1
|
Baspakova A, Zare A, Suleimenova R, Berdygaliev AB, Karimsakova B, Tussupkaliyeva K, Mussin NM, Zhilisbayeva KR, Tanideh N, Tamadon A. An updated systematic review about various effects of microplastics on cancer: A pharmacological and in-silico based analysis. Mol Aspects Med 2025; 101:101336. [PMID: 39756073 DOI: 10.1016/j.mam.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis. Furthermore, the present study displayed that AP-2 complex subunit mu-1 (AP2M1), Asialoglycoprotein receptor 2 (ASGR2), Bax inhibitor-1 (BI-1), and Ferritin Heavy Chain, and pivotal role in the progression of cancers mediated by MPs. Moreover, our in-silico analysis identified Goserelin, Paclitaxel, Raloxifene, Exemestane, Epirubicin, Trametinib, Vemurafenib, Pactitaxel, and Sorafenib as potential anticancer agents for curing MPS-based cancer. Besides, our results demonstrated that MPs can exacerbate the development of tumor cells by affecting some important mechanisms including oxidative stress, immune suppression, and adjusting of critical signaling pathways. Interestingly, some sorts of MPs also displayed suppressive effects on cancer cells in some particular contexts, highlighting their complicated biological roles in different biological interactions. Ultimately the present survey tries to demonstrate the crucial roles of MPs in cancer cells and the different mechanisms that occur in the mentioned cells in order to emphasize performing more studies about clarifying the roles of MPs in carcinogenesis.
Collapse
Affiliation(s)
- Akmaral Baspakova
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Afshin Zare
- R&D Department, PerciaVista Co., Shiraz, Iran.
| | - Roza Suleimenova
- Department of Public Health and Hygiene, Astana Medical University, Astana, Kazakhstan.
| | - Aidar B Berdygaliev
- Department of Nutrition, Kazakh National Medical University named after S. D. Asfendiyarov, Almaty, Kazakhstan.
| | - Bibigul Karimsakova
- Department of General Medical Practice №1, West Kazakhstan Marat Ospanov Medical University, Aktobe, 030012, Kazakhstan.
| | - Kymbat Tussupkaliyeva
- Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Nadiar M Mussin
- Department of Surgery No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Kulyash R Zhilisbayeva
- Department of Languages, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Tamadon
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
2
|
Coloma I, Parrón-Ballesteros J, Cortijo M, Cuerva C, Turnay J, Herrero S. Overcoming Resistance of Caco-2 Cells to 5-Fluorouracil through Diruthenium Complex Encapsulation in PMMA Nanoparticles. Inorg Chem 2024; 63:12870-12879. [PMID: 38833385 PMCID: PMC11256753 DOI: 10.1021/acs.inorgchem.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Drug resistance, one of the main drawbacks in cancer chemotherapy, can be tackled by employing a combination of drugs that target different biological processes in the cell, enhancing the therapeutic efficacy. Herein, we report the synthesis and characterization of a new paddlewheel diruthenium complex that includes 5-fluorouracil (5-FU), a commonly used anticancer drug. This drug was functionalized with a carboxylate group to take advantage of the previously demonstrated release capacity of carboxylate ligands from the diruthenium core. The resulting hydrophobic complex, [Ru2Cl(DPhF)3(5-FUA)] (Ru-5-FUA) (DPhF = N,N'-diphenylformamidinate; 5-FUA = 5-fluorouracil-1-acetate) was subsequently entrapped in poly(methyl methacrylate) (PMMA) nanoparticles (PMMA@Ru-5-FUA) via a reprecipitation method to be transported in biological media. The optimized encapsulation procedure yielded particles with an average size of 81.2 nm, a PDI of 0.11, and a zeta potential of 29.2 mV. The cytotoxicity of the particles was tested in vitro using the human colon carcinoma cell line Caco-2. The IC50 (half maximal inhibitory concentration) of PMMA@Ru-5-FUA (6.08 μM) was just slightly lower than that found for the drug 5-FU (7.64 μM). Most importantly, while cells seemed to have developed drug resistance against 5-FU, PMMA@Ru-5-FUA showed an almost complete lethality at ∼30 μM. Conversely, an analogous diruthenium complex devoid of the 5-FU moiety, [Ru2Cl(DPhF)3(O2CCH3)] (PMMA@RuA), displayed a reduced cytotoxicity at equivalent concentrations. These findings highlight the effect of combining the anticancer properties of 5-FU with those of diruthenium species. This suggests that the distinct modes of action of the two chemical species are crucial for overcoming drug resistance.
Collapse
Affiliation(s)
- Isabel Coloma
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Jorge Parrón-Ballesteros
- Department
of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Miguel Cortijo
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Cristián Cuerva
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Javier Turnay
- Department
of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Santiago Herrero
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| |
Collapse
|
3
|
Karim A, Yadav A, Sweety UH, Kumar J, Delgado SA, Hernandez JA, White JC, Vukovic L, Narayan M. Interfacial Interactions between Nanoplastics and Biological Systems: toward an Atomic and Molecular Understanding of Plastics-Driven Biological Dyshomeostasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25740-25756. [PMID: 38722759 PMCID: PMC11694484 DOI: 10.1021/acsami.4c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Micro- and nano-plastics (NPs) are found in human milk, blood, tissues, and organs and associate with aberrant health outcomes including inflammation, genotoxicity, developmental disorders, onset of chronic diseases, and autoimmune disorders. Yet, interfacial interactions between plastics and biomolecular systems remain underexplored. Here, we have examined experimentally, in vitro, in vivo, and by computation, the impact of polystyrene (PS) NPs on a host of biomolecular systems and assemblies. Our results reveal that PS NPs essentially abolished the helix-content of the milk protein β-lactoglobulin (BLG) in a dose-dependent manner. Helix loss is corelated with the near stoichiometric formation of β-sheet elements in the protein. Structural alterations in BLG are also likely responsible for the nanoparticle-dependent attrition in binding affinity and weaker on-rate constant of retinol, its physiological ligand (compromising its nutritional role). PS NP-driven helix-to-sheet conversion was also observed in the amyloid-forming trajectory of hen egg-white lysozyme (accelerated fibril formation and reduced helical content in fibrils). Caenorhabditis elegans exposed to PS NPs exhibited a decrease in the fluorescence of green fluorescent protein-tagged dopaminergic neurons and locomotory deficits (akin to the neurotoxin paraquat exposure). Finally, in silico analyses revealed that the most favorable PS/BLG docking score and binding energies corresponded to a pose near the hydrophobic ligand binding pocket (calyx) of the protein where the NP fragment was found to make nonpolar contacts with side-chain residues via the hydrophobic effect and van der Waals forces, compromising side chain/retinol contacts. Binding energetics indicate that PS/BLG interactions destabilize the binding of retinol to the protein and can potentially displace retinol from the calyx region of BLG, thereby impairing its biological function. Collectively, the experimental and high-resolution in silico data provide new insights into the mechanism(s) by which PS NPs corrupt the bimolecular structure and function, induce amyloidosis and onset neuronal injury, and drive aberrant physiological and behavioral outcomes.
