1
|
Škulj S, Kožić M, Barišić A, Vega A, Biarnés X, Piantanida I, Barisic I, Bertoša B. Comparison of two peroxidases with high potential for biotechnology applications - HRP vs. APEX2. Comput Struct Biotechnol J 2024; 23:742-751. [PMID: 38298178 PMCID: PMC10828542 DOI: 10.1016/j.csbj.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Peroxidases are essential elements in many biotechnological applications. An especially interesting concept involves split enzymes, where the enzyme is separated into two smaller and inactive proteins that can dimerize into a fully active enzyme. Such split forms were developed for the horseradish peroxidase (HRP) and ascorbate peroxidase (APX) already. Both peroxidases have a high potential for biotechnology applications. In the present study, we performed biophysical comparisons of these two peroxidases and their split analogues. The active site availability is similar for all four structures. The split enzymes are comparable in stability with their native analogues, meaning that they can be used for further biotechnology applications. Also, the tertiary structures of the two peroxidases are similar. However, differences that might help in choosing one system over another for biotechnology applications were noticed. The main difference between the two systems is glycosylation which is not present in the case of APX/sAPEX2, while it has a high impact on the HRP/sHRP stability. Further differences are calcium ions and cysteine bridges that are present only in the case of HRP/sHRP. Finally, computational results identified sAPEX2 as the systems with the smallest structural variations during molecular dynamics simulations showing its dominant stability comparing to other simulated proteins. Taken all together, the sAPEX2 system has a high potential for biotechnological applications due to the lack of glycans and cysteines, as well as due to high stability.
Collapse
Affiliation(s)
- Sanja Škulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Matej Kožić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Antun Barišić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Aitor Vega
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| | - Ivan Barisic
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Eko Refugium, Crno Vrelo 2, Slunj 47240, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| |
Collapse
|
2
|
Allsup BL, Gharpure S, Bryson BD. Proximity labeling defines the phagosome lumen proteome of murine and primary human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611277. [PMID: 39282337 PMCID: PMC11398489 DOI: 10.1101/2024.09.04.611277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Proteomic analyses of the phagosome has significantly improved our understanding of the proteins which contribute to critical phagosome functions such as apoptotic cell clearance and microbial killing. However, previous methods of isolating phagosomes for proteomic analysis have relied on cell fractionation with some intrinsic limitations. Here, we present an alternative and modular proximity-labeling based strategy for mass spectrometry proteomic analysis of the phagosome lumen, termed PhagoID. We optimize proximity labeling in the phagosome and apply PhagoID to immortalized murine macrophages as well as primary human macrophages. Analysis of proteins detected by PhagoID in murine macrophages demonstrate that PhagoID corroborates previous proteomic studies, but also nominates novel proteins with unexpected residence at the phagosome for further study. A direct comparison between the proteins detected by PhagoID between mouse and human macrophages further reveals that human macrophage phagosomes have an increased abundance of proteins involved in the oxidative burst and antigen presentation. Our study develops and benchmarks a new approach to measure the protein composition of the phagosome and validates a subset of these findings, ultimately using PhagoID to grant further insight into the core constituent proteins and species differences at the phagosome lumen.
Collapse
Affiliation(s)
- Benjamin L Allsup
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Supriya Gharpure
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Bryan D Bryson
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| |
Collapse
|
3
|
Al-Harbi SA, Almulaiky YQ. Copper-based metal-organic frameworks (BDC-Cu MOFs) as supporters for α-amylase: Stability, reusability, and antioxidant potential. Heliyon 2024; 10:e28396. [PMID: 38560692 PMCID: PMC10979214 DOI: 10.1016/j.heliyon.2024.e28396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Copper-based metal-organic frameworks (BDC-Cu MOFs) were synthesized via a casting approach using 1,4-benzene dicarboxylic (BDC) as organic ligand and their properties characterized. The obtained materials were then utilized to immobilize the α-amylase enzyme. The chemical composition and functional components of the synthesized support (BDC-Cu MOFs) were investigated with Fourier transform infrared spectroscopy (FTIR), the surface morphology was determined with scanning electron microscopy (SEM), and the elemental composition was established with energy dispersive X-ray (EDX) analyses. X-ray diffraction (XRD) was employed to analyze the crystallinity of the synthesized DBC-Cu MOFs. The zeta potentials of DBC-Cu MOFs and DBC-Cu MOFs@α-amylase were determined. The immobilized α-amylase demonstrated improved catalytic activity and reusability compared to the free form. Covalent attachment of the α-amylase to BDC-Cu provided an immobilization yield (IY%) of 81% and an activity yield (AY%) of 89%. The immobilized α-amylase showed high catalytic activity and 81% retention even after ten cycles. Storage at 4 °C for eight weeks resulted in a 78% activity retention rate for DBC-Cu MOFs@α-amylase and 49% retention for the free α-amylase. The optimum activity occurred at 60 °C for the immobilized form, whereas the free form showed optimal activity at 50 °C. The free and immobilized α-amylase demonstrated peak catalytic activities at pH 6.0. The maximum reaction velocities (Vmax) values were 0.61 U/mg of protein for free α-amylase and 0.37 U/mg of protein for BDC-Cu MOFs@α-amylase, while the Michaelis‒Menten affinity constants (Km) value was lower for the immobilized form (5.46 mM) than for the free form (11.67 mM). Treatments of maize flour and finger millet samples with free and immobilized α-amylase resulted in increased total phenolic contents. The enhanced antioxidant activities of the treated samples were demonstrated with decreased IC50 values in ABTS and DPPH assays. Overall, immobilization of α-amylase on BDC-Cu MOFs provided improved stability and catalytic activity and enhanced the antioxidant potentials of maize flour and finger millet.
