1
|
Chen T, Karedla N, Enderlein J. Observation of E-cadherin adherens junction dynamics with metal-induced energy transfer imaging and spectroscopy. Commun Biol 2024; 7:1596. [PMID: 39613901 DOI: 10.1038/s42003-024-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Epithelial cadherin (E-cad) mediated cell-cell junctions play a crucial role in the establishment and maintenance of tissues and organs. In this study, we employed metal-induced energy transfer imaging and spectroscopy to investigate variations in intermembrane distance during adhesion between two model membranes adorned with E-cad. By correlating the measured intermembrane distances with the distinct E-cad junction states, we probed the dynamic behavior and diversity of E-cad junctions across different binding pathways. Our observations led to the identification of a transient intermediate state referred to as the X-dimeric state and enabled a detailed analysis of its kinetics. We discovered that the formation of the X-dimer leads to significant membrane displacement, subsequently impacting the formation of other X-dimers. These direct experimental insights into the subtle dynamics of E-cad-modified membranes and the resultant changes in intermembrane distance provide perspectives on the assembly of E-cad junctions between cells. This knowledge enhances our comprehension of tissue and organ development and may serve as a foundation for the development of innovative therapeutic strategies for diseases linked to cell-cell adhesion abnormalities.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
| | - Narain Karedla
- The Rosalind Franklin Institute, Didcot, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Ebrahimi-Dehkordi S, Anjomshoa M, Ghasemi S, Saghaei E, Nasiri-Boroujeni S, Amini-Khoei H. Experimental colitis is comorbid with social interaction deficits and anxiety-like behaviors in mice: mechanistic intuitions into neuroinflammation and Claudin 5 expression in the hippocampus. J Biochem Mol Toxicol 2024; 38:e70008. [PMID: 39415674 DOI: 10.1002/jbt.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Inflammatory bowel disease (IBD) is accompanied by psychiatric disorders, including Schizophrenic-like manifestations. Although incompletely illustrated, intestinal mucosal membrane damage and blood-brain barrier (BBB) penetrability may have significant roles in psychiatric symptoms of IBD. This study aimed to investigate role of the Claudin-5 (CLDN5) (a regulator of the permeability of BBB) and neuroinflammatory response in the comorbid behavioral disorders in experimental colitis in mice. Acetic acid was used to induce colitis in mice. 7 days after induction of colitis, behaviors including social interaction and locomotor activity as well as anxiety-like behaviors were evaluated. Then, the colon was extracted for gross and microscopic evaluations. The expression of CLDN5, TNF-α, IL1β and IL23 was measured by RT-PCR in the colon and hippocampus. Histopathologic evaluations demonstrated mucosal, submucosal, and crypt-related damages in the colon. The negative and positive number of social interactions significantly increased in the colitis group. A considerable increase in locomotor activities (horizontal and vertical components) shown in the colitis group. Mice in colitis group spent less time in the central zone in the open field apparatus. Gene expressions of TNF-α, IL1β, and IL23 increased and CLDN5 decreased in the colitis group. The barrier function of the intestine and brain would be impaired, partially at least, following colitis (as we observed decrease in CLDN5 gene expression). Furthermore, we found that beside inflammatory response in the colon, a neuro-immune response triggered in the hippocampus following colitis. These alterations probably, mediated comorbid behavioral disorders in acetic acid-induced colitis in mice.