Collapse
Affiliation(s)
- Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sofia A Delgado
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jose A Hernandez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
4
|
Al-Suhaimi EA, Akhtar S, Al Hubail FA, Alhawaj H, Aljafary MA, Alrumaih HS, Daghestani A, Al-Buainain A, Lardhi A, Homeida AM. A crosstalk between 'osteocyte lacunal-canalicular system' and metabolism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 142:397-420. [PMID: 39059992 DOI: 10.1016/bs.apcsb.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Considering the importance, bone physiology has long been studied to understand what systematic and cellular impact its cells and functions have. Exploring more questions is a substantially solid way to improve the understanding of bone physiological functions in/out sides. In adult bone, osteocytes (Ots) form about 95% of bone cells and live the longest lifespan inside their mineralized surroundings. Ots are the endocrine cells and originate from blood vessel's endothelial cells. In this work, we discussed the vital role of the "Ots". To determine the association between osteocytes' network with metabolic parameters in healthy mice, the experiments were performed on ten (10) adult C57BL6 male mice. Fasting blood and bone samples were collected weekly from mice for measurement of metabolic parameters and bone morphology. Scanning electron microscopy (SEM) revealed a 2D fine morphology of the bone which indicates a strong functional interconnection with bone nano/micro, and macro components of the organs. The long-branched canaliculi look like neurocytes in structure. The morphology and quantitative measurements of the osteocyte lacunal-canalicular system showed its wide spectrum spatial resolution of the positive and negative relationship within this system or metabolite parameters, confirming a strong cross connection between osteocyte lacunal-canalicular system and metabolism. We believe that the findings of this study can deliver a strategy about the potential roles of metabolic relation among osteocytes, insulin, and lipid in management of bone and metabolic diseases.
Collapse
Affiliation(s)
- Ebtesam A Al-Suhaimi
- Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatima A Al Hubail
- Mawhiba Research Enrichment Program-2022, King Abdulaziz and His Companions Foundation for Giftedness and Creativity, Riyadh, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah A Aljafary
- Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamad S Alrumaih
- Department of Substitutive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amira Daghestani
- Department of Substitutive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alanwood Al-Buainain
- College of Science and Human Studies in Jubail, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amer Lardhi
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - A M Homeida
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Zhang JX, Song ZR, Zou J, Ge J, Yang HL. Balloon kyphoplasty as palliative care for painful pathological spinal fracture followed by lung cancer metastasis: A cohort study. Front Surg 2023; 9:1081823. [PMID: 36733676 PMCID: PMC9887125 DOI: 10.3389/fsurg.2022.1081823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Background Pathological spine fractures caused by metastases of lung cancer have brought great suffering to patients. Percutaneous kyphoplasty (PKP) has been considered a preferred alternative for painful spinal metastases. The clinical efficacy and safety of PKP for metastatic spinal lesions are urgently to be evaluated. Methods A cohort study was conducted on 54 cases with pathologic spine fractures caused by metastasis of lung cancer. The correction of kyphosis was assessed by the Cobb angle. The life dependence and quality of the patients were evaluated by the Barthel Index of activities of daily living (ADL) and the quality-adjusted life year (QALY). Patients' survival was carefully recorded. Results PKP significantly corrected the kyphosis compared with conservative treatment. The ratio of moderate dependence after fracture was clearly increased by PKP. QALY indicated a better life quality brought by PKP. However, PKP could not improve the survival rate of patients. Conclusion PKP can be used as an effective palliative care treatment for patients with metastatic pathologic spinal fractures of lung cancer.
Collapse
Affiliation(s)
| | | | | | - Jun Ge
- Correspondence: Hui-lin Yang Jun Ge
| | | |
Collapse
|
6
|
Hong WX, Shevtsov VY, Shieh YT. Preparation of pH-responsive poly(methyl methacrylate) nanoparticles with CO2-triggered aggregation. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03202-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Shalaby M, Kodous AS, Yousif N. Structural, optical characteristics and Anti-Cancer effect of Cd0.99Ni0.01O nanoparticles on human neuroblastoma and cervical cancer cell lines. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Habibi N, Brown TD, Adu-Berchie K, Christau S, Raymond JE, Mooney DJ, Mitragotri S, Lahann J. Nanoparticle Properties Influence Transendothelial Migration of Monocytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5603-5616. [PMID: 35446569 DOI: 10.1021/acs.langmuir.2c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticle-based delivery of therapeutics to the brain has had limited clinical impact due to challenges crossing the blood-brain barrier (BBB). Certain cells, such as monocytes, possess the ability to migrate across the BBB, making them attractive candidates for cell-based brain delivery strategies. In this work, we explore nanoparticle design parameters that impact both monocyte association and monocyte-mediated BBB transport. We use electrohydrodynamic jetting to prepare nanoparticles of varying sizes, compositions, and elasticity to address their impact on uptake by THP-1 monocytes and permeation across the BBB. An in vitro human BBB model is developed using human cerebral microvascular endothelial cells (hCMEC/D3) for the assessment of migration. We compare monocyte uptake of both polymeric and synthetic protein nanoparticles (SPNPs) of various sizes, as well as their effect on cell migration. SPNPs (human serum albumin/HSA or human transferrin/TF) are shown to promote increased monocyte-mediated transport across the BBB over polymeric nanoparticles. TF SPNPs (200 nm) associate readily, with an average uptake of 138 particles/cell. Nanoparticle loading is shown to influence the migration of THP-1 monocytes. The migration of monocytes loaded with 200 nm TF and 200 nm HSA SPNPs was 2.3-fold and 2.1-fold higher than that of an untreated control. RNA-seq analysis after TF SPNP treatment suggests that the upregulation of several migration genes may be implicated in increased monocyte migration (ex. integrin subunits α M and α L). Integrin β 2 chain combines with either integrin subunit α M chain or integrin subunit α L chain to form macrophage antigen 1 and lymphocyte function-associated antigen 1 integrins. Both products play a pivotal role in the transendothelial migration cascade. Our findings highlight the potential of SPNPs as drug and/or gene delivery platforms for monocyte-mediated BBB transport, especially where conventional polymer nanoparticles are ineffective or otherwise not desirable.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tyler D Brown
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Kwasi Adu-Berchie
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Stephanie Christau
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeffery E Raymond
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David J Mooney
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Samir Mitragotri
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Joerg Lahann
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Material Science & Engineering, Department of Macromolecular Science & Engineering, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Kodavaty J. Poly (vinyl alcohol) and hyaluronic acid hydrogels as potential biomaterial systems - A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Marsden CJ, Breen C, Tinkler J, Berki T, Lester DW, Martinelli J, Tei L, Butler SJ, Willcock H. Crosslinked p(MMA) Particles by RAFT Emulsion Polymerisation: Tuning Size and Stability. Polym Chem 2022. [DOI: 10.1039/d2py00337f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controlled synthesis of amphiphilic di-block copolymers allows a large array of nanostructures to be created, including block copolymer particles, which have proved valuable for biomedical applications. Despite progress in...