Collapse
Affiliation(s)
- Sami A Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yaaser Q Almulaiky
- Department of Chemistry, Collage of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
4
|
Zayed MEM, Obaid AY, Almulaiky YQ, El-Shishtawy RM. Enhancing the sustainable immobilization of laccase by amino-functionalized PMMA-reinforced graphene nanomaterial. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119503. [PMID: 38043312 DOI: 10.1016/j.jenvman.2023.119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Human health and the environment are negatively affected by endocrine-disrupting chemicals (EDCs), such as bisphenol A. Therefore, developing appropriate remediation methods is essential for efficiently removing phenolic compounds from aqueous solutions. Enzymatic biodegradation is a potential biotechnological approach for responsibly addressing water pollution. With its high catalytic efficiency and few by-products, laccase is an eco-friendly biocatalyst with significant promise for biodegradation. Herein, two novel supporting materials (NH2-PMMA and NH2-PMMA-Gr) were fabricated via the functionalization of poly(methylmethacrylate) (PMMA) polymer using ethylenediamine and reinforced with graphene followed by glutaraldehyde activation. NH2-PMMA and NH2-PMMA-Gr were utilized for laccase immobilization with an immobilization yield (IY%) of 78.3% and 82.5% and an activity yield (AY%) of 81.2% and 85.9%, respectively. Scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) were used to study the characteristics of fabricated material supports. NH2-PMMA-Gr@laccase exhibited an optimal pH profile from 4.5 to 5.0, while NH2-PMMA@laccase exhibited optimum pH at 5.0 compared to a value of 4.0 for free form. A wider temperature ranges of 40-50 °C was noted for both immobilized laccases compared to a value of 40 °C for the free form. Additionally, it was reported that immobilized laccase outperformed free laccase in terms of substrate affinity and storage stability. NH2-PMMA@laccase and NH2-PMMA-Gr@laccase improved stability by up to 3.9 and 4.6-fold when stored for 30 days at 4 °C and preserved up to 80.5% and 86.7% of relative activity after ten cycles of reuse. Finally, the degradation of BPA was achieved using NH2-PMMA@laccase and NH2-PMMA-Gr@laccase. After five cycles, NH2-PMMA@laccase and NH2-PMMA-Gr@laccase showed that the residual degradation of BPA was 77% and 84.5% using 50 μm of BPA. This study introduces a novel, high-performance material for organic pollution remediation in wastewater that would inspire further progress.
Collapse
Affiliation(s)
- Mohie E M Zayed
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah Y Obaid
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, 21921, Saudi Arabia
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
5
|
Kilic NM, Gelen SS, Er Zeybekler S, Odaci D. Carbon-Based Nanomaterials Decorated Electrospun Nanofibers in Biosensors: A Review. ACS OMEGA 2024; 9:3-15. [PMID: 38222586 PMCID: PMC10785068 DOI: 10.1021/acsomega.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Nanomaterials have revolutionized scientific research due to their exceptional physical and chemical capabilities. Carbon-based nanomaterials such as graphene and its derivates have excellent electrical, optical, thermal, physical, and chemical properties that have made them indispensable in several industries worldwide, including medicine, electronics, and energy. By incorporating carbon-based nanomaterials as nanofillers in electrospun nanofibers (ESNFs), smoother and highly conductive nanofibers can be achieved that possess a large surface area and porosity. This approach provides a superior alternative to traditional materials in the development of improved biosensors. Carbon-based ESNFs, among the most exciting new-generation materials, have many applications, including filtration, pharmaceuticals, biosensors, and membranes. The electrospinning technique is a highly efficient and cost-effective method for producing desired nanofibers compared to other methods. Various types of natural and synthetic organic polymers have been successfully utilized in solution electrospinning to produce nanofibers directly. To create diagnostics devices, various biomolecules like antibodies, enzymes, aptamers, ligands, and even cells can be bound to the surface of nanofibers. Electrospun nanofibers can serve as an immobilization matrix to create a biofunctional surface. Thus, biosensors with desired features can be produced in this way. This study comprehensively reviews biosensors that integrate nanodiamonds, fullerenes, carbon nanotubes, graphene oxide, and carbon dots into electrospun nanofibers.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Sultan Sacide Gelen
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Simge Er Zeybekler
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Dilek Odaci
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
6
|
Kwak SH, Jeong DG, Shon HK, Kim DH, Lee TG, Wi JS, Na HK. Dual-Function Janus Nanozymes for Performance Evaluation and Application in a Surrogate Virus Neutralization Test with Vaccinated Samples. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55975-55983. [PMID: 37994824 DOI: 10.1021/acsami.3c12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The need exists for biosensing technologies capable of sensitively and accurately detecting various biomarkers. In response, the development of nanozymes is actively underway; they have advantages in stability, cost, performance, and functionalization over natural enzymes commonly used for signal amplification in sensing technologies. However, the performance of nanozymes is interdependent with factors such as shape, size, and surface functional moiety, making it challenging to perform quantitative performance comparisons based on the nanozyme material. In this study, we propose a physical synthetic approach to fabricate double-layered bimetallic nanozymes with identical shapes, sizes, and surfaces but different material compositions. These Janus nanozymes consist of a nanozymatic layer responsible for catalytic activity and a gold layer responsible for quantification and efficient surface modification. Based on their identical physicochemical properties, the synthesized double-layered bimetallic nanozymes allow, for the first time, a quantitative comparison of nanozymatic activities in terms of various kinetic parameters. We compared several candidates and found that the Ir-Au nanozyme exhibited the best performance. Subsequently, we applied this nanozyme to detect neutralizing antibodies against SARS-CoV-2 based on a surrogate virus neutralization test. The results demonstrated a limit of detection as low as 2 pg/mL and selectivity specifically toward MERS-CoV. The performance of this assay was further validated using vaccinated samples, demonstrating the potential of our approach as a cost-effective, rapid, and sensitive diagnostic tool for neutralizing antibody detection against viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- Su-Heon Kwak
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34113, Republic of Korea
| | - Hyun Kyong Shon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| | - Dong-Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul 01812, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Zeyadi M, Almulaiky YQ. Chitosan-Based metal-organic framework for Stabilization of β-glucosidase: Reusability and storage stability. Heliyon 2023; 9:e21169. [PMID: 37920506 PMCID: PMC10618774 DOI: 10.1016/j.heliyon.2023.e21169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Enzyme immobilization is a powerful tool for protecting enzymes from harsh reaction conditions and improving enzyme activity, stability, and reusability. In this study, metal organic frameworks (MIL-Fe composites) were synthesized via solvothermal reactions and then modified with chitosan (CS). β-Glucosidase was immobilized on the chitosan-metal organic framework (CS-MIL-Fe), and the resulting composites were characterized with various analytical techniques. The β-glucosidase immobilized on a CS-MIL-Fe composite had an immobilization yield of 85 % and a recovered activity of 74 %. The immobilized enzyme retained 81 % of its initial activity after ten successive cycles and preserved 69 % of its original activity after 30 days of storage at 4 °C. In contrast, the free enzyme had only preserved 32 % of its original activity after 30 days. Under various temperature and pH conditions, the immobilized enzyme showed greater stability than the free enzyme, and the optimal temperature and pH were 60 °C and 6.0 for the immobilized enzyme and 50 °C and 5.0 for the free enzyme. The kinetic parameters were also determined, with the Km values of 13.4 and 6.98 mM for the immobilized and free β-glucosidase, respectively, and Vmax values of 3.96 and 1.72 U/mL, respectively. Overall, these results demonstrate that the CS-MIL-Fe@β-glucosidase is a promising matrix showing high catalytic efficiency and enhanced stability.
