
| |
Collapse
|
17
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
18
|
Silva JM, Nobre MSC, Albino SL, Lócio LL, Nascimento APS, Scotti L, Scotti MT, Oshiro-Junior JA, Lima MCA, Mendonça-Junior FJB, Moura RO. Secondary Metabolites with Antioxidant Activities for the Putative Treatment of Amyotrophic Lateral Sclerosis (ALS): "Experimental Evidences". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5642029. [PMID: 33299526 PMCID: PMC7707995 DOI: 10.1155/2020/5642029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids, coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties, consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural origin for the treatment of ALS.
Collapse
Affiliation(s)
- Jamire M. Silva
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Michelangela S. C. Nobre
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Sonaly L. Albino
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Lucas L. Lócio
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Agnis P. S. Nascimento
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - Marcus T. Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - João A. Oshiro-Junior
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Maria C. A. Lima
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
| | - Francisco J. B. Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, 58071-160 João Pessoa PB, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| |
Collapse
|
19
|
Opie-Martin S, Ossher L, Bredin A, Kulka A, Pearce N, Talbot K, Al-Chalabi A. Motor Neuron Disease Register for England, Wales and Northern Ireland-an analysis of incidence in England. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:86-93. [PMID: 32940088 DOI: 10.1080/21678421.2020.1812661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) has a reported incidence of 1-2/100,000 person-years. It is estimated that there are 5000 people with ALS in the UK at any one time; however, the true figure and geographical distribution, are unknown. In this study, we describe the establishment of a population register for England, Wales, and Northern Ireland and report-estimated incidence. Methods: People with a diagnosis of ALS given by a consultant neurologist and whose postcode of residence is within England, Wales, or Northern Ireland were eligible. The catchment area was based on six data contributors that had been participating since 2016. All centres included in this analysis were in England, and therefore Wales and Northern Ireland are not included in this report. Crude age- and sex-specific incidence rates were estimated using population census records for the relevant postcodes from Office of National Statistics census data. These rates were standardized to the UK population structure using direct standardization. Results: There were 232 people in the database with a date of diagnosis between 2017 and 2018, when missing data were imputed there were an estimated 287-301 people. The denominator population of the catchment area is 7,251,845 according to 2011 UK census data. Age- and sex-adjusted incidence for complete cases was 1.61/100,000 person-years (95% confidence interval 1.58, 1.63), and for imputed datasets was 2.072/100,000 person-years (95% CI 2.072, 2.073). Discussion: We found incidence in this previously unreported area of the UK to be similar to other published estimates. As the MND Register for England, Wales, and Northern Ireland grows we will update incidence estimates and report on further analyses.
Collapse
Affiliation(s)
- Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Lynn Ossher
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, and
| | - Andrea Bredin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Anna Kulka
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Neil Pearce
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, and
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
20
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LM, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RH, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use. Card Fail Rev 2020; 6:e19. [PMID: 32714567 PMCID: PMC7374352 DOI: 10.15420/cfr.2020.03] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Levosimendan was first approved for clinic use in 2000, when authorisation was granted by Swedish regulatory authorities for the haemodynamic stabilisation of patients with acutely decompensated chronic heart failure. In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitisation and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced heart failure, right ventricular failure and pulmonary hypertension, cardiac surgery, critical care and emergency medicine. Levosimendan is currently in active clinical evaluation in the US. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and non-cardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, UK and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute heart failure arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge Barcelona, Spain
| | - Marisa G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC) La Coruña, Spain
| | - Juan F Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre Madrid, Spain
| | - Istvan Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alexander A Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme Brussels, Belgium
| | - Leo Ma Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service Leeds, UK
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital Milan, Italy
| | - Julius-Gyula Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Hynek Riha
- Cardiothoracic Anaesthesiology and Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Institute for Clinical and Experimental Medicine Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal Schlieren, Switzerland
| | | | - Robert Hg Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité - University Medicine Berlin Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz Graz, Austria
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Centre, Department of Cardiology, University Clinical Centre Ljubljana, Slovenia
| | | |
Collapse
|
21
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LMA, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RHG, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use. J Cardiovasc Pharmacol 2020; 76:4-22. [PMID: 32639325 PMCID: PMC7340234 DOI: 10.1097/fjc.0000000000000859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Levosimendan was first approved for clinical use in 2000, when authorization was granted by Swedish regulatory authorities for the hemodynamic stabilization of patients with acutely decompensated chronic heart failure (HF). In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitization and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced HF, right ventricular failure, pulmonary hypertension, cardiac surgery, critical care, and emergency medicine. Levosimendan is currently in active clinical evaluation in the United States. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and noncardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute HF arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital, Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University, Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Marisa G. Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC), La Coruña, Spain
| | - Juan F. Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre, Madrid, Spain
| | - István Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexander A. Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University, Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome, Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO, Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena, Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki, Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme, Brussels, Belgium
| | - Leo M. A. Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre, Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service, Leeds, United Kingdom
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma, Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital, Milan, Italy
| | - Julius G. Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology, Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hynek Riha
- Department of Anaesthesiology and Intensive Care Medicine, Cardiothoracic Anaesthesiology and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal, Schlieren, Switzerland
| | | | - Robert H. G. Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg, Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité—University Medicine Berlin, Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz, Graz, Austria
| | - Bojan Vrtovec
- Department of Cardiology, Advanced Heart Failure and Transplantation Centre, University Clinical Centre, Ljubljana, Slovenia
| | - Piero Pollesello
- Critical Care Proprietary Products, Orion Pharma, Espoo, Finland.
| |
Collapse
|
22
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|