Collapse
|
12
|
Aldakheel R, Gondal M, Almessiere M, Rehman S, Nasr M, Alsalem Z, Khan F. Spectrochemical analysis using LIBS and ICP-OES techniques of herbal medicine (Tinnevelly Senna leaves) and its anti-cancerous/antibacterial applications. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Al-Jameel SS, Rehman S, Almessiere MA, Khan FA, Slimani Y, Al-Saleh NS, Manikandan A, Al-Suhaimi EA, Baykal A. Anti-microbial and anti-cancer activities of Mn 0.5Zn 0.5Dy xFe 2-xO 4 (x ≤ 0.1) nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:493-499. [PMID: 34159846 DOI: 10.1080/21691401.2021.1938592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Combining two or more nanoparticles is a promising approach. Previously we have reported synthesis of nanoparticles Dysprosium (Dy) substituted with manganese (Mn) zinc (Zn) by using ultrasonication method. The five different nanoparticles (NPs) Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) have been structurally and morphologically characterized but there is no report on the biological application of these NPs. In the present study, we have examined the anti-cancer, anti-bacterial, and anti-fungal activities of Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) NPs. Human colorectal carcinoma cells (HCT-116) were tested with different concentrations of NPs by using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. In addition, the impact of NPs was also examined on normal cells such as human embryonic kidney cells, HEK-293. After 48 h of treatment, Mn0.5Zn0.5DyxFe2-xO4 NPs (x = 0.02, 0.04 and 0.06) showed no inhibitory action on cancer cell's growth and proliferation, whereas Mn0.5Zn0.5DyxFe2-xO4 NPs (x = 0.08 and 0.1) showed profound inhibitory action on cancer cell's growth and proliferation. However, the treatment of Mn0.5Zn0.5DyxFe2-xO4 NPs on the normal cells (HEK-293) did not show cytotoxic or inhibitory action on HEK-293 cells. The treatment of Mn0.5Zn0.5DyxFe2-xO4 NPs (x ≤ 0.1) also inhibited both the bacteria (Escherichia coli ATCC35218 and Staphylococcus aureus) with lowest MIC and MBC values of 4 and 8 mg/mL and fungus (Candida albicans) with MIC and MFC values of 4 and 8 mg/mL on treatment with x = 0.08 and 0. 1.
Collapse
Affiliation(s)
- Suhailah S Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Firdos A Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najat S Al-Saleh
- Consultant Family and Community Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai, India
| | - Ebtesam A Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
14
|
Pottoo FH, Salahuddin M, Khan FA, Alomar F, AL Dhamen MA, Alhashim AF, Alqattan HH, Gomaa MS, Alomary MN. Thymoquinone Potentiates the Effect of Phenytoin against Electroshock-Induced Convulsions in Rats by Reducing the Hyperactivation of m-TOR Pathway and Neuroinflammation: Evidence from In Vivo, In Vitro and Computational Studies. Pharmaceuticals (Basel) 2021; 14:1132. [PMID: 34832914 PMCID: PMC8618888 DOI: 10.3390/ph14111132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic neurodegenerative disease characterized by multiple seizures, hereto 35% of patients remain poor responders. Phenytoin (PHT; 20 and 40 mg/kg) and thymoquinone (THQ; 40 and 80 mg/kg) were given alone and as a low dose combination for 14 days (p.o), prior to challenge with maximal electroshock (MES; 180 mA, 220 V, 0.2 s). Apart from observing convulsions, hippocampal mTOR, IL-1β, IL-6 and TNF-α levels were measured. Hippocampal histomorphological analysis was also conducted. In vitro cell line studies and molecular docking studies were run in parallel. The results revealed the synergistic potential of the novel duo-drug combination regimen: PHT (20 mg/kg) and THQ (40 mg/kg) against MES-induced convulsions. MES amplified signaling through mTOR, and inflated the levels of proinflammatory markers (IL-1β, IL-6 and TNF-α), which was significantly averted (p < 0.001) with the said drug combination. The computational studies revealed that PHT and THQ cooperatively bind the active site on Akt (upstream target of m-TOR) and establish a good network of intermolecular interactions, which indicates the sequential inhibition of PI3K/Akt/m-TOR signaling with the combination. The combination also increased cell viability by 242.81% compared to 85.66% viability from the the toxic control. The results suggest that the PHT and THQ in combination possesses excellent anticonvulsant and neuroprotective effects.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fadhel Alomar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Marwa Abdullah AL Dhamen
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Abrar Fouad Alhashim
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Hawra Hussain Alqattan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), P.O. Box 1982, Riyadh 11442, Saudi Arabia
| |
Collapse
|
15
|
Impact of Poly (Styrene-Acrylic Acid) Latex Nanoparticles on Colorectal and Cervical Cancer Cells. Polymers (Basel) 2021; 13:polym13132025. [PMID: 34206194 PMCID: PMC8271488 DOI: 10.3390/polym13132025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
Polymer nanoparticles are a promising approach for cancer treatment and detection, due to their biocompatibility, biodegradability, targeting capabilities, capacity for drug loading and long blood circulation time. This study aims to evaluate the impact of poly (styrene–acrylic acid) latex particles on colorectal and cervical cancer cells for anti-tumor efficiency. Latex particles were synthesized by a surfactant-free radical emulsion polymerization process and the obtained polymer particles were characterized in terms of size, size distribution, morphology using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and electrokinetic property (i.e., zeta potential). Human colorectal and cervical cancer, and normal cell lines, were then treated with different concentrations of poly (styrene–acrylic acid) latex particles. The cell morphology changes were pointed out using an optical microscope and the nanoparticles’ (NPs) cell cytotoxicity was evaluated using MTT assay. The obtained results showed that poly (styrene–acrylic acid) latex particles are effective against colorectal and cervical cancer cells if treated with an appropriate particle concentration for 48 h. In addition, it showed that normal cells are the least affected by this treatment. This indicates that these NPs are safe as a drug delivery carrier when used at a low concentration.