Collapse
Affiliation(s)
- Mustafa Zeyadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
8
|
Angela S, You T, Pham D, Le T, Hsiao W. Surface Modification of Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:52-72. [DOI: 10.1002/9781394202164.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
9
|
Acrylic fabric and nanomaterials to enhance α-amylase-based biocatalytic immobilized systems for industrial food applications. Int J Biol Macromol 2023; 233:123539. [PMID: 36740122 DOI: 10.1016/j.ijbiomac.2023.123539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
An innovative approach for immobilizing α-amylase was used in this investigation. The acrylic fabric was first treated with hexamethylene diamine (HMDA) and then coated with copper ions that were later reduced to copper nanoparticles (CuNPs). The corresponding materials obtained, Cu(II)@HMDA-TA and CuNPs@HMDA-TA, were employed as carriers for α-amylase, respectively. The structural and morphological characteristics of the produced support matrices before and after immobilization were assessed using various techniques, including FTIR, SEM, EDX, TG/DTG, DSC, and zeta potential. The immobilized α-amylase exhibited the highest level of activity at pH 7.0, with immobilization yields observed for CuNPs@HMDA-TA (81.7 %) (60 unit/g support) followed by Cu(II)@HMDA-TA (71.7 %) (49 unit/g support) and 75 % and 61 % of activity yields, and 91.7 % and 85 % of immobilization efficiency, respectively. Meanwhile, biochemical characterizations of the activity of the soluble and immobilized enzymes were carried out and compared. Optimal temperature, pH, kinetics, storage stability, and reusability parameters were optimized for immobilized enzyme activity. The optimal pH and temperature were recorded as 6.0 and 50 °C for soluble α-amylase while the two forms of immobilized α-amylase exhibit a broad pH of 6.0-7.0 and optimal temperature at 60 °C. After recycling 15 times, the immobilized α-amylase on CuNPs@HMDA-TA and Cu(II)@HMDA-TA preserved 63 % and 52 % of their activities, respectively. The two forms of immobilized α-amylase displayed high stability when stored for 6 weeks and preserved 85 % and 76 % of their activities, respectively. Km values were calculated as 1.22, 1.39, and 1.84 mg/mL for soluble, immobilized enzymes on CuNPs@HMDA-TA, and Cu(II)@HMDA-TA, and Vmax values were calculated as 36.25, 29.68, and 21.57 μmol/mL/min, respectively. The total phenolic contents of maize kernels improved 1.4 ± 0.01 fold after treatment by two immobilized α-amylases.
Collapse
|
10
|
Al Angari YM, Almulaiky YQ, Alotaibi MM, Hussein MA, El-Shishtawy RM. Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability. Int J Mol Sci 2023; 24:ijms24031970. [PMID: 36768290 PMCID: PMC9915712 DOI: 10.3390/ijms24031970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Lipases are extensively utilized industrial biocatalysts that play an important role in various industrial and biotechnological applications. Herein, polyacrylonitrile (PAN) was treated with hexamethylene diamine (HMDA) and activated by glutaraldehyde, then utilized as a carrier support for Candida rugosa lipase. In this regard, the morphological structure of modified PAN before and after the immobilization process was evaluated using FTIR and SEM analyses. The immobilized lipase exhibited the highest activity at pH 8.0, with an immobilization yield of 81% and an activity of 91%. The optimal pH and temperature for free lipase were 7.5 and 40 °C, while the immobilized lipase exhibited its optimal activity at a pH of 8.0 and a temperature of 50 °C. After recycling 10 times, the immobilized lipase maintained 76% of its activity and, after 15 reuses, it preserved 61% of its activity. The lipase stability was significantly improved after immobilization, as it maintained 76% of its initial activity after 60 days of storage. The calculated Km values were 4.07 and 6.16 mM for free and immobilized lipase, and the Vmax values were 74 and 77 μmol/mL/min, respectively. These results demonstrated that synthetically modified PAN is appropriate for immobilizing enzymes and has the potential for commercial applications.
Collapse
Affiliation(s)
- Yasser M. Al Angari
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - Maha M. Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or
| |
Collapse
|
11
|
Sviridov AV, Karpov MV, Fokina VV, Donova MV. Cholesterol Assay Based on Recombinant Cholesterol Oxidase, ABTS, and Horseradish Peroxidase. Methods Mol Biol 2023; 2704:157-171. [PMID: 37642843 DOI: 10.1007/978-1-0716-3385-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cholesterol determination by cholesterol oxidase reaction is a fast, convenient, and highly specific approach with widespread use in clinical diagnostics. Routinely, endpoint measurements with 4-aminophenazone or 4-aminoantipyrine as chromogens and sodium cholate, surfactants, or alcohols as solubilizing agents are used. Here we describe a novel kinetic method to determine cholesterol in 0.05-0.75 mM range in neutral or acidic buffers by use of recombinant cholesterol oxidase from Nocardioides simplex in a coupled reaction with horseradish peroxidase, ABTS as a chromogen, and methyl-β-cyclodextrin as a solubilizing agent.
Collapse
Affiliation(s)
- Alexey V Sviridov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Mikhail V Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Victoria V Fokina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| |
Collapse
|
12
|
Nogueira WV, Moyano FJ, Tesser MB, Garda-Buffon J. Mitigation of aflatoxin B 1 in fish feed by peroxidase from soybean meal. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:110-120. [PMID: 36395353 DOI: 10.1080/19440049.2022.2134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Potential of the enzyme peroxidase (PO) from soybean meal to mitigate aflatoxin B1 (AFB1) in fish feed was evaluated. Reaction parameters studied in the wet stage of the feed production process were enzyme activity (0.01-0.1 U/g), temperature (20-36 °C), time (0-8 h) and humidity content (40-70%). Feed was produced in conformity with the National Research Council and spiked with AFB1 at 10 ng/g. Any residual concentration of AFB1 in the diet was extracted by the QuEChERS method and quantified by a liquid chromatograph with a fluorescence detector. AFB1 mitigation of 90% was reached when feed production conditions were 0.035 U/g, 32 °C, 6 h and 70% humidity. Therefore, application of PO to the feed industry may be considered a promising tool for mitigation of AFB1, considering its toxicity and frequent occurrence. In addition, it guarantees safe food for consumers of fish farming products, as AFB1 can bioaccumulate in the food chain. It also provides an alternative use for soybean meal that would previously be discarded.