Collapse
Affiliation(s)
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Saghaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri-Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
So RJ, Collins SL, Chan-Li Y, Lina I, Gelbard A, Motz KM, Hillel AT. A Comprehensive Flow Cytometry Panel for Analysis of Idiopathic Subglottic Stenosis. Otolaryngol Head Neck Surg 2024; 171:791-798. [PMID: 38606634 PMCID: PMC11349474 DOI: 10.1002/ohn.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE To present a comprehensive flow cytometry panel for idiopathic subglottic stenosis (iSGS). STUDY DESIGN Controlled ex vivo cohort study. SETTING Tertiary care academic hospital in a metropolitan area. METHODS Flow cytometry and single-cell RNA sequencing were performed on 9 paired normal and scar tissue samples from iSGS patients. Flow cytometry was used to assess the presence of myeloid (CD11b, CD14, CD15, Siglec8), lymphoid (CD3, CD4, CD8, gamma delta [γδ], FOXP3), endothelial (CD31), fibroblast (CD90, SMA), and epithelial (CD326, CK5) markers. RESULTS On flow cytometry, iSGS scar is characterized by an increased presence of myeloid, lymphoid, endothelial, and fibroblast cell types, but a decreased presence of epithelial cells. In the myeloid lineage, iSGS scar samples demonstrated increased CD11b+ monocytes (P < .001), Siglec8+ eosinophils (P = .03), and CD14+ monocytes (P = .02). In the lymphoid lineage, iSGS scar demonstrated increased CD3+ T-cells (P < .001), CD4+ helper T-cells (P < .001), γδ+ T-cells (P < .001), and FOXP3+ regulatory T-cells (P = .002). iSGS scar exhibited specific increases in CD90+ (P = .04) and SMA+ (P < .001) fibroblasts but decreased CD326+ (E-cadherin) epithelial cells (P = .01) relative to normal samples. CONCLUSION We present a comprehensive flow cytometry panel for iSGS. This flow panel may serve as a common platform among airway scientists to elucidate the cellular mechanisms underpinning iSGS and other upper airway pathologies. Scar iSGS samples demonstrate a distinct cellular profile relative to normal iSGS specimens, exhibiting increased fibroblast, endothelial, and inflammatory cell types but decreased epithelium.
Collapse
Affiliation(s)
- Raymond J So
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Collins
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yee Chan-Li
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ioan Lina
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander Gelbard
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin M Motz
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander T Hillel
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Wang T, Zhuang Y, Yu C, Wang Z, Liu Y, Xu Q, Liu K, Li Y. D-beta-hydroxybutyrate up-regulates Claudin-1 and alleviates the intestinal hyperpermeability in lipopolysaccharide-treated mice. Tissue Cell 2024; 87:102343. [PMID: 38442546 DOI: 10.1016/j.tice.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The hyperpermeability of intestinal epithelium is a key contributor to the occurrence and development of systemic inflammation. Although D-beta-hydroxybutyrate (BHB) exhibits various protective effects, whether it affects the permeability of intestinal epithelium in systemic inflammation has not been clarified. In this study, we investigated the effects of BHB on the intestinal epithelial permeability, the epithelial marker E-cadherin and the tight junction protein Claudin-1 in colon in the lipopolysaccharide (LPS)-induced systemic inflammation mouse model. Intraperitoneal injection of LPS was used to induce systemic inflammation and BHB was given by oral administration. The permeability of intestinal epithelium, the morphological changes of colonic epithelium, the distribution and generation of colon E-cadherin, and the Claudin-1 generation and its epithelial distribution in colon were detected. The results confirmed the intestinal epithelial hyperpermeability and inflammatory changes in colonic epithelium, with disturbed E-cadherin distribution in LPS-treated mice. Besides, colon Claudin-1 generation was decreased and its epithelial distribution in colon was weakened in LPS-treated mice. However, BHB treatments alleviated the LPS-induced hyperpermeability of intestinal epithelium, attenuated the colonic epithelial morphological changes and promoted orderly distribution of E-cadherin in colon. Furthermore, BHB up-regulated colon Claudin-1 generation and promoted its colonic epithelial distribution and content in LPS-treated mice. In conclusion, BHB may alleviate the hyperpermeability of intestinal epithelium via up-regulation of Claudin-1 in colon in LPS-treated mice.
Collapse
Affiliation(s)
- Ting Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuchen Zhuang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Chenglong Yu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China
| | - Zhaobo Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuan Liu
- Department of Ophthalmology, First Central Hospital of Baoding, Hebei, People's Republic of China
| | - Qian Xu
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Kun Liu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China.
