1
|
Wang S, Wang L, Shangguan J, Jiang A, Ren A. Research Progress on the Biological Activity of Ganoderic Acids in Ganoderma lucidum over the Last Five Years. Life (Basel) 2024; 14:1339. [PMID: 39459639 PMCID: PMC11509451 DOI: 10.3390/life14101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a traditional edible and medicinal mushroom in China. The main bioactive components in G. lucidum include triterpenoids, polysaccharides, steroids, and sterols. Ganoderic acids (GAs) are one of the most abundant triterpenoids found in G. lucidum, garnering significant attention from researchers in the fields of medicine and health care. We summarize the extensive studies on the physiological function of GAs in anti-cancer, anti-inflammatory, radiation protection, anti-aging, liver protection, anti-microbial, and neuroprotection areas, among others. This review provides a comprehensive overview of the recent advances in the bioactivities and pharmacological mechanisms of GAs, aiming to delineate the current research directions and the state of the art in this field. This analysis helps to rapidly identify new bioactivities of GAs and understand their mechanisms, leading to more effective treatments for various diseases.
Collapse
Affiliation(s)
| | | | | | - Ailiang Jiang
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| |
Collapse
|
2
|
Ma F, Wang J, Jiang W, Luo J, Yang R, Zhang L, Han C. Ganoderic Acid A: A Potential Natural Neuroprotective Agent for Neurological Disorders: A Review. Int J Med Mushrooms 2024; 26:11-23. [PMID: 38421693 DOI: 10.1615/intjmedmushrooms.2023051918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ganoderic acid A (GAA) is one of the major triterpenoids in Ganoderma lucidum (GL). Accumulating evidence has indicated that GAA demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Here, the effects and mechanisms of GAA in the treatment of neurological disorders were evaluated and discussed through previous research results. By summarizing previous research results, we found that GAA may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative stress, anti-apoptosis, protection of nerve cells, and regulation of nerve growth factor. Therefore, GAA is a promising natural neuroprotective agent and this review would contribute to the future development of GAA as a novel clinical candidate drug for treating neurological diseases.
Collapse
Affiliation(s)
- Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Zhou C, Tan J, Wu T, Pan C, Liu J, Cheng X. Ganoderic acid A slows osteoarthritis progression by attenuating endoplasmic reticulum stress and blocking NF-Κb pathway. Chem Biol Drug Des 2024; 103:e14382. [PMID: 37984927 DOI: 10.1111/cbdd.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 08/03/2023] [Indexed: 11/22/2023]
Abstract
Osteoarthritis (OA) is a prevalent degenerative pathology, however, there exists a lack of cost-effective pharmacological interventions that efficaciously inhibit its progression. ganoderic acid A (GAA), a triterpenoid derived from Ganoderma lucidum, possesses antiapoptotic and -inflammatory effects. Our objective was to better understand the therapeutic effects of GAA on OA as well as to elucidate the underlying mechanisms of its action. To establish an OA cell model in vitro, chondrocytes (CHONs) were treated with interleukin (IL)-1β. Subsequently, the investigation was conducted afterward according to the following indicators: cell viability, apoptosis, inflammation, and extracellular matrix (ECM) degradation. Western blotting analysis (WB) was employed to assess both endoplasmic reticulum (ER) stress and proteins associated with the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, based on molecular docking studies, GAA exhibits a significant binding competence to p65. OA mouse models were constructed by performing a destabilization medial meniscus (DMM) operation. Moreover, histopathology and immunohistochemistry were used to determine the GAA therapeutic effect in reducing OA in vivo. Our findings revealed that GAA has antiapoptotic, anti-inflammatory, and anti-ECM degradation effects by inhibiting the ER stress and NF-κB axis in CHONs in vitro. Furthermore, our findings suggest that GAA may attenuate the progression of osteoarthritis in vivo. GAA can protect CHONs by regulating apoptosis, ECM changes, and inflammation thereby preventing OA progression. These promising results indicate that GAA may be a therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuankun Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianye Tan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Jiangxi, China
| |
Collapse
|
4
|
Yanar F, Carugo D, Zhang X. Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications. Molecules 2023; 28:5694. [PMID: 37570666 PMCID: PMC10420199 DOI: 10.3390/molecules28155694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Organic and inorganic nanoparticles (NPs) have attracted significant attention due to their unique physico-chemical properties, which have paved the way for their application in numerous fields including diagnostics and therapy. Recently, hybrid nanomaterials consisting of organic nanocompartments (e.g., liposomes, micelles, poly (lactic-co-glycolic acid) NPs, dendrimers, or chitosan NPs) encapsulating inorganic NPs (quantum dots, or NPs made of gold, silver, silica, or magnetic materials) have been researched for usage in vivo as drug-delivery or theranostic agents. These classes of hybrid multi-particulate systems can enable or facilitate the use of inorganic NPs in biomedical applications. Notably, integration of inorganic NPs within organic nanocompartments results in improved NP stability, enhanced bioavailability, and reduced systemic toxicity. Moreover, these hybrid nanomaterials allow synergistic interactions between organic and inorganic NPs, leading to further improvements in therapeutic efficacy. Furthermore, these platforms can also serve as multifunctional agents capable of advanced bioimaging and targeted delivery of therapeutic agents, with great potential for clinical applications. By considering these advancements in the field of nanomedicine, this review aims to provide an overview of recent developments in the use of hybrid nanoparticulate systems that consist of organic nanocompartments encapsulating inorganic NPs for applications in drug delivery, bioimaging, and theranostics.