Collapse
|
13
|
Optimization of Biocatalytic Steps via Response Surface Methodology to Produce Immobilized Peroxidase on Chitosan-Decorated AZT Composites for Enhanced Reusability and Storage Stability. Catal Letters 2022. [DOI: 10.1007/s10562-022-04185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Chen R, Chen X, Liu H, Fang L, Chen B, Luan T. Developing a robust method integrating with selective membrane-based preconcentration and signal amplification for field virus detection. Anal Chim Acta 2022; 1229:340360. [PMID: 36156222 DOI: 10.1016/j.aca.2022.340360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022]
Abstract
Infectious diseases caused by viruses have attracted global concern owing to their rapid spread and catastrophic consequences. Therefore, developing fast and reliable on-site virus detection methods is essential for the prevention and treatment of virus-related diseases. In this study, immunoassays on a membrane, combining virus preconcentration with nanoparticle-based signal amplification, were used to realize the rapid and accurate visual detection of viruses. The biotin-streptavidin scaffolds for target virus preconcentration were established on a membrane, and subsequently a Zika aptamer (Apt) immobilized on the membrane recognized and captured the nonstructural protein 1 of Zika virus (ZIKV-NS1). The probe for detection was synthesized by conjugating the Zika Apt with a high level of horseradish peroxidase on gold nanoparticles. The ZIKV-loaded membrane was incubated with the probes, and the viral signal was amplified as the signal of horseradish peroxidase. In the presence of 3,3,5',5'-tetramethyl benzidine and hydrogen peroxide, the green color of the probe-coated membrane indicated the level of ZIKV-NS1. Our developed method could reach a detection limit of 5 ng mL-1, and the whole procedure could be completed within 1 h. Analyses of rabbit serum and environmental water samples demonstrated that an immunoassay-based approach on the membrane could accurately determine the level of ZIKV-NS1 against the complicated matrix. Our results suggest that this virus detection method has a high potential for application in clinical and environmental settings.
Collapse
Affiliation(s)
- Ruohong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xingni Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hongtao Liu
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ling Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510276, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Fokina VV, Karpov MV, Kollerov VV, Bragin EY, Epiktetov DO, Sviridov AV, Kazantsev AV, Shutov AA, Donova MV. Recombinant Extracellular Cholesterol Oxidase from Nocardioides simplex. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:903-915. [PMID: 36180991 DOI: 10.1134/s0006297922090048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Cholesterol oxidase is a highly demanded enzyme used in medicine, pharmacy, agriculture, chemistry, and biotechnology. It catalyzes oxidation of 3β-hydroxy-5-ene- to 3-keto-4-ene- steroids with the formation of hydrogen peroxide. Here, we expressed 6xHis-tagged mature form of the extracellular cholesterol oxidase (ChO) from the actinobacterium Nocardioides simplex VKM Ac-2033D (55.6 kDa) in Escherichia coli cells. The recombinant enzyme (ChONs) was purified using affinity chromatography. ChONs proved to be functional towards cholesterol, cholestanol, phytosterol, pregnenolone, and dehydroepiandrosterone. Its activity depended on the structure and length of the aliphatic side chain at C17 atom of the steroid nucleus and was lower with pregnenolone and dehydroepiandrosterone. The enzyme was active in a pH range of 5.25÷6.5 with the pH optimum at 6.0. Kinetic assays and storage stability tests demonstrated that the characteristics of ChONs were generally comparable with or superior to those of commercial ChO from Streptomyces hygroscopicus (ChOSh). The results contribute to the knowledge on microbial ChOs and evidence that ChO from N. simplex VKM Ac-2033D is a promising agent for further applications.
Collapse
Affiliation(s)
- Victoria V Fokina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Mikhail V Karpov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Vyacheslav V Kollerov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Eugeny Yu Bragin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Dmitry O Epiktetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Alexey V Sviridov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Alexey V Kazantsev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Andrey A Shutov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Marina V Donova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
16
|
Biocatalytic System Made of 3D Chitin, Silica Nanopowder and Horseradish Peroxidase for the Removal of 17α-Ethinylestradiol: Determination of Process Efficiency and Degradation Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041354. [PMID: 35209143 PMCID: PMC8876220 DOI: 10.3390/molecules27041354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
Abstract
The occurrence of 17α-ethinylestradiol (EE2) in the environment and its removal have drawn special attention from the scientific community in recent years, due to its hazardous effects on human and wildlife around the world. Therefore, the aim of this study was to produce an efficient enzymatic system for the removal of EE2 from aqueous solutions. For the first time, commercial silica nanopowder and 3D fibrous chitinous scaffolds from Aplysina fistularis marine sponge were used as supports for horseradish peroxidase (HRP) immobilization. The effect of several process parameters onto the removal mechanism of EE2 by enzymatic conversion and adsorption of EE2 were investigated here, including system type, pH, temperature and concentrations of H2O2 and EE2. It was possible to fully remove EE2 from aqueous solutions using system SiO2(HRP)–chitin(HRP) over a wide investigated pH range (5–9) and temperature ranges (4–45 °C). Moreover, the most suitable process conditions have been determined at pH 7, temperature 25 °C and H2O2 and EE2 concentrations equaling 2 mM and 1 mg/L, respectively. As determined, it was possible to reuse the nanoSiO2(HRP)–chitin(HRP) system to obtain even 55% EE2 degradation efficiency after five consecutive catalytic cycles.
Collapse
|
17
|
Miao Q, Zhang C, Zhou S, Meng L, Huang L, Ni Y, Chen L. Immobilization and Characterization of Pectinase onto the Cationic Polystyrene Resin. ACS OMEGA 2021; 6:31683-31688. [PMID: 34869992 PMCID: PMC8637955 DOI: 10.1021/acsomega.1c04374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, the immobilization of free pectinase onto polystyrene resin beads via crosslinking with glutaraldehyde was investigated. The immobilized pectinase was characterized by Fourier transform infrared spectroscopy and confocal laser scanning microscopy. After optimizing the immobilization conditions, the optimum pH of immobilized pectinase shifted from 8.0 to 8.5 and the optimum temperature shifted from 45 to 60 °C, showing its improved stability to temperature and pH compared with the free pectinase. The Michaelis-Menten constant K m value of free and immobilized pectinase was determined to be 1.95 and 5.36 mM, respectively. The storage stability of immobilized pectinase was demonstrated with 36.8% of the initial activity preserved after 30 days at 25 °C. The reusability of the immobilized pectinase activity was 54.6% of its initial activity after being recycled six times. Therefore, based on the findings mentioned above, it can be inferred that this simple immobilization technique for pectinase appears to be promising for industrial applications.
