1
|
Ansari JA, Malik JA, Ahmed S, Manzoor M, Ahemad N, Anwar S. Recent advances in the therapeutic applications of selenium nanoparticles. Mol Biol Rep 2024; 51:688. [PMID: 38796570 PMCID: PMC11127871 DOI: 10.1007/s11033-024-09598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Selenium nanoparticles (SeNPs) are an appealing carrier for the targeted delivery. The selenium nanoparticles are gaining global attention because of the potential therapeutic applications in several diseases e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD), asthma, liver, and various autoimmune disorders like psoriasis, cancer, diabetes, and a variety of infectious diseases. Despite the fact still there is no recent literature that summarises the therapeutic applications of SeNPs. There are some challenges that need to be addressed like finding targets for SeNPs in various diseases, and the various functionalization techniques utilized to increase SeNP's stability while facilitating wide drug-loaded SeNP distribution to tumor areas and preventing off-target impacts need to focus on understanding more about the therapeutic aspects for better understanding the science behind it. Keeping that in mind we have focused on this gap and try to summarize all recent key targeted therapies for SeNPs in cancer treatment and the numerous functionalization strategies. We have also focused on recent advancements in SeNP functionalization methodologies and mechanisms for biomedical applications, particularly in anticancer, anti-inflammatory, and anti-infection therapeutics. Based on our observation we found that SeNPs could potentially be useful in suppressing viral epidemics, like the ongoing COVID-19 pandemic, in complement to their antibacterial and antiparasitic uses. SeNPs are significant nanoplatforms with numerous desirable properties for clinical translation.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, (BAMU, Aurangabad), India
| | - Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Muntaha Manzoor
- Department of Clinical Pharmacology, Sher - i - Kashmir Institute of Medical Sciences, Soura, Srinagar, India
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, DE, 47500, Malaysia.
| | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
2
|
ALRashdi BM, Hussein MM, Mohammed RM, Abdelhamed NW, Asaad ME, Alruwaili M, Alrashidi SM, Habotta OA, Abdel Moneim AE, Ramadan SS. Turmeric Extract-loaded Selenium Nanoparticles Counter Doxorubicin-induced Hepatotoxicity in Mice via Repressing Oxidative Stress, Inflammatory Cytokines, and Cell Apoptosis. Anticancer Agents Med Chem 2024; 24:443-453. [PMID: 38204261 DOI: 10.2174/0118715206274530231213104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is an antitumor anthracycline used to treat a variety of malignancies; however, its clinical use is associated with noticeable hepatotoxicity. Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects. METHODS Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX. RESULTS Our findings have unveiled a remarkable liver attenuating effect in DOX-injected mice post-treated with Tur-SeNPs. High serum levels of ALT, AST, ALP, and total bilirubin induced by DOX were significantly decreased by Tur-SeNPs therapy. Furthermore, Tur-SeNPs counteracted DOX-caused hepatic oxidative stress, indicated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and mRNA expression levels of Nrf-2. Noteworthily, decreased hepatic IL-1β, TNF-α, and NF-κB p65 levels in addition to downregulated iNOS gene expression in Tur-SeNPs-treated mice have indicated their potent antiinflammatory impact. Post-treatment with Tur-SeNPs also mitigated the hepatic apoptosis evoked by DOX injection. A liver histological examination confirmed the biochemical and molecular findings. CONCLUSIONS In brief, the outcomes have demonstrated Tur loaded with nanoselenium to successfully mitigate the liver damage induced by DOX via blocking oxidative stress, and inflammatory and apoptotic signaling.
