1
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Rahnama M, Ghasemzadeh N, Ebrahimi Y, Golchin A. A comprehensive evaluation of dermal fibroblast therapy in clinical trials for treating skin disorders and cosmetic applications: a scoping review. Stem Cell Res Ther 2024; 15:318. [PMID: 39304949 PMCID: PMC11416016 DOI: 10.1186/s13287-024-03892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Fibroblast cells have the ability to improve skin conditions through regenerative medicine and cell-based therapies. The purpose of this scoping review is to assess the contribution of fibroblast cells to skin homeostasis and extracellular matrix deposition in clinical trials involving skin disorders and cosmetic applications. METHODS Using targeted search terms, published publications from January 2000 to August 2023 that addressed fibroblast uses in clinical trials of skin conditions were obtained from bibliographic databases like PubMed, Scopus, and Web of Science (WoS). Precise inclusion and exclusion criteria were used during the screening process. The potential benefits of induction treatment with fibroblasts lead to the choosing of clinical trials for this kind of treatment. RESULTS Out of the 820 published ppapers initially identified, only 35 studies fulfilled our meticulous eligibility criteria after careful screening. To ensure clarity, we methodically eliminated any duplicate or irrelevant published papers, thereby offering a transparent account of our selection process. CONCLUSION This study highlights the advantages of fibroblast therapy in treating skin conditions such as diabetic foot, venous leg ulcers, and cosmetic reasons. Fibroblasts possess remarkable regenerating capabilities, making dermal fibroblast therapy crucial in cell-based and skin regenerative treatments. Nevertheless, additional research is required for more disorders and cosmetic applications.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Ghasemzadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Yang M, Cai X, Wang C, Li P, Chen S, Liu C, Wang Y, Qian K, Dong Q, Xue F, Chu C, Bai J, Liu Q, Ni X. Humidity-Responsive Amorphous Calcium-Magnesium Pyrophosphate/Cassava Starch Scaffold for Enhanced Neurovascular Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35964-35984. [PMID: 38968558 DOI: 10.1021/acsami.4c03204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.
Collapse
Affiliation(s)
- Mengmeng Yang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiang Cai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Pengyin Li
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Shaoqing Chen
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Chun Liu
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Yao Wang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kun Qian
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Qiangsheng Dong
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing 211212, China
| | - Qizhan Liu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xinye Ni
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| |
Collapse
|
4
|
Jagannathan C, Waddington R, Nishio Ayre W. Nanoparticle and Nanotopography-Induced Activation of the Wnt Pathway in Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:270-283. [PMID: 37795571 DOI: 10.1089/ten.teb.2023.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Background and Aims: Recent research has focused on developing nanoparticle and nanotopography-based technologies for bone regeneration. The Wingless-related integration site (Wnt) signaling pathway has been shown to play a vital role in this process, in particular in osteogenic differentiation and proliferation. The exact mechanisms by which nanoparticles and nanotopographies activate the Wnt signaling pathway, however, are not fully understood. This review aimed to elucidate the mechanisms by which nanoscale technologies activate the Wnt signaling pathway during bone regeneration. Methods: The terms "Wnt," "bone," and "nano*" were searched on PubMed and Ovid with no date limit. Only original research articles related to Wnt signaling and bone regeneration in the context of nanotopographies, nanoparticles, or scaffolds with nanotopographies/nanoparticles were reviewed. Results: The primary mechanism by which nanoparticles activated the Wnt pathway was by internalization through the endocytic pathway or diffusion through the cell membrane, leading to accumulation of nonphosphorylated β-catenin in the cytoplasm and subsequently downstream osteogenic signaling (e.g., upregulation of runt-related transcription factor 2 [RUNX2]). The specific size of the nanoparticles and the process of endocytosis itself has been shown to modulate the Wnt-β-catenin pathway. Nanotopographies were shown to directly activate frizzled receptors, initiating Wnt/β-catenin signaling. Additional studies showed nanotopographies to activate the Wnt/calcium (Wnt/Ca2+)-dependent and Wnt/planar cell polarity pathways through nuclear factor of activated T cells, and α5β1 integrin stimulation. Finally, scaffolds containing nanotopographies/nanoparticles were found to induce Wnt signaling through a combination of ion release (e.g., lithium, boron, lanthanum, and icariin), which inhibited glycogen synthase kinase 3 beta (GSK-3β) activity, and through similar mechanisms to the nanotopographies. Conclusion: This review concludes that nanoparticles and nanotopographies cause Wnt activation through several different mechanisms, specific to the size, shape, and structure of the nanoparticles or nanotopographies. Endocytosis-related mechanisms, integrin signaling and ion release were the major mechanisms identified across nanoparticles, nanotopographies, and scaffolds, respectively. Knowledge of these mechanisms will help develop more effective targeted nanoscale technologies for bone regeneration. Impact statement Nanoparticles and nanotopographies can activate the Wingless-related integration site (Wnt) signaling pathway, which is essential for bone regeneration. This review has identified that activation is due to endocytosis, integrin signaling and ion release, depending on the size, shape, and structure of the nanoparticles or nanotopographies. By identifying and further understanding these mechanisms, more effective nanoscale technologies that target the Wnt signaling pathway can be developed. These technologies can be used for the treatment of nonunion bone fractures, a major clinical challenge, with the potential to improve the quality of life of millions of patients around the world.