| | - Yanning Li
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Zhu H, Lu J, Fu M, Chen P, Yu Y, Chen M, Zhao Q, Wu M, Ye M. YAP represses intestinal inflammation through epigenetic silencing of JMJD3. Clin Epigenetics 2024; 16:14. [PMID: 38245781 PMCID: PMC10800074 DOI: 10.1186/s13148-024-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Epigenetics plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Some studies have reported that YAP is involved in inflammatory response and can regulate target genes through epigenetic modifications. JMJD3, a histone H3K27me3 demethylase, is associated with some inflammatory diseases. In this study, we investigated the role of YAP in the development of IBD and the underlying epigenetic mechanisms. RESULTS YAP expression was significantly increased in both in vitro and in vivo colitis models as well as in patients with IBD. Epithelial-specific knockout of YAP aggravates disease progression in dextran sodium sulfate (DSS)-induced murine colitis. In the TNF-α-activated cellular inflammation model, YAP knockdown significantly increased JMJD3 expression. Coimmunoprecipitation experiments showed that YAP and EZH2 bind to each other, and chromatin immunoprecipitation-PCR (ChIP-PCR) assay indicated that silencing of YAP or EZH2 decreases H3K27me3 enrichment on the promoter of JMJD3. Finally, administration of the JMJD3 pharmacological inhibitor GSK-J4 alleviated the progression of DSS-induced murine colitis. CONCLUSION Our findings elucidate an epigenetic mechanism by which YAP inhibits the inflammatory response in colitis through epigenetic silencing of JMJD3 by recruiting EZH2.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jiali Lu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - MingYue Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yali Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
6
|
Seoudi SS, Allam EA, El-Kamel AH, Elkafrawy H, El-Moslemany RM. Targeted delivery of budesonide in acetic acid induced colitis: impact on miR-21 and E-cadherin expression. Drug Deliv Transl Res 2023; 13:2930-2947. [PMID: 37184747 PMCID: PMC10545600 DOI: 10.1007/s13346-023-01363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation along the gastrointestinal tract. For IBD effective treatment, developing an orally administered stable drug delivery system capable of targeting inflammation sites is a key challenge. Herein, we report pH responsive hyaluronic (HA) coated Eudragit S100 (ES) nanoparticles (NPs) for the targeted delivery of budesonide (BUD) (HA-BUD-ES-NPs). HA-BUD-ES-NPs showed good colloidal properties (274.8 ± 2.9 nm and - 24.6 ± 2.8 mV) with high entrapment efficiency (98.3 ± 3.41%) and pH-dependent release profile. The negative potential following incubation in simulated gastrointestinal fluids reflected the stability of HA coat. In vitro studies on Caco-2 cells showed HA-BUD-ES-NPs biocompatibility and enhanced cellular uptake and anti-inflammatory effects as shown by the significant reduction in IL-8 and TNF-α. The oral administration of HA-BUD-ES-NPs in an acetic acid induced colitis rat model significantly mitigated the symptoms of IBD, and improved BUD therapeutic efficacy compared to drug suspension. This was proved via the improvement in disease activity index and ulcer score in addition to refined histopathological findings. Also, the assessment of inflammatory markers, epithelial cadherin, and mi-R21 all reflected the higher efficiency of HA-BUD-ES-NPs compared to free drug and uncoated formulation. We thus suggest that HA-BUD-ES-NPs provide a promising drug delivery platform for the management and site specific treatment of IBD.