Collapse
|
16
|
Rehman U, Sarfraz RM, Mahmood A, Zafar N, Ashraf MU. Chitosan/Agarose‐g‐poly (methacrylate)
pH
responsive polymeric blend: A dais for controlled delivery of Capecitabine. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Umaira Rehman
- Department of Pharmaceutics, Faculty of Pharmacy University of Sargodha Sargodha Pakistan
| | - Rai Muhammad Sarfraz
- Department of Pharmaceutics, Faculty of Pharmacy University of Sargodha Sargodha Pakistan
| | - Asif Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy The University of Lahore Lahore Pakistan
| | - Nadiah Zafar
- Department of Pharmaceutics, Faculty of Pharmacy The University of Lahore Lahore Pakistan
| | - Muhammad Umar Ashraf
- Department of Pharmaceutics, Faculty of Pharmacy The University of Lahore Lahore Pakistan
| |
Collapse
|
17
|
Rehman S, Almessiere MA, A. Al-Suhaimi E, Hussain M, Yousuf Bari M, Mehmood Ali S, Al-Jameel SS, Slimani Y, Khan FA, Baykal A. Ultrasonic Synthesis and Biomedical Application of Mn 0.5Zn 0.5Er xY xFe 2-2xO 4 Nanoparticles. Biomolecules 2021; 11:biom11050703. [PMID: 34066897 PMCID: PMC8150661 DOI: 10.3390/biom11050703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
In the present study, biocompatible manganese nanoparticles have been linked with zinc and iron molecules to prepare different derivatives of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10), using an ultrasonication approach. The structure, surface morphology, and chemical compositions of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were elucidated by X-ray diffractometer (XRD), High-resolution transmission electron microscopy (HR-TEM), scanning electron microscope (SEM), and Energy Dispersive X-Ray Analysis (EDX) techniques. The bioactivity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs on normal (HEK-293) and (HCT-116) colon cancer cell line was evaluated. The Mn0.5Zn0.5ErxYxFe2-2xO4 NPs treatment post 48 h resulted in a significant reduction in cells (via MTT assay, having an IC50 value between 0.88 µg/mL and 2.40 µg/mL). The specificity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were studied by treating them on normal cells line (HEK-293). The results showed that Mn0.5Zn0.5ErxYxFe2-2xO4 NPs did not incur any effect on HEK-293, which suggests that Mn0.5Zn0.5ErxYxFe2-2xO4 NPs selectively targeted the colon cancerous cells. Using Candida albicans, antifungal activity was also studied by evaluating minimum inhibitory/fungicidal concentration (MIC/MFC) and the effect of nanomaterial on the germ tube formation, which exhibited that NPs significantly inhibited the growth and germ tube formation. The obtained results hold the potential to design nanoparticles that lead to efficient bioactivity.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
- Correspondence:
| | - Munirah A. Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| | - Mehwish Hussain
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia;
| | - Maha Yousuf Bari
- Department of English, Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia;
| | - Syed Mehmood Ali
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| | - Suhailah S. Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia;
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| | - Abdulhadi Baykal
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| |
Collapse
|
18
|
Aboelmagd A, El Rayes SM, Gomaa MS, Ali IAI, Fathalla W, Pottoo FH, Khan FA, Khalifa ME. The synthesis and antiproliferative activity of new N-allyl quinoxalinecarboxamides and their O-regioisomers. NEW J CHEM 2021. [DOI: 10.1039/d0nj03672b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have designed a series of quinoxalinepeptidomimetic derivatives based on our previously reported scaffold in an attempt to find a promising lead compound.
Collapse
Affiliation(s)
- A. Aboelmagd
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - S. M. El Rayes
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - M. S. Gomaa
- Department of Pharmaceutical Chemistry
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Ibrahim A. I. Ali
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Walid Fathalla
- Department of Physics and Math
- Faculty of Engineering
- Port-Said
- University
- Port-Said
| | - F. H. Pottoo
- Department of Pharmacology
- College of Clinical Pharmacy
- Imam Abdul Rahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Firdos A. Khan
- Department of Stem Cell Biology
- Institute for Research & Medical Consultations
- (IRMC)
- Imam Abdul Rahman Bin Faisal University
- Dammam
| | - Mohamed E. Khalifa
- Department of Chemistry
- College of Science
- Taif University
- Taif 21944
- Saudi Arabia
| |
Collapse
|
19
|
Cordeiro AP, Feuser PE, Araújo PHH, Sayer C. Encapsulation of Magnetic Nanoparticles and Copaíba Oil in Poly(methyl methacrylate) Nanoparticles via Miniemulsion Polymerization for Biomedical Application. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/masy.202000112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Arthur P. Cordeiro
- Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040–900 Brazil
| | - Paulo E. Feuser
- Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040–900 Brazil
| | - Pedro H. H. Araújo
- Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040–900 Brazil
| | - Claudia Sayer
- Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040–900 Brazil
| |
Collapse
|
20
|
Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020; 7:587012. [PMID: 33324678 PMCID: PMC7726445 DOI: 10.3389/fmolb.2020.587012] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The use of nanoparticles (NP) in diagnosis and treatment of many human diseases, including cancer, is of increasing interest. However, cytotoxic effects of NPs on cells and the uptake efficiency significantly limit their use in clinical practice. The physico-chemical properties of NPs including surface composition, superficial charge, size and shape are considered the key factors that affect the biocompatibility and uptake efficiency of these nanoplatforms. Thanks to the possibility of modifying physico-chemical properties of NPs, it is possible to improve their biocompatibility and uptake efficiency through the functionalization of the NP surface. In this review, we summarize some of the most recent studies in which NP surface modification enhances biocompatibility and uptake. Furthermore, the most used techniques used to assess biocompatibility and uptake are also reported.