Collapse
Affiliation(s)
- Chitra Jagannathan
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | | | | |
Collapse
|
5
|
Arab F, Aghaee Bakhtiari SH, Pasdar A, Saburi E. Evaluation of osteogenic induction potency of miR-27a-3p in adipose tissue-derived human mesenchymal stem cells (AD-hMSCs). Mol Biol Rep 2023; 50:1281-1291. [PMID: 36451000 DOI: 10.1007/s11033-022-08084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Bone tissue as a dynamic tissue is able to repair its minor injuries, however, sometimes the repair cannot be completed by itself due to the size of lesion. In such cases, the best treatment could be bone tissue engineering. The use of stem cells in skeletal disorders to repair bone defects has created bright prospects. On the other hand, changes in the expression level of microRNAs (miRs) can lead to the commitment of mesenchymal stem cells (MSCs) to cell lineage. Many studies reported that post-transcriptional regulations by miRNAs are involved in all stages of osteoblast differentiation. METHOD After the preparing adipose tissue-derived mesenchymal stem cells, the target cells from the third passage were cultured in two groups, transfected MSCs with miR-27a-3p (DM.C + P) and control group. In different times, 7 and 14 days after culture, differentiation of these cells into osteoblast were measured using various techniques including the ALP test and calcium content test, Alizarin Red staining, Immunocytochemistry technique (ICC). Also, the relative expression of bone differentiation marker genes including Osteonectin (ON), Osteocalcin (OC), RUNX Family Transcription Factor 2 (RUNX2), Collagen type I alpha 1 (COL1) was investigated by real-time RT PCR. RESULTS In comparison with control groups, overexpression of miR-27a-3p in transfected cells resulted in a significant increase in the expression of bone markers genes (ON, OC, RUNX2, COL1), alkaline phosphatase (ALP) activity, and calcium content (p < 0.05). In addition, the results obtained from ICC technique showed that osteocalcin protein is expressed at the surface of bone cells. Furthermore, the expression of APC, as a target of miR-27a-3p, decreased in transfected cells. CONCLUSION Our data suggest that miR-27a-3p may positively regulates adipose tissue-derived mesenchymal stem cell differentiation into bone by targeting APC and activating the Wnt/b-catenin pathway.
Collapse
Affiliation(s)
- Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee Bakhtiari
- Assistant Professor of Medical Biotechnology, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Stem Cell Technology and Skin Disorders: from Stem Cell Biology to Clinical Applications. Stem Cell Rev Rep 2022; 18:1881-1882. [PMID: 35881324 DOI: 10.1007/s12015-022-10381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/16/2022]
|
8
|
The effect of shear stress on cardiac differentiation of mesenchymal stem cells. Mol Biol Rep 2022; 49:3167-3175. [PMID: 35076851 DOI: 10.1007/s11033-022-07149-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Stem cell therapy is developing as a valuable therapeutic trend for heart diseases. Most recent studies are aimed to find the most appropriate types of stem cells for the treatment of myocardial infarction (MI). The animal models have shown that bone marrow-derived mesenchymal stem cells (BMSCs) are a possible, safe, and efficient type of stem cell used in MI. The previous study demonstrated that 5-Azacytidine (5-Aza) could promote cardiac differentiation in stem cells. METHODS This study used 5-Aza to induce cardiomyocyte differentiation in BMSCs both in static and microfluidic cell culture systems. For this purpose, we investigated the differentiation by using real-time PCR and Immunocytochemistry (ICC) Analysis. RESULTS Our results showed that 5-Aza could cause to express cardiac markers in BMSCs as indicated by real-time PCR and immunocytochemistry (ICC). However, BMSCs are exposed to both 5-Aza and shear stress, and their synergistic effects could significantly induce cardiac gene expressions in BMSCs. This level of gene expression was observed neither in 5-Aza nor in shear stress groups only. CONCLUSIONS These results demonstrate that when BMSCs expose to 5-Aza as well as mechanical cues such as shear stress, the cardiac gene expression can be increased dramatically.