Collapse
Affiliation(s)
- Barakat M ALRashdi
- Department of Biology, College of Science, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohamed M Hussein
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rawan M Mohammed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nada W Abdelhamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maran E Asaad
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Saad M Alrashidi
- Consultant Radiation Oncology, Comprehensive Cancer Centre, King Fahad Medical City & College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
3
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
4
|
ALRashdi B, Mohamed R, Mohamed A, Samoul F, Mohamed M, Moussa M, Alrashidi S, Dawod B, Habotta O, Abdel Moneim A, Ramadan S. Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress and cell death in mice kidney. Biosci Rep 2023; 43:BSR20231130. [PMID: 37902021 PMCID: PMC10643052 DOI: 10.1042/bsr20231130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 10/31/2023] Open
Abstract
Cisplatin (CDDP) is a commonly prescribed chemotherapeutic agent; however, its associated nephrotoxicity limits its clinical efficacy and sometimes requires discontinuation of its use. The existing study was designed to explore the reno-therapeutic efficacy of turmeric (Tur) alone or conjugated with selenium nanoparticles (Tur-SeNPs) against CDDP-mediated renal impairment in mice and the mechanisms underlying this effect. Mice were orally treated with Tur extract (200 mg/kg) or Tur-SeNPs (0.5 mg/kg) for 7 days after administration of a single dose of CDDP (5 mg/kg, i.p.). N-acetyl cysteine NAC (100 mg/kg) was used as a standard antioxidant compound. The results revealed that Tur-SeNPs counteracted CDDP-mediated serious renal effects in treated mice. Compared with the controls, Tur or Tur-SeNPs therapy remarkably decreased the kidney index along with the serum levels of urea, creatinine, Kim-1, and NGAL of the CDDP-injected mice. Furthermore, Tur-SeNPs ameliorated the renal oxidant status of CDDP group demonstrated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and gene expression levels of HO-1. Noteworthy, lessening of renal inflammation was exerted by Tur-SeNPs via lessening of IL-6 and TNF-α besides down-regulation of NF-κB gene expression in mouse kidneys. Tur-SeNPs treatment also restored the renal histological features attained by CDDP challenge and hindered renal apoptosis through decreasing the Bax levels and increasing Bcl-2 levels. Altogether, these outcomes suggest that the administration of Tur conjugated with SeNPs is effective neoadjuvant chemotherapy to guard against the renal adverse effects that are associated with CDDP therapy.
Collapse
Affiliation(s)
- Barakat M. ALRashdi
- Department of Biology, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Roaya A. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amal H. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Feryal A. Samoul
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mazen I. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohsen M. Moussa
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Saad M. Alrashidi
- Consultant Radiation Oncology, Comprehensive Cancer Centre, King Fahad Medical City and College of medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Bassel Dawod
- McMaster Children’s Hospital, Faculty of Health Sciences, Hamilton, Ontario, Canada
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S. Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Gheybi F, Khooei A, Hoseinian A, Doagooyan M, Houshangi K, Jaafari MR, Papi A, Khoddamipour Z, Sahebkar A, Alavizadeh SH. Alleviation of acetaminophen-induced liver failure using silibinin nanoliposomes: An in vivo study. Biochem Biophys Res Commun 2023; 676:103-108. [PMID: 37506470 DOI: 10.1016/j.bbrc.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Acetaminophen (Act) overdose is a known inducer of liver failure in both children and adults. Cell annihilation ensues following acetaminophen overdose and its toxic metabolites by depleting cellular GSH storage and increasing ROS levels. Silymarin extract and its major compound silibinin (SLB) possess robust antioxidant properties by inducing ROS elimination; however, low bioavailability and rapid metabolism limit their applications. Herein, we aimed at using SLB liposomes to combat acetaminophen-induced acute liver toxicity. METHODS We have developed a SLB-lipid complex to improve SLB loading efficiency within nanoliposome by using the lipid film method. Liposomes were characterized by using DLS and TEM analysis, and the release pattern, and toxicity profile on the normal cells as well as histopathological and serum analysis were investigated to reveal relevant enzyme activities in an animal model. RESULTS Data demonstrated that negatively-charged SLB liposomes of 115 nm had homogeneous spherical morphology, and entrapped a considerable quantity of SLB of almost 40%. Liposomes shows a favorable release pattern and were not toxic against NIH3T3 mouse fibroblast cells. The animal study revealed that treatment of mice with SLB nanoliposomes could significantly preserve liver function as revealed by the reduced levels of ALT and AST hepatic enzymes as well as ALP in the serum. Our data indicated that intraperitoneal administration of SLB Lip could significantly reduce ALT enzyme levels (p < 0.05) compared to N-acetylcysteine, while i.v administration resulted in no significant difference compared to control animals with no treatment. CONCLUSION The results of this study support the significant hepatoprotective effect of SLB nanoliposomes against acetaminophen-induced toxicity depending on the route of administration.