Collapse
Affiliation(s)
- Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Aboelmagd A, Alotaibi SH, El Rayes SM, Elsayed GM, Ali IAI, Fathalla W, Pottoo FH, Khan FA. Synthesis and Anti proliferative Activity of New
N
‐Pentylquinoxaline carboxamides and Their
O
‐Regioisomer. ChemistrySelect 2020. [DOI: 10.1002/slct.202003024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ahmed Aboelmagd
- Department of Chemistry Faculty of Science Suez Canal University Ismailia Egypt
| | - Saad H. Alotaibi
- Department of Chemistry Turabah University College Taif University P.O.Box 11099 Taif 21944 Saudi Arabia
| | - Samir M. El Rayes
- Department of Chemistry Faculty of Science Suez Canal University Ismailia Egypt
| | - Gomaa M. Elsayed
- Department of Pharmaceutical Chemistry College of Clinical Pharmacy Imam Abdul Rahman Bin Faisal University P.O.Box1982 Dammam 31441 Eastern Province, Kingdom of Saudi Arabia
| | - Ibrahim A. I. Ali
- Department of Chemistry Faculty of Science Suez Canal University Ismailia Egypt
| | - Walid Fathalla
- Department of Physics and Math Faculty of Engineering Port-Said University Port-Said Egypt
| | - Faheem H. Pottoo
- Department of Pharmacology College of Clinical Pharmacy Imam Abdul Rahman Bin Faisal University P.O. Box 1982 Dammam 31441 Eastern Province, Kingdom of Saudi Arabia
| | - Firdos A. Khan
- Department of Stem Cell Biology Institute for Research & Medical Consultations IRMC) Imam Abdul Rahman Bin Faisal University Dammam 31441 Saudi Arabia
| |
Collapse
|
22
|
Wang Y, Shi Z, Sun Y, Wu X, Li S, Dong S, Lan T. Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research. Des Monomers Polym 2020; 23:197-206. [PMID: 33177950 PMCID: PMC7594732 DOI: 10.1080/15685551.2020.1837442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Currently, magnetic applications have great potential for development in the field of drug carriers. In this paper, Fe3O4-PVA@SH, an amphiphilic magnetically targeting drug carrier, was prepared by using Fe3O4 and PVA with thiohydrazide-iminopropyltriethoxysilane(TIPTS). The loading capacity of Fe3O4-PVA@SH on Aspirin and the drug release kinetics of loaded drugs were studied. The obtained Fe3O4-PVA@SH exhibits excellent drug release properties in simulating the human body fluid environment (pH 7.2). Since magnetically targeting drug carriers are readily available and have excellent biocompatibility and the characteristics of drug release. This work’s development, preparing amphiphilic magnetically targeting drug carriers in drug delivery and other fields, has great significance.
Collapse
Affiliation(s)
- Yazhen Wang
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Zhen Shi
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Yu Sun
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Xueying Wu
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Shuang Li
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Shaobo Dong
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Tianyu Lan
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| |
Collapse
|
23
|
A Review of Functional Separators for Lithium Metal Battery Applications. MATERIALS 2020; 13:ma13204625. [PMID: 33081328 PMCID: PMC7603034 DOI: 10.3390/ma13204625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Lithium metal batteries are considered “rough diamonds” in electrochemical energy storage systems. Li-metal anodes have the versatile advantages of high theoretical capacity, low density, and low reaction potential, making them feasible candidates for next-generation battery applications. However, unsolved problems, such as dendritic growths, high reactivity of Li-metal, low Coulombic efficiency, and safety hazards, still exist and hamper the improvement of cell performance and reliability. The use of functional separators is one of the technologies that can contribute to solving these problems. Recently, functional separators have been actively studied and developed. In this paper, we summarize trends in the research on separators and predict future prospects.
Collapse
|
24
|
Elbehairi SEI, Ezzat Ahmed A, Alshati AA, Al-Kahtani MA, Alfaifi MY, Alsyaad KM, Alalmie AYA, Elimam Ahamed MM, Moustafa MF, Alhag SK, Al-Abd AM, Abbas AM. Prosopis juliflora leave extracts induce cell death of MCF-7, HepG2, and LS-174T cancer cell lines. EXCLI JOURNAL 2020; 19:1282-1294. [PMID: 33192211 PMCID: PMC7658460 DOI: 10.17179/excli2020-2830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Prosopis juliflora (P. juliflora) is a widespread phreatophytic tree, which belongs to the Fabaceae family. The goal of the present study is to investigate the potential anti-cancer effect of P. juliflora leave extracts and to identify its chemical composition. For this purpose, MCF-7 (breast), HepG2 (liver), and LS-174T (colorectal) cancer cell lines were cultivated and incubated with various concentrations of P. juliflora leave extracts, and its impact on cell viability, proliferation, and cell cycle stages was investigated. P. juliflora leave extracts induced concentration-dependent cytotoxicity against all tested cancer cell lines. The calculated IC50 was 18.17, 33.1 and 41.9 μg/ml for MCF-7, HePG2 and LS-174T, respectively. Detailed analysis revealed that the cytotoxic action of P. juliflora extracts was mainly via necrosis but not apoptosis. Moreover, DNA content flow cytometry analysis showed cell-specific anti-proliferative action and cell cycle stages arrest. In order to identify the anti-cancer constituents of P. juliflora, the ethyl extracts were analyzed by liquid chromatography-mass spectrometry. The major constituents identified in the ethyl extracts of P. juliflora leaves were hydroxymethyl-pyridine, nicotinamide, adenine, and poly-(methyl methacrylate) (PMMA). In conclusion, P. juliflora ethyl acetate extracts have a potential anti-cancer effect against breast adenocarcinoma, hepatocellular carcinoma, and colorectal adenocarcinoma, and is enriched with anti-cancer constituents. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Serag Eldin I Elbehairi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Agouza, Giza, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ali A Alshati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Al-Kahtani
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid M Alsyaad
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Director of the Research Centre, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali Yahya A Alalmie
- The Poison Control and Medical Forensic Chemistry Centre, Asir, Saudi Arabia
| | - Mohammed M Elimam Ahamed