Collapse
Affiliation(s)
- Qingxian Miao
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University
of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chen Zhang
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Shuai Zhou
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Lingchao Meng
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Liulian Huang
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Yonghao Ni
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
- Limerick
Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Lihui Chen
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Immobilization of a peroxidase from Moringa oleifera Lam. roots (MoPOX) on chitosan beads enhanced the decolorization of textile dyes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Bilal M, Cheng H, González-González RB, Parra-Saldívar R, Iqbal HM. Bio-applications and biotechnological applications of nanodiamonds. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1016/j.jmrt.2021.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Morshed MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. CHEMOSPHERE 2021; 279:130481. [PMID: 33894516 DOI: 10.1016/j.chemosphere.2021.130481] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The immobilization of biocatalysts or other bioactive components often means their transformation from a soluble to an insoluble state by attaching them to a solid support material. Various types of fibrous textiles from both natural and synthetic sources have been studied as suitable support material for biocatalysts immobilization. Strength, inexpensiveness, high surface area, high porosity, pore size, availability in various forms, and simple preparation/functionalization techniques have made textiles a primary choice for various applications. This led to the concept of a new domain called-biocatalysts immobilization on textiles. By addressing the growing advancement in biocatalysts immobilization on textile, this study provides the first detailed overview on this topic based on the terms of preparation, progress, and application in wastewater treatment. The fundamental reason behind the necessity of biocatalysts immobilized textile as well as the potential preparation methods has been identified and discussed. The overall progress and performances of biocatalysts immobilized textile have been scrutinized and summarized based on the form of textile, catalytic activity, and various influencing factors. This review also highlighted the potential challenges and future considerations that can enhance the pervasive use of such immobilized biocatalysts in various sustainable and green chemistry applications.
Collapse
Affiliation(s)
- Mohammad Neaz Morshed
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden; Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France; College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Nemeshwaree Behary
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Nabil Bouazizi
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Vincent A Nierstrasz
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden.
| |
Collapse
|
21
|
Evaluating the activity and stability of sonochemically produced hemoglobin-copper hybrid nanoflowers against some metallic ions, organic solvents, and inhibitors. J Biosci Bioeng 2021; 132:327-336. [PMID: 34334311 DOI: 10.1016/j.jbiosc.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023]
Abstract
The disadvantage of the conventional protein-inorganic hybrid nanoflower production method is the long incubation period of the synthesis method. This period is not suitable for practical industrial use. Herein, protein-inorganic hybrid nanoflowers were synthesized using hemoglobin and copper ion by fast sonication method for 10 min. The synthesized nanoflowers were characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fouirer-transform infrared spectroscopy. The activity and stability of the nanoflowers in the presence of different metal ions, organic solvents, inhibitors, and storage conditions were also evaluated by comparing with free hemoglobin. According to obtained results, the optimum pH and temperatures of both hybrid nanoflower and free hemoglobin were pH 5 and 40 °C, respectively. At all pH levels, nanoflower was more stable than free protein and it was also more stable than the free hemoglobin at temperatures ranging between 50 °C and 80 °C. The free protein lost more than half of its activity in the presence of acetone, benzene, and N,N-dimethylformamide, while the hybrid nanoflower retained more than 70% of its activity for 2 h at 40 °C. The hybrid nanoflower activity was essentially increased in the presence of Ca2+, Zn2+, Fe2+, Cu2+ and Ni2+ (132%, 161%, 175%, 185% and 106%, respectively) at 5 mM concentration. The nanoflower retained more than 85% of its initial activity in the presence of all inhibitors. In addition, it retained all its activity for 3 days under different storage conditions, unlike free hemoglobin. The results demonstrated that new hybrid nanoflowers may be promising in different biotechnological applications such as catalytic biosensors and environmental or industrial catalytic processes.
Collapse
|
22
|
Abstract
Nanoparticles have the advantage of a superior surface area to volume ratio, and thus such materials are useful for enzyme immobilization. A silver nanoparticle coated cotton fabric (AgNp-CF) is used to immobilize camel liver catalase in the present work. The effect of loading levels of AgNp inside cotton fabrics on the immobilization of catalase was investigated. The results revealed that a 6 mL loading level of AgNp precursor (silver nitrate, 2 mM) at pH 8 showed the maximum immobilization efficiency (76%). The morphological properties of the cotton fabric (CF), AgNp-CF and AgNp-CF-catalase were characterized by SEM. The reusability of the immobilized enzyme was tested over ten reuses to show a 67% retained function of its initial activity. Compared with the soluble enzyme’s working pH (6.5), a rather broader working pH (6.5–7.0) was observed for the immobilized catalase. Additionally, the optimum working temperature increased from 30 for the soluble enzyme to 40 °C for the immobilized one, indicating thermal stability. The free and immobilized catalase enzyme’s Km values were 22.5 and 25 mM H2O2, respectively, reflecting the enzyme’s effective properties. The inhibitory effect of metal ions on the enzyme activity was higher toward soluble catalase than the immobilized catalase. This work has developed a method for immobilizing catalase to be useful for several applications.
Collapse
|
23
|
Wei B, Xu H, Cheng L, Yuan Q, Liu C, Gao H, Liang H. Highly Selective Entrapment of His-Tagged Enzymes on Superparamagnetic Zirconium-Based MOFs with Robust Renewability to Enhance pH and Thermal Stability. ACS Biomater Sci Eng 2021; 7:3727-3736. [PMID: 34291917 DOI: 10.1021/acsbiomaterials.1c00780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-organic frameworks (MOFs), as a kind of poriferous nanoparticle, are promising candidates for enzyme immobilization to enhance their stability and reusability. However, most MOFs could not specifically immobilize enzymes and regenerate easily, which inevitably leads to serious high consumption and environmental pollution. In this study, renewable and magnetic MOFs were first constructed to specially immobilize His-tagged enzymes from the cell lysates without purification. The immobilized β-glucuronidase exhibited wider pH adaptability and temperature stability. The relative activity of immobilized β-glucuronidase was still maintained at ∼80% after eight cycles. Importantly, after simple treatment, the immobilization capacity of regenerated MOFs after simple treatment was restored to more than 90% in the first three times. The specific magnetic MOFs were proven to be an efficient and renewable platform for one-step immobilization and purification of His-tagged enzymes, showing great potential in industrial applications of nanotechnology and biocatalysis.