Collapse
Affiliation(s)
- Fatih Yanar
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Türkiye
| | - Dario Carugo
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK;
| | - Xunli Zhang
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
5
|
Production Ganoderma lucidum extract nanoparticles by expansion of supercritical fluid solution and evaluation of the antioxidant ability. Sci Rep 2022; 12:9904. [PMID: 35701498 PMCID: PMC9198024 DOI: 10.1038/s41598-022-13727-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Due to the growing human tendency to treat with natural substances, fungi such as Ganoderma lucidum can be a good source to meet this need. Effectiveness, ease of use and a rich source of active ingredients such as ganoderic acids have caused G. lucidum to be considered in the pharmaceutical and food industries. In this project, G. lucidum was applied to extraction using supercritical carbon dioxide. Then expansion of supercritical fluid solution (ESS) was used as, novel, repeatable and green method to yield nanoparticles from G.lucidum extract. The response surface method was used to improve the Extraction efficiency, antioxidant activity, and improving the nanoparticles production status. Optimal conditions were observed at the extraction step by setting pressure at 27.5 MPa, dynamic time of 46 min, and modifier volume of 162 μL. The optimum point for the production of nanoparticles was obtained as follows: pressure drop at 25 MPa, 20 min for collection time, and 40° C for temperature. Under these conditions, the size and count were 86.13 nm, and 98, respectively. Nanoparticles were analyzed by FESM and, the DPPH was used for antioxidant activity evaluation. The LC-MS identified various ganoderic acids from G.lucidum that are famous to be highly oxygenated triterpenoids.
Collapse
|
6
|
Wang T, Qin J, Cheng J, Li C, Du J. Intelligent design of polymersomes for antibacterial and anticancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1822. [PMID: 35673991 DOI: 10.1002/wnan.1822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Wei D, Yang H, Zhang Y, Zhang X, Wang J, Wu X, Chang J. Nano-traditional Chinese medicine: a promising strategy and its recent advances. J Mater Chem B 2022; 10:2973-2994. [PMID: 35380567 DOI: 10.1039/d2tb00225f] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Traditional Chinese Medicine (TCM) has been applied to the prevention and treatment of numerous diseases and has an irreplaceable role in rehabilitation and health care. However, the application of TCMs is drastically limited by their defects, such as single administration, poor water solubility, low bioavailability, and weak targeting capability. Recently, nanoparticles have been extensively used in resolving pharmaceutical obstacles in consideration of their large specific surface area, strong targeting capability, good sustained-release effect, etc. In this review, we first describe the limitations of TCM ingredients and two significant forms of nanotechnology applied in TCM, nanometerization of TCMs and nano-drug delivery systems for TCMs. Then, we discuss the preparation methods of nanometerization: mechanical crushing, spray drying, and high-pressure homogenization, which have been utilized to conquer the various weaknesses of TCMs. Then, recent advances in nano-drug delivery systems for TCM ingredients are discussed, including lipid-based nanocarriers, polymeric nanoparticles, inorganic nanocarriers, hybrid nanoparticles, and TCM self-assembled nanoparticles. Finally, the future challenges and perspectives of TCM formula complexity and the limitations of nanocarriers are also discussed. Better understanding the function of nanotechnology in TCM will help to modernize Chinese medicine and broaden the application of nano-TCM in the clinic.