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.,Unit of Bee Research and Honey Production, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud F Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Sadeq K Alhag
- Biology Department, College of Arts and Science, King Khalid University, Muhayl Asir, Saudi Arabia.,Biology Department, College of Science, Ibb University, Yemen
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Science, College of Pharmacy & Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, UAE.,Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ahmed M Abbas
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
25
|
Tariq H, Bokhari SAI. Surface-functionalised hybrid nanoparticles for targeted treatment of cancer. IET Nanobiotechnol 2020; 14:537-547. [PMID: 33010128 PMCID: PMC8676046 DOI: 10.1049/iet-nbt.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Despite the great advancement in understanding the pharmacology and biology of cancer, it still signifies one of the most serious human-health related problems. The current treatments for cancer may include surgery, radiotherapy, and chemotherapy, but these procedures have several limitations. Current studies have shown that nanoparticles (NPs) can be used as a novel strategy for cancer treatment. Developing nanosystems that allow lower doses of therapeutic agents, as well as their selective release in tumour cells, may resolve the challenges of targeted cancer therapy. In this review, the authors discuss the role of the size, shape, and surface modifications of NPs in cancer treatment. They also address the challenges associated with cancer therapies based on NPs. The overall purpose of this review is to summarise the recent developments in designing different hybrid NPs with promising therapeutic properties for different types of cancer.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
26
|
Almessiere MA, Slimani Y, Rehman S, Khan FA, Polat EG, Sadaqat A, Shirsath SE, Baykal A. Synthesis of Dy-Y co-substituted manganese‑zinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: Comparison between sonochemical and sol-gel auto-combustion methods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111186. [PMID: 32806294 DOI: 10.1016/j.msec.2020.111186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
This study described the beneficial properties of ultrasonic irradiation approach to synthesize the spinel-type Dy-Y co-substituted Mn-Zn nanospinel ferrites (NSFs). We have used two different approaches like citrate sol-gel combustion and ultrasonic irradiation routes to produced series of Mn0.5Zn0.5Fe2-2x(DyxYx)O4 (0.0 ≤ x ≤ 0.05) NSFs (DyY-MnZn NSFs). The structure and morphology of NSFs X-was examined by using XRD, EDX, SEM and TEM methods. We have found that spinel ferrites and hematite phase in DyY-MnZn NSFs produced by citrate sol-gel, while DyY-MnZn NSFs created by ultrasonic irradiation contain a pure phase of spinel ferrite. TEM analysis revealed the spherical nanoparticles with fairly uniform size. We have also analyzed the biological applications of DyY-MnZn NSFs prepared by both methods (ultrasonication and sol-gel) by examining their anti-cancer and anti-bacterial (Escherichia coli and Staphylococcus aureu) activities. We have found that both methods produced inhibitory actions on colon cancer cells (HCT-116) and bacterial cells, whereas, no inhibitory action was observed when examined on normal and non-cancerous cells (HEK-293).
Collapse
Affiliation(s)
- M A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Y Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - S Rehman
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Firdos A Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - E Gökçe Polat
- Department of Engineering Physics, İstanbul Medeniyet University, 34700, Üsküdar, İstanbul, Turkey
| | - A Sadaqat
- Mechanical Energy Engineering Depatment, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Sagar E Shirsath
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - A Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
27
|
Pisani S, Dorati R, Genta I, Chiesa E, Modena T, Conti B. High Efficiency Vibrational Technology (HEVT) for Cell Encapsulation in Polymeric Microcapsules. Pharmaceutics 2020; 12:pharmaceutics12050469. [PMID: 32455714 PMCID: PMC7284989 DOI: 10.3390/pharmaceutics12050469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl-methacrylate) (PMMA) is a biocompatible and non-biodegradable polymer widely used as biomedical material. PMMA microcapsules with suitable dimension and porosity range are proposed to encapsulate live cells useful for tissue regeneration purposes. The aim of this work was to evaluate the feasibility of producing cell-loaded PMMA microcapsules through "high efficiency vibrational technology" (HEVT). Preliminary studies were conducted to set up the process parameters for PMMA microcapsules production and human dermal fibroblast, used as cell model, were encapsulated in shell/core microcapsules. Microcapsules morphometric analysis through optical microscope and scanning electron microscopy highlighted that uniform microcapsules of 1.2 mm with circular surface pores were obtained by HEVT. Best process conditions used were as follows: frequency of 200 Hz, voltage of 750 V, flow rate of core solution of 10 mL/min, and flow rate of shell solution of 0.5 bar. Microcapsule membrane allowed permeation of molecules with low and medium molecular weight up to 5900 Da and prevented diffusion of high molecular weight molecules (11,000 Da). The yield of the process was about 50% and cell encapsulation efficiency was 27% on total amount. The cell survived and growth up to 72 h incubation in simulated physiologic medium was observed.
Collapse
Affiliation(s)
- Silvia Pisani
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Department of Maternal and Children’s Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Rossella Dorati
- Department of Drug Science, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (I.G.); (E.C.); (T.M.); (B.C.)
- Correspondence:
| | - Ida Genta
- Department of Drug Science, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (I.G.); (E.C.); (T.M.); (B.C.)
| | - Enrica Chiesa
- Department of Drug Science, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (I.G.); (E.C.); (T.M.); (B.C.)
| | - Tiziana Modena
- Department of Drug Science, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (I.G.); (E.C.); (T.M.); (B.C.)
| | - Bice Conti
- Department of Drug Science, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (I.G.); (E.C.); (T.M.); (B.C.)