Collapse
Affiliation(s)
- Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haichang Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Leiyu Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Changxia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huiling Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
24
|
Recent Advances in Enzymes for the Bioremediation of Pollutants. Biochem Res Int 2021; 2021:5599204. [PMID: 34401207 PMCID: PMC8364428 DOI: 10.1155/2021/5599204] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, pollution of the environment is a huge problem for humans and other organisms' health. Conventional methods of pollutant removal like membrane filtration or ion exchange are not efficient enough to lower the number of pollutants to standard levels. Biological methods, because of their higher efficiency and biocompatibility, are preferred for the remediation of pollutants. These cost-effective and environment-friendly methods of reducing pollutants are called bioremediation. In bioremediation methods, enzymes play the most crucial role. Enzymes can remedy different types of organic and inorganic pollutants, including PAHs, azo dyes, polymers, organocyanides, lead, chromium, and mercury. Different enzymes isolated from various species have been used for the bioremediation of pollutants. Discovering new enzymes and new subtypes with specific physicochemical characteristics would be a promising way to find more efficient and cost-effective tools for the remediation of pollutants.
Collapse
|
25
|
El-Naggar ME, Abdel-Aty AM, Wassel AR, Elaraby NM, Mohamed SA. Immobilization of horseradish peroxidase on cationic microporous starch: Physico-bio-chemical characterization and removal of phenolic compounds. Int J Biol Macromol 2021; 181:734-742. [PMID: 33811934 DOI: 10.1016/j.ijbiomac.2021.03.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022]
Abstract
In the present study, two different modified starches; microporous starch (MPS) and cationic microporous starch (CMPS) were synthesized. The granules of MPS that distributed regularly were destroyed after the etherification reaction. The data depicted that the immobilization of horseradish peroxidase (HRP) on CMPS revealed highest immobilization efficiency (86%) at 100 mg of CMPS at pH = 6.0 and 100 units of enzyme. After 10 reuses of the CMPS-HRP, it retained 66% of initial activity. The soluble HRP showed broad pH optimum of 6.0-7.0, which changed to sharp pH = 6.0 for CMPS-HRP. Soluble-HRP and CMPS-HRP showed temperature optima at 30 °C and 40 °C, respectively. The CMPS-HRP showed high thermal stability up to 50 °C compared to the soluble HRP (40 °C). The Km values of soluble HRP and CMPS-HRP were 6.6 and 10.8 mM for H2O2 and 34 and 41.6 mM for guaiacol, respectively. CMPS-HRP showed higher affinity toward various substrates than the soluble-HRP. CMPS-HRP showed more resistance against heavy metals, urea, isopropanol, Triton X-100 and trypsin than soluble enzyme. The CMPS-HRP showed higher ability to remove phenol and p-chlorophenol compared to soluble-HRP.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed R Wassel
- Electron Microscope and Thin Films Department, Physics Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
26
|
Jankowska K, Zdarta J, Grzywaczyk A, Degórska O, Kijeńska-Gawrońska E, Pinelo M, Jesionowski T. Horseradish peroxidase immobilised onto electrospun fibres and its application in decolourisation of dyes from model sea water. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Farhadi S, Riahi-Madvar A, Sargazi G, Mortazavi M. Immobilization of Lepidium draba peroxidase on a novel Zn-MOF nanostructure. Int J Biol Macromol 2021; 173:366-378. [PMID: 33453257 DOI: 10.1016/j.ijbiomac.2020.12.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022]
Abstract
In the present study, ultrasound irradiation was utilized to synthesize a novel zinc metal-organic framework (MOF). Scanning electron microscopic images, exhibited homogenous morphology with a nano-sized distribution of the Zn-MOF structure as also confirmed by X-ray diffraction patterns. Following, physical immobilization of Lepidium draba peroxidase (LDP) were optimized on the Zn-MOF in phosphate buffer (50 mM, pH 6.5), ratio amount of MOF/enzyme; 7/1 after shaking for 15 min at 25 °C, with high protein loading of 109.9 mg/g and immobilization yield of 93.3%. Immobilized enzyme (IE) exhibited more than 330% enhanced specific activity and also exhibited more than 150% specific affinity to its substrate (3,3',5,5'-tetramethylbenzidine) with respect to the free enzyme (FE). Optimum temperature of the IE was obtained at 20 °C while its was 25 °C for the FE, and thermostability of the IE augmented at temperature of 30 °C and 40 °C by the factors of 104 and 108% respectively. pH stability under neutral and basic condition and storage stability of the IE improved with respect to the FE as well as its structural stability (Tm; 73 °C for IE vs. 63 °C for FE). Furthermore, immobilization is accompanied with alteration on the enzyme structure as revealed by the intrinsic and extrinsic fluorescence spectra.
Collapse
Affiliation(s)
- Soudabeh Farhadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Riahi-Madvar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, Kosar University of Bojnord, Bojnord, Iran.
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
28
|
Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe 3O 4/nylon composite nanoparticles using novel coaxial electrospraying process. Int J Biol Macromol 2021; 172:270-280. [PMID: 33418049 DOI: 10.1016/j.ijbiomac.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
Enzyme immobilization can increase enzyme reusability to reduce cost of industrial production. Ginkgo biloba leaf extract is commonly used for medical purposes, but it contains ginkgolic acid, which has negative effects on human health. Here, we report a novel approach to solve the problem by degrading the ginkgolic acid with immobilized-laccase, where core/shell composite nanoparticles prepared by coaxial electrospraying might be first applied to enzyme immobilization. The core/shell Fe3O4/nylon 6,6 composite nanoparticles (FNCNs) were prepared using one-step coaxial electrospraying and can be simply recovered by magnetic force. The glutaraldehyde-treated FNCNs (FNGCNs) were used to immobilize laccase. As a result, thermal stability of the free laccase was significantly improved in the range of 60-90 °C after immobilization. The laccase-immobilized FNGCNs (L-FNGCNs) were applied to degrade the ginkgolic acids, and the rate constants (k) and times (τ50) were ~0.02 min-1 and lower than 39 min, respectively, showing good catalytic performance. Furthermore, the L-FNGCNs exhibited a relative activity higher than 0.5 after being stored for 21 days or reused for 5 cycles, showing good storage stability and reusability. Therefore, the FNGCNs carrier was a promising enzyme immobilization system and its further development and applications were of interest.