Collapse
Affiliation(s)
- Daohe Wei
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Han Yang
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518100, China
| | - Yue Zhang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xinhui Zhang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jian Wang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
8
|
Application of synergistic β-lactamase inhibitors and antibiotics in the treatment of wounds infected by superbugs. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Zheng S, Ma J, Zhao X, Yu X, Ma Y. Ganoderic Acid A Attenuates IL-1β-Induced Inflammation in Human Nucleus Pulposus Cells Through Inhibiting the NF-κB Pathway. Inflammation 2021; 45:851-862. [PMID: 34739636 DOI: 10.1007/s10753-021-01590-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain associated with several pathological changes in the IVD, including dysfunction of nucleus pulposus (NP) cells. Ganoderic Acid A (GAA), one of triterpenoid extracts of Ganoderma lucidum (G. lucidum), has been reported to possess anti-inflammatory effect. In the current study, we aimed to evaluate the effect of Ganoderic Acid A (GAA) on the interleukin-1β (IL-1β)-induced inflammation in human NP cells. Our results showed that the IL-1β-stimulated production of inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were suppressed by GAA. In addition, treatment of NP cells with GAA significantly inhibited the production of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in IL-1β-stimulated human NP cells. GAA improved the reduced expression levels of extracellular matrix (ECM) proteins, collagen II and aggrecan in IL-1β-stimulated human NP cells. GAA also alleviated IL-1β-induced the levels of matrix metalloproteinase (MMP)-3 and MMP-13. Furthermore, GAA inhibited the IL-1β-induced upregulation of the phosphorylation of p65 and downregulation of IκBα. Taken together, these findings indicated that GAA alleviated IL-1β-induced inflammation and ECM degradation in NP cells through regulating NF-κB pathway.
Collapse
Affiliation(s)
- Sihua Zheng
- Orthopedics Department, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Jianmin Ma
- Department of Bone Surgery, Yinchuan Second People's Hospital, Yinchuan, 750011, China
| | - Xuezheng Zhao
- Orthopedics Department, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Xuezi Yu
- Orthopedics Department, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Yong Ma
- Orthopedics Department, Foshan Nanhai District Fifth People's Hospital, Nanhai District, No. 63, Zhongbian Road, Dali TownFoshanGuangdong Province, 528231, China.
| |
Collapse
|
10
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
11
|
Nwabuife JC, Pant AM, Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Adv Drug Deliv Rev 2021; 178:113861. [PMID: 34242712 DOI: 10.1016/j.addr.2021.113861] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Liposomal delivery systems have been widely explored for targeting superbugs such as S. aureus and MRSA, overcoming antimicrobial resistance associated with conventional dosage forms. They have the significant advantage of delivering hydrophilic and lipophilic antimicrobial agents, either singularly as monotherapy or in combination as combination therapy, due to their bilayers with action-site-specificity, resulting in improved targeting compared to conventional dosage forms. Herein, we present an extensive and critical review of the different liposomal delivery systems employed in the past two decades for the delivery of both antibiotics of different classes and non-antibiotic antibacterial agents, as monotherapy and combination therapy to eradicate infections caused by S. aureus and MRSA. The review also identifies future research and strategies potentiating the applications of liposomal delivery systems against S. aureus and MRSA. This review confirms the potential application of liposomal delivery systems for effective delivery and specific targeting of S. aureus and MRSA infections.
Collapse
|
12
|
Zhu L, Kuang Z, Song P, Li W, Gui L, Yang K, Ge F, Tao Y, Zhang W. Gold nanorod-loaded thermosensitive liposomes facilitate the targeted release of ruthenium(II) polypyridyl complexes with anti-tumor activity. NANOTECHNOLOGY 2021; 32:455103. [PMID: 34352731 DOI: 10.1088/1361-6528/ac1afc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Ruthenium(II) polypyridyl complexes (Ru) show high anti-tumor activity, but their poor solubility and low biocompatibility impede their use in anti-tumor therapy. Here,we circumvented the problem of low solubility by encapsulating the Ru in thermosensitive liposomes (LTSLs) and used gold nanorods (Au NRs) modified on the surface of the liposomes to permit the precise release of Ru at the tumor site. A facile and simple method was developed to synthesize Ru-loaded Au NR-decorated LTSL (Au@LTSL-Ru NPs). The loaded Au NRs improved the anti-tumor effect of Ru and enhanced the photothermal therapeutic properties of the nanosystem. A characterization experiment indicated that the average particle size of Au@LTSL-Ru was approximately 300 nm and that the Au NRs were successfully modified on the surface of LTSL. In thein vitroanti-tumor test, Au@LTSL-Ru and NIR significantly inhibited the proliferation of SGC-7901 cells. The IC50value of Au@LTSL-Ru + NIR was 7.1 ± 1.2μM (13μg ml-1), and the inhibition rate was greater than 90% when the concentration reached 30μg ml-1.In vivostudies revealed that Au@LTSL-Ru and NIR had a significant inhibitory effect on subcutaneous tumor tissues derived from SGC-7901 cells. Analysis of histopathology and immunocytotoxicity indicated that Au@LTSL-Ru has fewer side effects and high biocompatibility. Our results confirm that Au@LTSL-Ru can effectively inhibit tumor growth and aid the development of Ru for use in the thermal response in anti-tumor activity research.