| |
Collapse
|
28
|
Alahmari F, Rehman S, Almessiere M, Khan FA, Slimani Y, Baykal A. Synthesis of Ni 0.5Co 0.5-xCd xFe 1.78Nd 0.02O 4 (x ≤ 0.25) nanofibers by using electrospinning technique induce anti-cancer and anti-bacterial activities. J Biomol Struct Dyn 2020; 39:3186-3193. [PMID: 32340569 DOI: 10.1080/07391102.2020.1761880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here we report the electrospinning synthesis of Cd-substituted Ni-Co ferrite Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) nanofiber (NFs) with a very low concentration of Nd as a dopant. The structure and surface morphology of the Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) NFs were analyzed by X-ray powder pattern (XRD), transmission and scanning electron microscopes (TEM) along with Energy-dispersive X-ray (EDX). We have examined the biological applications of the Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) NFs on both cancerous cells and bacterial cells. We have found that Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) NFs produced inhibitory action on the human colorectal carcinoma cells (HEK-293) and also showed inhibitory action on the bacterial strains (S. aureus and E. coli) respectively. Finally, this is the first report on the synthesis of Cd- substituted Co-Ni ferrite nanofibers using electrospinning technique exhibiting anti-cancer and anti-bacterial activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- F Alahmari
- Department of Nanomedicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - S Rehman
- Department of Epidemic Disease Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - M Almessiere
- Department of Biophysics, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - F A Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Y Slimani
- Department of Biophysics, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - A Baykal
- Department of Nanomedicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
29
|
Nyang’au WO, Setiono A, Schmidt A, Bosse H, Peiner E. Sampling and Mass Detection of a Countable Number of Microparticles Using on-Cantilever Imprinting. SENSORS 2020; 20:s20092508. [PMID: 32354176 PMCID: PMC7249213 DOI: 10.3390/s20092508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/03/2022]
Abstract
Liquid-borne particles sampling and cantilever-based mass detection are widely applied in many industrial and scientific fields e.g., in the detection of physical, chemical, and biological particles, and disease diagnostics, etc. Microscopic analysis of particles-adsorbed cantilever-samples can provide a good basis for measurement comparison. However, when a particles-laden droplet on a solid surface is vaporized, a cluster-ring deposit is often yielded which makes particles counting difficult or impractical. Nevertheless, in this study, we present an approach, i.e., on-cantilever particles imprinting, which effectively defies such odds to sample and deposit countable single particles on a sensing surface. Initially, we designed and fabricated a triangular microcantilever sensor whose mass m0, total beam-length L, and clamped-end beam-width w are equivalent to that of a rectangular/normal cantilever but with a higher resonant frequency (271 kHz), enhanced sensitivity (0.13 Hz/pg), and quality factor (~3000). To imprint particles on these cantilever sensors, various calibrated stainless steel dispensing tips were utilized to pioneer this study by dipping and retracting each tip from a small particle-laden droplet (resting on a hydrophobic n-type silicon substrate), followed by tip-sensor-contact (at a target point on the sensing area) to detach the solution (from the tip) and adsorb the particles, and ultimately determine the particles mass concentration. Upon imprinting/adsorbing the particles on the sensor, resonant frequency response measurements were made to determine the mass (or number of particles). A minimum detectable mass of ~0.05 pg was demonstrated. To further validate and compare such results, cantilever samples (containing adsorbed particles) were imaged by scanning electron microscopy (SEM) to determine the number of particles through counting (from which, the lowest count of about 11 magnetic polystyrene particles was obtained). The practicality of particle counting was essentially due to monolayer particle arrangement on the sensing surface. Moreover, in this work, the main measurement process influences are also explicitly examined.
Collapse
Affiliation(s)
- Wilson Ombati Nyang’au
- Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, D38106 Braunschweig, Germany; (A.S.); (A.S.); (E.P.)
- Department of Metrology, Kenya Bureau of Standards (KEBS), 00200 Nairobi, Kenya
- Correspondence:
| | - Andi Setiono
- Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, D38106 Braunschweig, Germany; (A.S.); (A.S.); (E.P.)
- Research Center for Physics, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Indonesia
| | - Angelika Schmidt
- Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, D38106 Braunschweig, Germany; (A.S.); (A.S.); (E.P.)
| | - Harald Bosse
- Precision Engineering Division, Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany;
| | - Erwin Peiner
- Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, D38106 Braunschweig, Germany; (A.S.); (A.S.); (E.P.)
| |
Collapse
|
30
|
Liu Y, Zhao J, Jiang J, Chen F, Fang X. Doxorubicin Delivered Using Nanoparticles Camouflaged with Mesenchymal Stem Cell Membranes to Treat Colon Cancer. Int J Nanomedicine 2020; 15:2873-2884. [PMID: 32368059 PMCID: PMC7185325 DOI: 10.2147/ijn.s242787] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The primary goal of the present study was to design doxorubicin (DOX)-loaded superparamagnetic iron oxide (SPIO) nanoparticles (NPs) coated with mesenchymal stem cell (MSC) membranes and explore their effect on colon cancer in vitro and in vivo. METHODS DOX-SPIO NPs were coated with MSC membranes using an extruder, and the morphological characteristics of MSC membrane-camouflaged nanodrug (DOX-SPIO@MSCs) evaluated by transmission electron microscopy (TEM) and NP-tracking analysis. Drug loading and pH response were assessed by UV spectrophotometry. Intracellular colocalization was analyzed using NP-treated MC38 cells stained with 3,3'-dioctadecyloxacarbocyanine perchlorate and Hoechst 33342. Cellular uptake was analyzed using an inverted fluorescence microscope and flow cytometry and cytotoxicity evaluated by cell counting kit-8 assay. Biological compatibility was assessed by hemolysis analysis, immunoactivation test and leukocyte uptake experiments. Furthermore, intravenous injection of chemotherapy drugs into MC38 tumor-bearing C57BL/6 mice was used to study anti-tumor effects. RESULTS Typical core-shell NP structures were observed by TEM. Particle size remained stable in fetal bovine serum and phosphate-buffered saline (PBS). Compared with DOX-SPIO, DOX-SPIO@MSCs improved cellular uptake efficiency, enhanced anti-tumor effects, and reduced the immune system response. Animal experiments demonstrated that DOX-SPIO@MSCs enhanced tumor treatment efficacy while reducing systemic side effects. CONCLUSION Our experimental results demonstrate that DOX-SPIO@MSCs are a promising targeted nanocarrier for application in treatment of colon cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Jingtong Zhao
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin130033, People’s Republic of China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130012, People’s Republic of China
- Key Laboratory of Zoonoses Research, Ministry of Education, Jilin University, Changchun, Jilin130062, People’s Republic of China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin130033, People’s Republic of China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130012, People’s Republic of China
| |
Collapse
|
31
|