Collapse
|
9
|
Bone Allografts: Products and Clinical Applications in Iran. JOURNAL OF RESEARCH IN APPLIED AND BASIC MEDICAL SCIENCES 2021. [DOI: 10.52547/rabms.7.2.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2021; 49:1389-1412. [PMID: 34716502 PMCID: PMC8555726 DOI: 10.1007/s11033-021-06876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Abstract Currently, nanoscale materials and scaffolds carrying antitumor agents to the tumor target site are practical approaches for cancer treatment. Immunotherapy is a modern approach to cancer treatment in which the body’s immune system adjusts to deal with cancer cells. Immuno-engineering is a new branch of regenerative medicine-based therapies that uses engineering principles by using biological tools to stimulate the immune system. Therefore, this branch’s final aim is to regulate distribution, release, and simultaneous placement of several immune factors at the tumor site, so then upgrade the current treatment methods and subsequently improve the immune system’s handling. In this paper, recent research and prospects of nanotechnology-based cancer immunotherapy have been presented and discussed. Furthermore, different encouraging nanotechnology-based plans for targeting various innate and adaptive immune systems will also be discussed. Due to novel views in nanotechnology strategies, this field can address some biological obstacles, although studies are ongoing. Graphic abstract ![]()
Collapse
|
11
|
The bilayer skin substitute based on human adipose-derived mesenchymal stem cells and neonate keratinocytes on the 3D nanofibrous PCL-platelet gel scaffold. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Sohrabi A, Hosseini M, Abazari MF, Zare Karizi S, Sadeghi Oskouei SA, Hajati-Birgani N, Karimi Hafshejani F, Hashemi SAR, Rahmati M, Askari M. Wnt pathway activator delivery by poly (lactide-co-glycolide)/silk fibroin composite nanofibers promotes dental pulp stem cell osteogenesis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:83-113. [PMID: 33931833 DOI: 10.1007/5584_2021_637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE This systematic review focus on the application of bilayer scaffolds as an engaging structure for the engineering of multilayered tissues, including vascular and osteochondral tissues, skin, nerve, and urinary bladder. This article provides a concise literature review of different types of bilayer scaffolds to understand their efficacy in targeted tissue engineering. METHODS To this aim, electronic search in the English language was performed in PMC, NBCI, and PubMed from April 2008 to December 2019 based on the PRISMA guidelines. Animal studies, including the "bilayer scaffold" and at least one of the following items were examined: osteochondral tissue, bone, skin, neural tissue, urinary bladder, vascular system. The articles which didn't include "tissue engineering" and just in vitro studies were excluded. RESULTS Totally, 600 articles were evaluated; related articles were 145, and 35 full-text English articles met all the criteria. Fifteen articles in soft tissue engineering and twenty items in hard tissue engineering were the results of this exploration. Based on selected papers, it was revealed that the bilayer scaffolds were used in the regeneration of the multilayered tissues. The highest multilayered tissue regeneration has been achieved when bilayer scaffolds were used with mesenchymal stem cells and differentiation medium before implanting. Among the studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells. Among different kinds of multilayer tissue, the bilayer scaffold has been most used in osteochondral tissue engineering in which collagen and PLGA have been the most frequently used biomaterials. After osteochondral tissue engineering, bilayer scaffolds were widely used in skin tissue engineering. CONCLUSION The current review aimed to manifest the researcher and surgeons to use a more sophisticated bilayer scaffold in combinations of appropriate stem cells, and different can improve multilayer tissue regeneration. This systematic review can pave a way to design a suitable bilayer scaffold for a specific target tissue and conjunction with proper stem cells.