Collapse
Affiliation(s)
- Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Zhao Kuang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, Peoples Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
13
|
Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, Qi T, Liao J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front Pharmacol 2021; 12:664123. [PMID: 33967809 PMCID: PMC8100678 DOI: 10.3389/fphar.2021.664123] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.
Collapse
Affiliation(s)
- Shengnan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Qi
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Li W, Song P, Xin Y, Kuang Z, Liu Q, Ge F, Zhu L, Zhang X, Tao Y, Zhang W. The Effects of Luminescent CdSe Quantum Dot-Functionalized Antimicrobial Peptides Nanoparticles on Antibacterial Activity and Molecular Mechanism. Int J Nanomedicine 2021; 16:1849-1867. [PMID: 33707943 PMCID: PMC7943780 DOI: 10.2147/ijn.s295928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND With the development of bacterial resistance, the range of effective antibiotics is increasingly becoming more limited. The effective use of nanoscale antimicrobial peptides (AP) in therapeutic and diagnostic methods is a strategy for new antibiotics. METHODS Combining both AP and cadmium selenide (CdSe) into a composite material may result in a reagent with novel properties, such as enhanced antibacterial activity, fluorescence and favorable stability in aqueous solution. RESULTS AP-loaded CdSe NPs (AP-CdSe NPs) showed strong antibacterial activity against multidrug-resistant (MDR) Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro and in vivo. Colony-forming unit (CFU) and minimum inhibitory concentration (MIC) assays showed that AP-CdSe NPs have highly effective antibacterial activity. The quantitative analysis of apoptosis by flow cytometry analysis further confirmed that MDR E. coli and S. aureus treated with AP-CdSe NPs had death rates of 98.76% and 99.13%, respectively. Also, AP-CdSe NPs was found to inhibit bacterial activity in an in vivo bacteremia model in mice infected with S. aureus. In addition, the antibacterial mechanism of AP-CdSe NPs was determined by RNA sequencing analysis. Gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed the molecular mechanism of the antibacterial effect of AP-CdSe NPs. Importantly, histopathology analysis, and hematological toxicity analysis indicated that AP-CdSe NPs had few side effects. CONCLUSION These results demonstrate that AP loaded on CdSe NPs had a higher water solubility, bioavailability and antibacterial effect compared with raw AP. This study reports findings that are helpful for the design and development of antibacterial treatment strategies based on AP.
Collapse
Affiliation(s)
- Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ying Xin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Zhao Kuang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Qin Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Xuguang Zhang
- Bankpeptide Biological Technology Company, Hefei, Anhui, 230031, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
- Bankpeptide Biological Technology Company, Hefei, Anhui, 230031, People's Republic of China
| |
Collapse
|
15
|
Wang Z, Zhai X, Sun Y, Yin C, Yang E, Wang W, Sun D. Antibacterial activity of chlorogenic acid-loaded SiO 2 nanoparticles caused by accumulation of reactive oxygen species. NANOTECHNOLOGY 2020; 31:185101. [PMID: 31995525 DOI: 10.1088/1361-6528/ab70fb] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diseases caused by pathogenic bacilli pose an increasing threat to human health. A common feature of these bacteria is a complete cell wall; therefore, drugs that can penetrate this protective barrier could be used as a novel approach for treating these infections. Here we present a simple method for synthesizing a silica mesoporous material loaded with cadmium selenide (CdSe) and chlorogenic acid. Using UV-visible, fluorescence, and infrared imaging in combination with transmission electron microscopy, it was shown that CdSe and chlorogenic acid could be successfully embedded in the mesopores of silica nanoparticles (CSC NPs), and these NPs presented with a strong fluorescence, uniform size, and good dispersion. Additionally, the results of these analyses indicated that the fluorescence of the CSC NPs was localized within the cells of Escherichia coli and Bacillus subtilis, signifying that these NPs could breach the cell wall and enter the cells of these two bacilli. Additional assessments found that these CSC NPs inhibited the proliferation of the bacteria by disrupting the cell wall, and this was most likely due to the overproduction of reactive oxygen species induced by chlorogenic acid. Importantly, histopathology analysis indicated that the CSC NPs had limited side effects and high biocompatibility.