Collapse
|
29
|
Bilal M, Barceló D, Iqbal HMN. Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142360. [PMID: 33370916 DOI: 10.1016/j.scitotenv.2020.142360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 02/05/2023]
Abstract
High catalytic efficiency, stereoselectivity, and sustainability outcomes of enzymes entice chemists for considering biocatalytic transformations to supplant conventional synthetic routes. As a green and versatile enzyme, horseradish peroxidase (HRP)-based enzymatic catalysis has been widely employed in a range of biological and chemical transformation processes. Nevertheless, like many other enzymes, HRP is likely to denature or destabilize in harsh realistic conditions due to its intrinsic fragile nature, which results in inevitably shortened lifespan and immensely high bioprocess cost. Enzyme immobilization has proven as a prospective strategy for improving their biocatalytic performance in continuous industrial processes. Nanostructured materials with huge accessible surface area, abundant porous structures, exceptional functionalities, and high chemical and mechanical stability have recently garnered intriguing research interests as novel kinds of supporting matrices for HRP immobilization. Many reported immobilized biocatalytic systems have demonstrated high catalytic performances than that to the free form of enzymes, such as enhanced enzyme efficiency, selectivity, stability, and repeatability due to the protective microenvironments provided by nanostructures. This review delineates an updated overview of HRP immobilization using an array of nanostructured materials. Furthermore, the general physicochemical aspects, improved catalytic attributes, and the robust practical implementations of engineered HRP-based catalytic cues are also discussed with suitable examples. To end, concluding remarks, challenges, and worthy suggestions/perspectives for future enzyme immobilization are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Damiá Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
30
|
Courth K, Binsch M, Ali W, Ingenbosch K, Zorn H, Hoffmann-Jacobsen K, Gutmann JS, Opwis K. Immobilization of peroxidase on textile carrier materials and their application in the bleaching of colored whey. J Dairy Sci 2020; 104:1548-1559. [PMID: 33309341 DOI: 10.3168/jds.2019-17110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/19/2020] [Indexed: 11/19/2022]
Abstract
Textiles represent promising support materials for enzymes. The goal of the present work was to investigate the immobilization of commercial peroxidase on a polyester needle felt and the repeated use in the gentle degradation of norbixin in whey from dairy cheese as a practical application. High enzyme loads were obtained by a 2-step immobilization procedure. First, the number of functional groups on the textile surface was increased by a modification with amino-functional polyvinylamine. Second, the enzyme was immobilized by using 2 types of crosslinking agents. Due to the iron content of peroxidase, inductively coupled plasma-optical emission spectrometry was used for the quantitative determination of the enzyme load on the textile. The enzyme activity was evaluated using common 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulfonic acid) assay for peroxidases. By the variation of enzyme input and crosslinker concentration, a maximal enzyme load of 80 mg/g of textile was achieved, and a maximum specific activity of 57 U/g of textile. For the visualization of the enzyme on the fiber surface, fluorescence microscopy as well as scanning probe microscopy were used. The immobilized peroxidase showed significant activity, even after 50 reuse cycles. In addition, the potential of the new support and enzyme combination in commercial whey bleaching was demonstrated successfully on a 10-L scale.
Collapse
Affiliation(s)
- K Courth
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany
| | - M Binsch
- Justus Liebig University, Food Chemistry and Food Biotechnology, 35392 Giessen, Germany
| | - W Ali
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; University Duisburg-Essen, Institute of Physical Chemistry and CENIDE (Center for Nanointegration), 45117 Essen, Germany
| | - K Ingenbosch
- Niederrhein University of Applied Sciences, Department of Chemistry, Krefeld, Germany
| | - H Zorn
- Justus Liebig University, Food Chemistry and Food Biotechnology, 35392 Giessen, Germany
| | - K Hoffmann-Jacobsen
- Niederrhein University of Applied Sciences, Department of Chemistry, Krefeld, Germany
| | - J S Gutmann
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; University Duisburg-Essen, Institute of Physical Chemistry and CENIDE (Center for Nanointegration), 45117 Essen, Germany
| | - K Opwis
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany.
| |
Collapse
|
31
|
Almulaiky YQ, Khalil NM, El-Shishtawy RM, Altalhi T, Algamal Y, Aldhahri M, Al-Harbi SA, Allehyani ES, Bilal M, Mohammed MM. Hydroxyapatite-decorated ZrO 2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. Int J Biol Macromol 2020; 167:299-308. [PMID: 33275970 DOI: 10.1016/j.ijbiomac.2020.11.150] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Herein, the immobilization of α-amylase onto hydroxyapatite (HA) and hydroxyapatite-decorated ZrO2 (10%wt) (HA-ZrO2) nanocomposite were investigated. The immobilization yield was 69.7% and 84% respectively. The structural differences were characterized using X-Ray diffraction, attenuated total reflectance-Fourier transform infrared spectra, Raman, and scanning electron microscope. After 10 repeated cycles, the residual activity of immobilized α-amylase onto HA and HA-ZrO2 nanocomposite was 46% and 70%, respectively. The storage stability was recorded to be 27%, 50% and 69% from its initial activity in the case of free and immobilized enzyme onto HA and HA-ZrO2 nanocomposite, respectively after 8 weeks. The pH-activity profile and temperature revealed pH 6.0 and temperature 50 °C as the optimal values of free α-amylase, while the optimum values for α-amylase on HA and HA-ZrO2 was shifted to pH 6.5 and 60 °C after immobilization. The immobilized α-amylase onto HA-ZrO2 showed comparatively higher catalytic activity than the free α-amylase. The Km value after the immobilization process onto HA was 2.1 folds highly than that of the free enzyme. In conclusion, it can be inferred that HA-ZrO2 is more sustainable and beneficial support for enzyme immobilization and it represents promising supports for different uses of α-amylase in the biomedical applications.