Collapse
Affiliation(s)
- Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khooei
- Department of Pathology, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Hoseinian
- Department of Pathology, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kebria Houshangi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Papi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoddamipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
7
|
Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioact Mater 2023; 22:141-167. [PMID: 36203963 PMCID: PMC9526023 DOI: 10.1016/j.bioactmat.2022.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there are no clinical drugs available to treat acute kidney injury (AKI). Given the high prevalence and high mortality rate of AKI, the development of drugs to effectively treat AKI is a huge unmet medical need and a research hotspot. Although existing evidence fully demonstrates that reactive oxygen and nitrogen species (RONS) burst at the AKI site is a major contributor to AKI progression, the heterogeneity, complexity, and unique physiological structure of the kidney make most antioxidant and anti-inflammatory small molecule drugs ineffective because of the lack of kidney targeting and side effects. Recently, nanodrugs with intrinsic kidney targeting through the control of size, shape, and surface properties have opened exciting prospects for the treatment of AKI. Many antioxidant nanodrugs have emerged to address the limitations of current AKI treatments. In this review, we systematically summarized for the first time about the emerging nanodrugs that exploit the pathological and physiological features of the kidney to overcome the limitations of traditional small-molecule drugs to achieve high AKI efficacy. First, we analyzed the pathological structural characteristics of AKI and the main pathological mechanism of AKI: hypoxia, harmful substance accumulation-induced RONS burst at the renal site despite the multifactorial initiation and heterogeneity of AKI. Subsequently, we introduced the strategies used to improve renal targeting and reviewed advances of nanodrugs for AKI: nano-RONS-sacrificial agents, antioxidant nanozymes, and nanocarriers for antioxidants and anti-inflammatory drugs. These nanodrugs have demonstrated excellent therapeutic effects, such as greatly reducing oxidative stress damage, restoring renal function, and low side effects. Finally, we discussed the challenges and future directions for translating nanodrugs into clinical AKI treatment. AKI is a common clinical acute syndrome with high morbidity and mortality but without effective clinical drug available. Hypoxia and accumulation of toxic substances are key pathological features of various heterogeneous AKI. Excessive RONS is the core of the pathological mechanism of AKI. The development of nanodrugs is expected to achieve successful treatment in AKI.
Collapse
|
8
|
Othman MS, Obeidat ST, Aleid GM, Al-Bagawi AH, Fehaid A, Habotta OA, Badawy MM, Elganzoury SS, Abdalla MS, Abdelfattah MS, Daiam MA, Abdel Moneim AE. Protective effect of Allium atroviolaceum-synthesized SeNPs on aluminum-induced brain damage in mice. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Abstract
This study evaluated the possible neuroprotective effect of Allium atroviolaceum extract (AaE)-synthesized selenium nanoparticles (SeNPs) on aluminum (Al)-induced neurotoxicity in mice, explaining the likely mechanisms. Mice were divided into five groups: G1, control; G2, AaE group that received AaE (200 mg/kg) for 4 weeks; and groups 3, 4, and 5 received AlCl3 (100 mg/kg) for 3 weeks. After that, G4 received AaE (200 mg/kg), and G5 received SeNPs-AaE (0.5 mg/kg) for another 1 week. Exposure to AlCl3 boosted oxidative damage in brain tissue as evidenced by a reduction in glutathione concentrations and other antioxidant enzymes along with increased lipid peroxidation and nitric oxide levels. There was also a rise in the concentrations of interleukin-1β, TNF-α, and cyclooxygenase-II activities. AlCl3-treated mice showed reduced brain-derived neurotrophic factor (BDNF) and dopamine levels, increased acetylcholinesterase (AChE) activity, and reduced Bcl-2, and Bax, and caspase-3 activities. Treatment with SeNPs-AaE significantly reduced markers of oxidative stress, inflammation, and apoptosis. In addition, in SeNPs-AaE-treated rats, levels of BDNF and dopamine were significantly increased along with a reduction in AChE as compared with the AlCl3 group. Therefore, our results indicate that SeNPs-AaE has a potential neuroprotective effect against Al-mediated neurotoxic effects because of its powerful antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory activities.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
- Biochemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA) , Giza , Egypt
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Ghada M. Aleid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Amal H. Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University , Dakahlia , Egypt
| | - Ola A. Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University , Dakahlia , Egypt
| | - Mohamed M. Badawy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University , Mansoura , Egypt
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Delta University for Science and Technology , Gamasa , Egypt
| | - Sara S. Elganzoury
- Chemistry Department, Faculty of Science, Helwan University , Cairo , Egypt
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University , Cairo , Egypt
| | | | - Mohamed A. Daiam
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College , Jeddah , Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University , Ismailia , Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University , Cairo , Egypt
| |
Collapse
|
9
|
Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/6176610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The last few decades have seen an overwhelming increase in the amount of research carried out on the use of inorganic nanoparticles. More fascinating is the tremendous progress made in the use of chalcogen and chalcogenide nanoparticles in cancer theranostics. These nanomaterials, which were initially synthesized through chemical methods, have now been efficiently produced using different plant materials. The paradigm shift towards the biogenic route of nanoparticle synthesis stems from its superior advantages of biosafety, eco-friendliness, and simplicity, among others. Despite a large number of reviews available on inorganic nanoparticle synthesis through green chemistry, there is currently a dearth of information on the green synthesis of chalcogens and chalcogenides for cancer research. Nanoformulations involving chalcogens such as sulfur, selenium, and tellurium and their respective chalcogenides have recently emerged as promising tools in cancer therapeutics and diagnosis. Similar to other inorganic nanoparticles, chalcogens and chalcogenides have been synthesized using plant extracts and their purified biomolecules. In this review, we provide an up-to-date discussion of the recent progress that has been made in the plant-mediated synthesis of chalcogens and chalcogenides with a special focus on their application in cancer theranostics.