Collapse
Affiliation(s)
- Shaymaa S Seoudi
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hagar Elkafrawy
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Sivasankar S, Xie B. Engineering the Interactions of Classical Cadherin Cell-Cell Adhesion Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:343-349. [PMID: 37459190 PMCID: PMC10361579 DOI: 10.4049/jimmunol.2300098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 07/20/2023]
Abstract
Classical cadherins are calcium-dependent cell-cell adhesion proteins that play key roles in the formation and maintenance of tissues. Deficiencies in cadherin adhesion are hallmarks of numerous cancers. In this article, we review recent biophysical studies on the regulation of cadherin structure and adhesion. We begin by reviewing distinct cadherin binding conformations, their biophysical properties, and their response to mechanical stimuli. We then describe biophysical guidelines for engineering Abs that can regulate adhesion by either stabilizing or destabilizing cadherin interactions. Finally, we review molecular mechanisms by which cytoplasmic proteins regulate the conformation of cadherin extracellular regions from the inside out.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
8
|
Varani J, McClintock SD, Nadeem DM, Harber I, Zeidan D, Aslam MN. A multi-mineral intervention to counter pro-inflammatory activity and to improve the barrier in human colon organoids. Front Cell Dev Biol 2023; 11:1132905. [PMID: 37476158 PMCID: PMC10354648 DOI: 10.3389/fcell.2023.1132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Ulcerative colitis is a chronic inflammatory condition, and continuous inflammatory stimulus may lead to barrier dysfunction. The goal of this study was to assess barrier proteomic expression by a red algae-derived multi-mineral intervention in the absence or presence of pro-inflammatory insult. Methods: Human colon organoids were maintained in a control culture medium alone or exposed to lipopolysaccharide with a combination of three pro-inflammatory cytokines [tumor necrosis factor-α, interleukin-1β and interferon-γ (LPS-cytokines)] to mimic the environment in the inflamed colon. Untreated organoids and those exposed to LPS-cytokines were concomitantly treated for 14 days with a multi-mineral product (Aquamin®) that has previously been shown to improve barrier structure/function. The colon organoids were subjected to proteomic analysis to obtain a broad view of the protein changes induced by the two interventions alone and in combination. In parallel, confocal fluorescence microscopy, tissue cohesion and transepithelial electrical resistance (TEER) measurements were used to assess barrier structure/function. Results: The LPS-cytokine mix altered the expression of multiple proteins that influence innate immunity and promote inflammation. Several of these were significantly decreased with Aquamin® alone but only a modest decrease in a subset of these proteins was detected by Aquamin® in the presence of LPS-cytokines. Among these, a subset of inflammation-related proteins including fibrinogen-β and -γ chains (FGB and FGG), phospholipase A2 (PLA2G2A) and SPARC was significantly downregulated in the presence of Aquamin® (alone and in combination with LPS-cytokines); another subset of proteins with anti-inflammatory, antioxidant or anti-microbial activity was upregulated by Aquamin® treatment. When provided alone, Aquamin® strongly upregulated proteins that contribute to barrier formation and tissue strength. Concomitant treatment with LPS-cytokines did not inhibit barrier formation in response to Aquamin®. Confocal microscopy also displayed increased expression of desmoglein-2 (DSG2) and cadherin-17 (CDH17) with Aquamin®, either alone or in the presence of the pro-inflammatory stimulus. Increased cohesion and TEER with Aquamin® (alone or in the presence of LPS-cytokines) indicates improved barrier function. Conclusion: Taken together, these findings suggest that multi-mineral intervention (Aquamin®) may provide a novel approach to combating inflammation in the colon by improving barrier structure/function as well as by directly altering the expression of certain pro-inflammatory proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad N. Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Păvăleanu I, Balan RA, Grigoraş A, Balan TA, Amălinei C. The significance of immune microenvironment in patients with endometriosis. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:343-354. [PMID: 37867352 PMCID: PMC10720939 DOI: 10.47162/rjme.64.3.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/17/2023] [Indexed: 10/24/2023]
Abstract
Endometriosis represents an estrogen-dependent disease of the female reproductive system and intra- and extraperitoneal regions, with chronic feature. Currently, immune cells, such as macrophages and lymphocytes, are considered to play a pivotal role in angiogenesis and invasion of endometriotic cells through matrix remodeling. Additionally, various studies have revealed the role of E-cadherin, β-catenin, along with steroid hormone receptors in endometriosis development. In this context, our study aimed to analyze the relationship between the cellular immune profile and E-cadherin, β-catenin, estrogen receptor alpha (ERα), and progesterone receptor (PR) immunoexpression in endometriosis tissues, along with an analysis of the possible association between serological parameters and immunohistochemical (IHC) markers. The study included 53 patients diagnosed with ovarian or cutaneous abdominal wall endometriosis, which have been investigated by routine histology, immunohistochemistry, and serum analysis. The IHC exam showed an increased density of cluster of differentiation (CD)4+ T-cells, CD8+ T-cells, and CD68+ macrophages, along with variable increased expressions of E-cadherin, β-catenin, ERα, and PR. Statistical analysis revealed an intense positive correlation between CD68 and PR expression (p<0.05), without any other statistically significant correlations between IHC markers or between IHC and serological markers. Our study supports that endometriosis is an immune-dependent disease characterized by an abnormal morphological profile of T-cells and macrophages in endometriotic implants. Our study provides additional data useful in the understanding the immune milieu of endometriosis in the context of its complex pathogenic molecular mechanism. Further research is needed to develop new immunological therapeutic approaches, like immune checkpoint inhibitors administration or T-cell-targeted immunotherapy in these patients.