Collapse
Affiliation(s)
- Yaaser Q Almulaiky
- University of Jeddah, College of Sciences and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen.
| | - N M Khalil
- University of Jeddah, College of Sciences and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia; Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, 21589, Saudi Arabia; Dyeing, Printing, and Textile Auxiliaries Department, Textile Research Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yousif Algamal
- University of Jeddah, College of Sciences and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science & Technology, Omdurman Islamic University. Sudan
| | - Musab Aldhahri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, 21589, Saudi Arabia; Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami A Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Esam S Allehyani
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mustafa M Mohammed
- Department of Mathematics, College of Sciences & Arts - Khulais, University of Jeddah, Jeddah, Saudi Arabia; Department of statistics, Faculty of science, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
32
|
Ross ML, Kunkel J, Long S, Asuri P. Combined Effects of Confinement and Macromolecular Crowding on Protein Stability. Int J Mol Sci 2020; 21:ijms21228516. [PMID: 33198190 PMCID: PMC7697604 DOI: 10.3390/ijms21228516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
Confinement and crowding have been shown to affect protein fates, including folding, functional stability, and their interactions with self and other proteins. Using both theoretical and experimental studies, researchers have established the independent effects of confinement or crowding, but only a few studies have explored their effects in combination; therefore, their combined impact on protein fates is still relatively unknown. Here, we investigated the combined effects of confinement and crowding on protein stability using the pores of agarose hydrogels as a confining agent and the biopolymer, dextran, as a crowding agent. The addition of dextran further stabilized the enzymes encapsulated in agarose; moreover, the observed increases in enhancements (due to the addition of dextran) exceeded the sum of the individual enhancements due to confinement and crowding. These results suggest that even though confinement and crowding may behave differently in how they influence protein fates, these conditions may be combined to provide synergistic benefits for protein stabilization. In summary, our study demonstrated the successful use of polymer-based platforms to advance our understanding of how in vivo like environments impact protein function and structure.
Collapse
|
33
|
Melo MN, Pereira FM, Rocha MA, Ribeiro JG, Diz FM, Monteiro WF, Ligabue RA, Severino P, Fricks AT. Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: A comparative study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Ultra-Thin 2D CuO Nanosheet for HRP Immobilization Supported by Encapsulation in a Polymer Matrix: Characterization and Dye Degradation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03289-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Alatawi FS, Elsayed NH, Monier M. Immobilization of Horseradish Peroxidase on Modified Nylon‐6 Fibers. ChemistrySelect 2020. [DOI: 10.1002/slct.202000818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Fatema S. Alatawi
- Biochemistry DepartmentFaculty of ScienceUniversity of Tabuk Tabuk 71421 Saudi Arabia
| | - Nadia H. Elsayed
- Department of ChemistryUniversity college-AlwajhUniversity of Tabuk Tabuk Saudi Arabia
- Department of Polymers and PigmentsNational Research Center, Dokki Cairo 12311 Egypt
| | - Mohammed Monier
- Chemistry DepartmentFaculty of ScienceMansoura University Mansoura Egypt
- Chemistry DepartmentFaculty of ScienceTaibah University Yanbu Branch Yanbu El-Bahr Saudi Arabia
| |
Collapse
|
36
|
Kaçar C, Erden PE. An amperometric biosensor based on poly(L-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase-modified glassy carbon electrode for the determination of L-ascorbic acid. Anal Bioanal Chem 2020; 412:5315-5327. [PMID: 32533225 DOI: 10.1007/s00216-020-02747-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
An amperometric L-ascorbic acid biosensor utilizing ascorbate oxidase (AOx) immobilized onto poly(L-aspartic acid) (P(L-Asp)) film was fabricated on carbon nanofiber (CNF) and nanodiamond particle (ND)-modified glassy carbon electrode (GCE). Effects of AOx, ND, and CNF amounts were investigated by monitoring the response currents of the biosensor at different amounts of AOx, ND, and CNF. The electropolymerization step of L-aspartic acid on CNF-ND/GCE surface was also optimized. Scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques were used to enlighten the modification steps of the biosensor. The effects of pH and applied potential were studied in detail to achieve the best analytical performance. Under optimized experimental conditions, the AOx/P(L-Asp)/ND-CNF/GCE biosensor showed a linear response to L-ascorbic acid in the range of 2.0 × 10-7-1.8 × 10-3 M with a detection limit of 1.0 × 10-7 M and sensitivity of 105.0 μAmM-1 cm-2. The novel biosensing platform showed good reproducibility and selectivity. The strong interaction between AOx and the P(L-Asp)/ND-CNF matrix was revealed by the high repeatability (3.4%) and good operational stability. The AOx/P(L-Asp)/ND-CNF/GCE biosensor was successfully applied to the determination of L-ascorbic acid in vitamin C effervescent tablet and pharmaceutical powder containing ascorbic acid with good results, which makes it a promising approach for quantification of L-ascorbic acid. Graphical abstract.
Collapse
Affiliation(s)
- Ceren Kaçar
- Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| | - Pınar Esra Erden
- Department of Chemistry, Polatlı Faculty of Science and Arts, Ankara Hacı Bayram Veli University, 06900, Ankara, Turkey.
| |
Collapse
|
37
|
Almulaiky YQ, Almulaiky YQ. Peroxidase from Coleus Forskohlii: Purification and Biochemical Characterization. ACTA ACUST UNITED AC 2020. [DOI: 10.14302/issn.2379-7835.ijn-19-3139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, a peroxidase from new source was purified using ion exchange and gel filtration techniques. The recovery for peroxidase activity was 19% with 11-fold purification and specific activity of 749 unit/mg protein. Purified peroxidase demonstrated a molecular mass of 39 kDa using gel filtration and was confirmed as a single band on SDS-PAGE. The purified peroxidase revealed a broad optimum pH activity at 6.0-6.5 and 50°C temperature. The kinetic parameters for purified peroxidase toward H2O2 and guaiacol as substrates were found to be Km = 3.355, 5.395 mM, Kcat = 99.52, 79.56 s-1 and Vmax =1.531, 1.242 µmole ml-1 min-1, respectively. The catalytic efficiency (kcat/Km) of the purified peroxidase was 14.75 and 29.66 s−1 mM−1 for guaiacol and H2O2, respectively. Peroxidase activity was observed to be enhanced by Cu2+, Co2+, Ni2+ and inhibited in the presence of Sn2+, Al3+, Hg2+, NaN3, EDTA and urea. Characterization showed that peroxidase purified from C. forskohlii has the ability to be used for food industrial applications.
Collapse
Affiliation(s)
- Yaaser Q. Almulaiky
- Chemistry Department, Faculty of Sciences and Arts, University of Jeddah, Khulais, P.O. Box 355, Khulais 21921, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|