Collapse
|
10
|
Yang T, Lee SY, Park KC, Park SH, Chung J, Lee S. The Effects of Selenium on Bone Health: From Element to Therapeutics. Molecules 2022; 27:392. [PMID: 35056706 PMCID: PMC8780783 DOI: 10.3390/molecules27020392] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis, characterized by low bone mass and a disruption of bone microarchitecture, is traditionally treated using drugs or lifestyle modifications. Recently, several preclinical and clinical studies have investigated the effects of selenium on bone health, although the results are controversial. Selenium, an important trace element, is required for selenoprotein synthesis and acts crucially for proper growth and skeletal development. However, the intake of an optimum amount of selenium is critical, as both selenium deficiency and toxicity are hazardous for health. In this review, we have systematically analyzed the existing literature in this field to determine whether dietary or serum selenium concentrations are associated with bone health. In addition, the mode of administration of selenium as a supplement for treating bone disease is important. We have also highlighted the importance of using green-synthesized selenium nanoparticles as therapeutics for bone disease. Novel nanobiotechnology will be a bridgehead for clinical applications of trace elements and natural products.
Collapse
Affiliation(s)
- Taeyoung Yang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (T.Y.); (S.-Y.L.)
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (T.Y.); (S.-Y.L.)
| | - Kyung-Chae Park
- Health Promotion Center, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13488, Korea;
| | - Sin-Hyung Park
- Department of Orthopaedic Surgery, Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon-si 14584, Korea;
| | - Jaiwoo Chung
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea;
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea;
| |
Collapse
|
11
|
Abu-Zeid EH, Abdel Fattah DM, Arisha AH, Ismail TA, Alsadek DM, Metwally MMM, El-Sayed AA, Khalil AT. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112424. [PMID: 34174736 DOI: 10.1016/j.ecoenv.2021.112424] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 05/07/2023]
Abstract
Nanotechnology is used in a wide range of applications, including medical therapies that precisely target disease prevention and treatment. The current study aimed firstly, to synthesize selenium nanoparticles (SeNPs) in an eco-friendly manner using Moringa oleifera leaf extract (MOLE). Secondly, to compare the protective effects of green-synthesized MOLE-SeNPs conjugate and MOLE ethanolic extract as remedies for melamine (MEL) induced nephrotoxicity in male rats. One hundred and five male Sprague Dawley rats were divided into seven groups (n = 15), including 1st control, 2nd MOLE (800 mg/kg BW), 3rd SeNPs (0.5 mg/kg BW), 4th MOLE-SeNPs (200 μg/kg BW), 5th MEL (700 mg/kg BW), 6th MEL+MOLE, and 7th MEL+MOLE SeNPs. All groups were orally gavaged day after day for 28 days. SeNPs and the colloidal SeNPs were characterized by TEM, SEM, and DLS particle size. SeNPs showed an absorption peak at a wavelength of 530 nm, spherical shape, and an average size between 3.2 and 20 nm. Colloidal SeNPs absorption spectra were recorded between 400 and 700 nm with an average size of 3.3-17 nm. MEL-induced nephropathic alterations represented by a significant increase in serum creatinine, urea, blood urea nitrogen (BUN), renal TNFα, oxidative stress-related indices, and altered the relative mRNA expression of apoptosis-related genes Bax, Caspase-3, Bcl2, Fas, and FasL. MEL-induced array of nephrotoxic morphological changes, and up-regulated immune-expression of proliferating cell nuclear antigen (PCNA) and proliferation-associated nuclear antigen Ki-67. Administration of MOLE or MOLE-SeNPs significantly reversed MEL-induced renal function impairments, oxidative stress, histological alterations, modulation in the relative mRNA expression of apoptosis-related genes, and the immune-expression of renal PCNA and Ki-67. Conclusively, the green-synthesized MOLE-SeNPs and MOLE display nephron-protective properties against MEL-induced murine nephropathy. This study is the first to report these effects which were more pronounced in the MOLE group than the green biosynthesized MOLE-SeNPs conjugate group.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt.
| | - Doaaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dina M Alsadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed A El-Sayed
- Department of Photochemistry, Industrial Chemical Division, National Research Centre, 33 EL Bohouthst., Dokki, Giza 12622, Egypt
| | - Amany T Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt
| |
Collapse
|
12
|
Al-Brakati A, Alsharif KF, Alzahrani KJ, Kabrah S, Al-Amer O, Oyouni AA, Habotta OA, Lokman MS, Bauomy AA, Kassab RB, Abdel Moneim AE. Using Green Biosynthesized Lycopene-Coated Selenium Nanoparticles to Rescue Renal Damage in Glycerol-Induced Acute Kidney Injury in Rats. Int J Nanomedicine 2021; 16:4335-4349. [PMID: 34234429 PMCID: PMC8254550 DOI: 10.2147/ijn.s306186] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose Selenium nanoparticles (SeNPs) have recently gained much attention in nanomedicine applications owing to their unique biological properties. Biosynthesis of SeNPs using nutraceuticals as lycopene (LYC) maximizes their stability and bioactivities. In this context, this study aimed to elucidate the renoprotective activity of SeNPs coated with LYC (LYC-SeNPs) in the acute kidney injury (AKI) model. Methods Rats were divided into six groups: control, AKI (glycerol-treated), AKI+sodium selenite (Na2SeO3; 0.5 mg/kg), AKI+LYC (10 mg/kg), AKI+LYC-SeNPs (0.5 mg/kg) and treated for 14 days. Results Glycerol treatment evoked significant increases in rhabdomyolysis-related markers (creatine kinase and LDH). Furthermore, relative kidney weight, Kim-1, neutrophil gelatinase-associated lipocalin (NGAL), serum urea, and creatinine in the AKI group were elevated. Glycerol-injected rats displayed declines in reduced glutathione level, and superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities, paralleled with downregulations in Nfe2l2 and Hmox-1 expressions and high renal MDA and NO contents. Glycerol-induced renal inflammation was evident by rises in TNF-α, IL-1β, IL-6, and upregulated Nos2 expression. Also, apoptotic (elevated caspase-3, Bax, and cytochrome-c with lowered Bcl-2) and necroptotic (elevated Pipk3 expression) changes were reported in damaged renal tissue. Co-treatment with Na2SeO3, LYC, or LYC-SeNPs restored the biochemical, molecular, and histological alterations in AKI. In comparison with Na2SeO3 or LYC treatment, LYC-SeNPs had the best nephroprotective profile. Conclusion Our findings authentically revealed that LYC-SeNPs co-administration could be a prospective candidate against AKI-mediated renal damage via antioxidant, anti-inflammatory, anti-apoptotic and anti-necroptotic activities.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Saeed Kabrah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm AlQura University, Makkah, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Atif Abdulwahab Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass, 52719, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
13
|
Inhibition of glutathione and s-allyl glutathione on pancreatic lipase: Analysis through in vitro kinetics, fluorescence spectroscopy and in silico docking. Int J Biol Macromol 2020; 160:623-631. [PMID: 32473219 DOI: 10.1016/j.ijbiomac.2020.05.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Inhibition of pancreatic lipase (PL) is considered one of the important therapeutic interventions against obesity. In the present study, the inhibition of porcine (mammalian) PL (PPL) by two tripeptides glutathione (GSH) and s-allyl glutathione (SAG) was studied. In vitro kinetic analysis was done to determine the inhibition of GSH and SAG against PPL. The binding of GSH and SAG with PPL was elucidated by fluorescence spectroscopy analysis. Docking and molecular dynamics (MD) simulation analysis was carried out to understand the intermolecular interaction between both GSH and SAG with PPL as well as human PL (HPL). Both GSH and SAG inhibited PPL in mixed non-competitive manner. The IC50 value for GSH and SAG against PPL was found to be 2.97 and 6.4 mM, respectively. Both GSH and SAG quenched the intrinsic fluorescence of PPL through static quenching that is through forming complex with the PPL. SAG and GSH interacted with amino acids involved in catalysis of both PPL and HPL. MD simulation showed interactions of SAG and GSH with both PPL and HPL were stable. These results would lead to the further studies and application of GSH and SAG against obesity through inhibition of PL.