Collapse
Affiliation(s)
- Ioana Păvăleanu
- Department of Mother and Child Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Raluca Anca Balan
- Department of Morphofunctional Sciences I, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Adriana Grigoraş
- Department of Morphofunctional Sciences I, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
- Department of Histopathology, Institute of Legal Medicine, Iaşi, Romania
| | - Teodora Ana Balan
- Department of Morphofunctional Sciences I, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Cornelia Amălinei
- Department of Morphofunctional Sciences I, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
- Department of Histopathology, Institute of Legal Medicine, Iaşi, Romania
| |
Collapse
|
10
|
Huang C, Zheng D, Fu C, Cai Z, Zhang H, Xie Z, Luo L, Li H, Huang Y, Chen J. Secreted S100A4 causes asthmatic airway epithelial barrier dysfunction induced by house dust mite extracts via activating VEGFA/VEGFR2 pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:1431-1444. [PMID: 36883729 DOI: 10.1002/tox.23776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
The airway epithelial barrier dysfunction plays a crucial role in pathogenesis of asthma and causes the amplification of downstream inflammatory signal pathway. S100 calcium binding protein A4 (S100A4), which promotes metastasis, have recently been discovered as an effective inflammatory factor and elevated in bronchoalveolar lavage fluid in asthmatic mice. Vascular endothelial growth factor-A (VEGFA), is considered as vital regulator in vascular physiological activities. Here, we explored the probably function of S100A4 and VEGFA in asthma model dealt with house dust mite (HDM) extracts. Our results showed that secreted S100A4 caused epithelial barrier dysfunction, airway inflammation and the release of T-helper 2 cytokines through the activation of VEGFA/VEGFR2 signaling pathway, which could be partial reversed by S100A4 polyclonal antibody, niclosamide and S100A4 knockdown, representing a potential therapeutic target for airway epithelial barrier dysfunction in asthma.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Dongyan Zheng
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunlai Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Ziwei Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - He Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhefan Xie
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huifang Li
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
11
|
m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed Pharmacother 2023; 159:114298. [PMID: 36706633 DOI: 10.1016/j.biopha.2023.114298] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex interplay between genetic predisposition, environmental factors, and gut microbes. The role of N6-methyladenosine (m6A) methylation in the pathogenesis of IBD has attracted increasing attention. m6A modification not only regulates intestinal mucosal immunity and intestinal barrier function, but also affects apoptosis and autophagy in intestinal epithelial cells. Additionally, m6A modification participated in the interaction between gut microbes and the host, providing a novel direction to explore the molecular mechanisms of IBD and the theoretical basis for specific microorganism-oriented prevention and treatment measures. m6A regulators are expected to be biomarkers for predicting the prognosis of IBD patients. m6A methylation may be utilized as a novel target in the management of IBD. This review focused on the recent advances in how m6A modification causes the initiation and development of IBD, and provided new insights into optimal prevention and treatment measures for IBD.
Collapse
|
12
|
Maker A, Bolejack M, Schecterson L, Hammerson B, Abendroth J, Edwards TE, Staker B, Myler PJ, Gumbiner BM. Regulation of multiple dimeric states of E-cadherin by adhesion activating antibodies revealed through Cryo-EM and X-ray crystallography. PNAS NEXUS 2022; 1:pgac163. [PMID: 36157596 PMCID: PMC9491697 DOI: 10.1093/pnasnexus/pgac163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 01/29/2023]
Abstract
E-cadherin adhesion is regulated at the cell surface, a process that can be replicated by activating antibodies. We use cryo-electron microscopy (EM) and X-ray crystallography to examine functional states of the cadherin adhesive dimer. This dimer is mediated by N-terminal beta strand-swapping involving Trp2, and forms via a different transient X-dimer intermediate. X-dimers are observed in cryo-EM along with monomers and strand-swap dimers, indicating that X-dimers form stable interactions. A novel EC4-mediated dimer was also observed. Activating Fab binding caused no gross structural changes in E-cadherin monomers, but can facilitate strand swapping. Moreover, activating Fab binding is incompatible with the formation of the X-dimer. Both cryo-EM and X-ray crystallography reveal a distinctive twisted strand-swap dimer conformation caused by an outward shift in the N-terminal beta strand that may represent a strengthened state. Thus, regulation of adhesion involves changes in cadherin dimer configurations.