Collapse
|
14
|
Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, Bunpetch V, Heng BC, Shen W, Liu H, Zhou J, Ouyang H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine (Lond) 2020; 15:1995-2017. [PMID: 32812486 DOI: 10.2217/nnm-2020-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.
Collapse
Affiliation(s)
- Guo Ye
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fangyuan Bao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xianzhu Zhang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhe Song
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Youguo Liao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yang Fei
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Varitsara Bunpetch
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, PR China
| | - Weiliang Shen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hua Liu
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Jing Zhou
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| |
Collapse
|
15
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Rezaei H, Rezaie Z, Seifati SM, Ardeshirylajimi A, Basiri A, Taheri M, Omrani MD. Poly-phosphate increases SMC differentiation of mesenchymal stem cells on PLGA-polyurethane nanofibrous scaffold. Cell Tissue Bank 2020; 21:495-505. [PMID: 32388594 PMCID: PMC7223593 DOI: 10.1007/s10561-020-09836-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/04/2020] [Indexed: 11/30/2022]
Abstract
The use of bioactive scaffolds in tissue engineering has a significant effect on the damaged tissue healing by an increase in speed and quality of the process. Herein, electrospinning was applied to fabricate composite nanofibrous scaffolds by Poly lactic-co-glycolic acid (PLGA) and Polyurethane (PU) with and without poly-phosphate (poly-P). Scaffolds were characterized morphologically by scanning electron microscope (SEM), and their biocompatibility was also investigated by SEM, protein adsorption, cell attachment and survival assays. The applicability of the scaffolds for bladder tissue engineering was also evaluated by culturing mesenchymal stem cells (MSCs) on the scaffolds and their differentiation into smooth muscle cell (SMC) was studied at the gene and protein levels. The results demonstrated that scaffold biocompatibility was increased significantly by loading poly-P. SMC related gene and protein expression level in MSCs cultured on poly-P-loaded scaffold was also increased significantly compared to those cells cultured on empty scaffold. It can be concluded that poly-P hasn’t also increased scaffold biocompatibility, but also SMC differentiation potential of MSCs was also increased while cultured on the poly-P containing scaffold compared to the empty scaffold. Taken together, our study showed that PLGA–PU–poly-P alone and in combination with MSCs has a promising potential for support urinary bladder smooth muscle tissue engineering.
Collapse
Affiliation(s)
| | - Zahra Rezaie
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Labbafi Nejad Educational Hospital, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Seyed Morteza Seifati
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Abdolreza Ardeshirylajimi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Labbafi Nejad Educational Hospital, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran.
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Suess PM, Tang Y, Gomer RH. The putative G protein-coupled receptor GrlD mediates extracellular polyphosphate sensing in Dictyostelium discoideum. Mol Biol Cell 2019; 30:1118-1128. [PMID: 30785840 PMCID: PMC6724513 DOI: 10.1091/mbc.e18-10-0686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Five or more orthophosphates bound together by high-energy phosphoanhydride bonds are highly ubiquitous inorganic molecules called polyphosphate. Polyphosphate acts as a signaling molecule eliciting a number of responses in eukaryotic cells, but the mechanisms mediating these effects are poorly understood. Proliferating Dictyostelium discoideum cells accumulate extracellular polyphosphate. At extracellular concentrations similar to those observed in stationary phase cells, polyphosphate inhibits proteasome activity and proliferation, and induces aggregation. Here we identify GrlD as a putative G protein–coupled receptor that mediates binding of extracellular polyphosphate to the cell surface. Cells lacking GrlD do not respond to polyphosphate-induced proteasome inhibition, aggregation, or proliferation inhibition. Polyphosphate also elicits differential effects on cell-substratum adhesion and cytoskeletal F-actin levels based on nutrient availability, and these effects were also mediated by GrlD. Starving cells also accumulate extracellular polyphosphate. Starved cells treated with exopolyphosphatase failed to aggregate effectively, suggesting that polyphosphate also acts as a signaling molecule during starvation-induced development of Dictyostelium. Together, these results suggest that a eukaryotic cell uses a G protein–coupled receptor to mediate the sensing and response to extracellular polyphosphate.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Yu Tang
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|