Collapse
|
14
|
AlBasher G, Alfarraj S, Alarifi S, Alkhtani S, Almeer R, Alsultan N, Alharthi M, Alotibi N, Al-Dbass A, Abdel Moneim AE. Nephroprotective Role of Selenium Nanoparticles Against Glycerol-Induced Acute Kidney Injury in Rats. Biol Trace Elem Res 2020; 194:444-454. [PMID: 31264127 DOI: 10.1007/s12011-019-01793-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) is a clinical syndrome associated with the incidence of rhabdomyolysis (RM). The current study was carried out to evaluate whether selenium nanoparticles (SeNPs) can protect against the glycerol-induced AKI model. Rats were distributed into four equal groups (n = 7): the control group (G1), SeNPs group (G2), AKI group (G3), and SeNPs+AKI group (G4). Rats in G1 were intramuscularly injected with physiological saline (0.9% NaCl). Rats in G2 were gavaged with SeNPs (0.1 mg/kg) for 14 days. Rats in G3 were intramuscularly injected with 50% glycerol (10 ml/kg). Rats in G4 were administered with SeNPs for 14 days and then injected with glycerol, as in G3. Glycerol-injected rats showed a significant increase in the kidney relative weight, as well as in the serum urea, creatinine, Kim-1, and renal malondialdehyde, nitric oxide, TNF-α, IL-1β, cytochrome c, Bax, and caspase-3 levels. In addition, a significant decrease in glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase was recorded in the renal tissue. Selenium nanoparticles reduced the biochemical, molecular, and histological changes produced by glycerol. Overall, our results suggest that selenium nanoparticles could be used to protect against AKI development via antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Saleh Alfarraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkhtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alsultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mada Alharthi
- Department of Applied Medical Science, Collage of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia
| | - Nouf Alotibi
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
15
|
Sadalage PS, Nimbalkar MS, Sharma KKK, Patil PS, Pawar KD. Sustainable approach to almond skin mediated synthesis of tunable selenium microstructures for coating cotton fabric to impart specific antibacterial activity. J Colloid Interface Sci 2020; 569:346-357. [PMID: 32126347 DOI: 10.1016/j.jcis.2020.02.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Currently, the synthesis of nanostructured inorganic materials with tunable morphology is still a great challenge. In this study, almond skin extract was employed for the biogenic synthesis of selenium nanoparticles with tunable morphologies such as rods and brooms. The effects of various synthesis parameters on morphologies were investigated using UV-Visible spectroscopy and scanning electron microscopy (SEM) which indicated that selenium brooms (SeBrs) were best synthesized using almond skin extract and optimized conditions of SeO2, ascorbic acid, pH, incubation temperature and time. Based on these results, the mechanism of SeBrs synthesis is proposed as having involved four stages such as nucleation, self-assembly, Ostwald ripening, and decomposition. Further, the test of antibacterial activity together with minimum inhibitory concentrations and minimum bactericidal concentrations indicated the selective, specific and good activity against B. subtilis. In addition, in situ coating of SeBrs on cotton fabric and its investigation by SEM demonstrated successful coating. Evident from plate-based assay and study of growth kinetics, coated fabric exhibited excellent anti-B. subtilis activity which demonstrated that biogenic SeBrs can be employed to coat cotton fabrics that can be used in operation theatres to reduce the episodes of Bacillus related Bacteraemia.
Collapse
Affiliation(s)
| | | | - Kiran Kumar K Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Pramod S Patil
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
16
|
Green synthesized selenium nanoparticle as carrier and potent delivering agent of s-allyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and apoptosis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|