Collapse
Affiliation(s)
- Allison Maker
- Department of Biochemistry, University of Washington, USA,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Madison Bolejack
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Brad Hammerson
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA
| | - Jan Abendroth
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Thomas E Edwards
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA,Department of Pediatrics, University of Washington, USA,Department of Biomedical Informatics and Medical Education, University of Washington, USA
| | | |
Collapse
|
13
|
Xie B, Maker A, Priest AV, Dranow DM, Phan JN, Edwards TE, Staker BL, Myler PJ, Gumbiner BM, Sivasankar S. Molecular mechanism for strengthening E-cadherin adhesion using a monoclonal antibody. Proc Natl Acad Sci U S A 2022; 119:e2204473119. [PMID: 35921442 PMCID: PMC9371698 DOI: 10.1073/pnas.2204473119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped β-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Allison Maker
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
| | - Andrew V. Priest
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - David M. Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Jenny N. Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Barry M. Gumbiner
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| |
Collapse
|
14
|
Arnaud T, Rodrigues-Lima F, Viguier M, Deshayes F. Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. Tissue Barriers 2022:2104085. [PMID: 35875939 PMCID: PMC10364651 DOI: 10.1080/21688370.2022.2104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.
Collapse
Affiliation(s)
- Tessa Arnaud
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | | | | | | |
Collapse
|
15
|
Reconstitution of the full transmembrane cadherin-catenin complex. Protein Expr Purif 2022; 193:106056. [PMID: 35063654 PMCID: PMC9487826 DOI: 10.1016/j.pep.2022.106056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
Abstract
The dynamic regulation of epithelial adherens junctions relies on all components of the E-cadherin-catenin complex. Previously, the complexes have been partially reconstituted and composed only of α-catenin, β-catenin, and the E-cadherin cytoplasmic domain. However, p120-catenin and the full-length E-cadherin including the extracellular, transmembrane, and intra-cellular domains are vital to the understanding of the relationship between extracellular adhesion and intracellular signaling. Here, we reconstitute the complete and full-length cadherin-catenin complex, including full-length E-cadherin, α-catenin, β-catenin, and p120-catenin, into nanodiscs. We are able to observe the cadherin in nanodiscs by cryo-EM. We also reconstitute α-catenin, β-catenin, and p120-catenin with the E-cadherin cytoplasmic tail alone in order to analyze the affinities of their binding interactions. We find that p120-catenin does not associate strongly with α- or β-catenin and binds much more transiently to the cadherin cytoplasmic tail than does β-catenin. Overall, this work creates many new possibilities for biochemical studies understanding transmembrane signaling of cadherins and the role of p120-catenin in adhesion activation.
Collapse
|
16
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
17
|
Sisto M, Ribatti D, Lisi S. Cadherin Signaling in Cancer and Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413358. [PMID: 34948155 PMCID: PMC8704376 DOI: 10.3390/ijms222413358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cadherins mediate cell–cell adhesion through a dynamic process that is strongly dependent on the cellular context and signaling. Cadherin regulation reflects the interplay between fundamental cellular processes, including morphogenesis, proliferation, programmed cell death, surface organization of receptors, cytoskeletal organization, and cell trafficking. The variety of molecular mechanisms and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of clarifying the functions mediated by these versatile proteins. Altered cadherins expression is closely connected with tumorigenesis, epithelial–mesenchymal transition (EMT)-dependent fibrosis, and autoimmunity. We review the current understanding of how cadherins contribute to human health and disease, considering the mechanisms of cadherin involvement in diseases progression, as well as the clinical significance of cadherins as therapeutic targets.
Collapse
|