Collapse
Affiliation(s)
- Zekun Wang
- School of life sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Dong S, Chen X, Yang H, Tang X, Chen J, Lin X, Peng Y. Visualization photofragmentation-induced rhodamine B release from gold nanorod delivery system by combination two-photon luminescence imaging with correlation spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960103. [PMID: 31919964 DOI: 10.1002/jbio.201960103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Plasmon-enhanced gold nanorod (AuNR) with high photothermal conversion efficiency is a promising light-controllable nanodrug delivery system for cancer therapy. Understanding the mechanism for the light-controllable drug release of AuNR delivery systems is important for the development of nanomedicine. In this study, the rhodamine B (RB) released from AuNR-RB nanodelivery system was quantitated and visualized by using two-photon luminescence (TPL) imaging combined with correlation spectroscopy. The photofragmentation of AuNR induced by femtosecond pulsed laser was revealed by TPL correlation spectroscopy when the laser energy was above the thermal damage threshold of AuNR, and the RB released from this nanodrug delivery system was visualized by TPL imaging. Furthermore, the photofragmentation-induced release of RB from AuNR-RB nanodelivery system was visualized in living MCF-7 breast cancer cells by TPL imaging combined with correlation spectroscopy. These results provided a novel optical approach to quantify the release of drugs from gold nanocarriers in complex biological media.
Collapse
Affiliation(s)
- Shiqing Dong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiuqin Chen
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianling Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiu Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
17
|
Cheng Y, Xie P. Ganoderic acid A holds promising cytotoxicity on human glioblastoma mediated by incurring apoptosis and autophagy and inactivating PI3K/AKT signaling pathway. J Biochem Mol Toxicol 2019; 33:e22392. [PMID: 31503386 DOI: 10.1002/jbt.22392] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Ganoderic acid A (GA-A), recognized as a lanostanetriterpene isolated from Ganoderma lucidum, demonstrates an efficient antitumor activity in multiple cancers. To date, it is unclear whether and how GA-A functions on human glioblastoma (GBM). To unravel the functional significance of GA-A on human glioblastoma (GBM), the cell-counting kit-8 and transwell assays were used to detect proliferation, migration, and invasion of human GBM cell after GA-A treatment. Then, we utilized the flow cytometry and western blot to further evaluate the effect of GA-A on GBM cell. Further, activities of autophagy and PI3K/AKT signaling were assessed by Western blot assay. We found that GA-A significantly inhibited proliferation, migration, and invasion of GBM cell. Additionally, GA-A markedly triggered cell apoptosis, which incarnated an elevation trend in apoptotic percentage, simultaneously, an increased level of proapoptosis protein (Bax and active caspase-3) and a decreased level of antiapoptosis protein (Bcl-2), induced by GA-A treatment. Meanwhile, levels of two well-known autophagy markers (beclin 1 and LC3 II) increased while another autophagic substrate (P-62) was reduced. Moreover, the expressions levels of phosphorylated AKT, mTOR, p-P70S6K, and cyclin D1 in the PI3K/AKT pathway were significantly reduced, which revealed GA-A repressed the activation of PI3K/AKT signaling pathway. Collectively, these results indicate that GA-A may encourage U251 cell growth and invasion/migration inhibition, apoptosis, and autophagy through the inactivation of PI3K/AKT signaling pathway in human GBM. Hence, GA-A may be a potent antitumorigenic agent for human GBM in future clinical practice.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Neurosurgery, Suizhou Hospital, Hubei University of Medicine (Suizhou Central Hospital), Hubei, China
| | - Peng Xie
- Department of Medical Imaging, Suizhou Hospital, Hubei University of Medicine (Suizhou Central Hospital), Hubei, China
| |
Collapse
|
18
|
Lopes TS, Alves GG, Pereira MR, Granjeiro JM, Leite PEC. Advances and potential application of gold nanoparticles in nanomedicine. J Cell Biochem 2019; 120:16370-16378. [DOI: 10.1002/jcb.29044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Talíria Silva Lopes
- Graduate Program in Sciences and Biotechnology, Fluminense Federal University – UFF Niteroi RJ Brazil
| | - Gutemberg Gomes Alves
- Cell and Molecular Biology Department Biology Institute, Fluminense Federal University – UFF Niteroi RJ Brazil
| | | | - Jose Mauro Granjeiro
- Dental School – Fluminense Federal University – UFF Niteroi RJ Brazil
- Laboratory of Bioengineering and in Vitro Toxicology Directory of Metrology Applied to Life Sciences – Dimav, National Institute of Metrology Quality and Technology – INMETRO Duque de Caxias RJ Brazil
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology Directory of Metrology Applied to Life Sciences – Dimav, National Institute of Metrology Quality and Technology – INMETRO Duque de Caxias RJ Brazil
| |
Collapse
|