Baig U, Ansari MA, Gondal MA, Akhtar S, Khan FA, Falath WS. Single step production of high-purity copper oxide-titanium dioxide nanocomposites and their effective antibacterial and anti-biofilm activity against drug-resistant bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110992. [PMID: 32487404 DOI: 10.1016/j.msec.2020.110992] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/21/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
In the present research work, copper oxide-titanium dioxide nanocomposites were synthesized for the first time using advanced pulsed laser ablation in liquid (PLAL) technique for disinfection of drug-resistant pathogenic waterborne biofilm-producing bacterial strains. For this, a series of copper oxide-titanium dioxide nanocomposites were synthesized by varying the composition of copper oxide (5%, 10%, and 20%) with titanium dioxide. The pure titanium dioxide and copper oxide-titanium dioxide nanocomposites were characterized by advanced instrumental techniques. XRD, TEM, FE-SEM, EDX, elemental mapping and XPS analysis results consistently revealed the successful formation of copper oxide-titanium dioxide nanocomposites using PLAL technique. The antibacterial and antibiofilm activities of pure titanium dioxide and copper oxide-titanium dioxide nanocomposites were investigated against biofilm-producing strains of Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa by various methods. Our results revealed that the PLAL synthesized copper oxide-titanium dioxide nanocomposites showed enhanced anti-biofilm and antibacterial activity compared to pure titanium dioxide in a dose-dependent manner against targeted pathogens. Furthermore, the effects of pure titanium dioxide and copper oxide-titanium dioxide nanocomposites on bacterial morphology, biofilm formation, aggregation and their colonization by targeted pathogens were also examined using scanning electron microscopy. Microscopic images clearly showed that the cell envelope of almost all the cells were rumples, rough, had irregularities and abnormal appearance with the major damage being characterized by the formation of "pits". Many depressions and indentations were also seen in their cell envelope and the original shape of Pseudomonas aeruginosa cells changed from normal rod to swollen, large and elongated which indicates the loss of membrane integrity and damage of cell wall and membrane. The findings suggested that PLAL synthesized copper oxide-titanium dioxide nanocomposites have good potential for removal of biofilm or killing of pathogenic bacteria in water distribution network and for wastewater treatment, hospital and environmental applications. In addition, cytotoxic activity of pure TiO2 and PLAL synthesized copper oxide-titanium dioxide nanocomposites against normal and healthy cells (HEK-293) and cancerous cells (HCT-116) were also evaluated by MTT assay. The MTT assay results showed no cytotoxic effects on HEK-293 cells, which suggest TiO2 and PLAL synthesized copper oxide-titanium dioxide nanocomposites are non-toxic to the normal cells.
Collapse
Affiliation(s)
- Umair Baig
- Center of Research Excellence in Desalination & Water Treatment and Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad Azam Ansari
- Epidemic Disease Research Department, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - M A Gondal
- Department of Physics & Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261¸ Saudi Arabia.
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - W S Falath
- Center of Research Excellence in Desalination & Water Treatment and Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261¸ Saudi Arabia
| |
Collapse
|
32
|
Khan FA, Lammari N, Muhammad Siar AS, Alkhater KM, Asiri S, Akhtar S, Almansour I, Alamoudi W, Haroun W, Louaer W, Meniai AH, Elaissari A. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells. Nanomedicine (Lond) 2020; 15:969-980. [PMID: 32223518 DOI: 10.2217/nnm-2019-0429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To synthesize and examine the impact of free Eudragit® RS 100 nanoparticles (LN01), Quantum dots curcumin-loaded Eudragit RS 100 nanoparticles (LN04), and un-encapsulated curcumin nanoparticles (LN06) on cancerous and bacterial cells. Materials & methods: The LN01, LN04, LN06 were synthesized and characterized by Fourier transform infrared, ζ potential, UV-Vis spectroscopy, transmission electron microscopy and scanning electron microscopy and their biological activities were evaluated. Results: LN04 profoundly inhibited the growth of colon (HCT-116) cancerous cells (10.64% cell viability) and breast cancer (MCF-7) cells (10.32% cell viability) with compared to LN01 and LN06. Normal cells (HEK-293) did not show any inhibition after treatments. In addition, LN04 show better inhibitory action on bacterial growth compared with LN01 and LN06. Conclusion: We suggest that LN04 selectively target cancerous and bacterial cells and therefore possess potential anticancer and antibacterial capabilities.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Narimane Lammari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France.,Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Adeeb Shezad Muhammad Siar
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Khulood Mohammed Alkhater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sarah Asiri
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Iman Almansour
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Widyan Alamoudi
- Department of Neuroscience, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Woroud Haroun
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Wahida Louaer
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdelhamid Elaissari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France
| |
Collapse
|
33
|
El Rayes SM, Aboelmagd A, Gomaa MS, Fathalla W, Ali IAI, Pottoo FH, Khan FA. Newly synthesized 3-(4-chloro-phenyl)-3-hydroxy-2,2-dimethyl-propionic acid methyl ester derivatives selectively inhibit the proliferation of colon cancer cells. RSC Adv 2020; 10:8825-8841. [PMID: 35496560 PMCID: PMC9049988 DOI: 10.1039/c9ra10950a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/21/2020] [Indexed: 11/28/2022] Open
Abstract
A series of 24 compounds were synthesized based on structure modification of the model methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate as potent HDACIs. Saponification and hydrazinolysis of the model ester afforded the corresponding acid and hydrazide, respectively. The model ester was transformed into the corresponding trichloroacetimidate or acetate by the reaction with trichloroacetonitrile and acetic anhydride, respectively. N-Alkyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropan-amides and methyl-2-[(3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoyl)amino] alkanoates were obtained by the reaction of corresponding acid or hydrazide with amines and amino acid esters via DCC and azide coupling methods. Methyl-3-aryl-3-(4-chlorophenyl)-2,2-dimethylpropanoates were obtained in good yields and short reaction time from the corresponding trichloroacetimidate or acetate by the reaction with C-active nucleophiles in the presence of TMSOTf (0.1 eq.%) via C–C bond formation. The antiproliferative and apoptotic activity were further studied with molecular docking. The 48 post-treatments showed that out of 24 compounds, 12 compounds showed inhibitory actions on HCT-116 cells, we have calculated the inhibitory action (IC50) of these compounds on HCT-116 and we have found that the IC50 values were in between 0.12 mg mL−1 to 0.81 mg mL−1. The compounds (7a & 7g) showed highest inhibitory activity (0.12 mg mL−1), whereas compound 7d showed the lowest inhibitory activity (0.81 mg mL−1). We have also examined inhibitory action on normal and non-cancerous cells (HEK-293 cells) and confirmed that action of these compounds was specific to cancerous cells. The cancerous cells were also examined for nuclear disintegration through staining with DAPI, (4′,6-diamidino-2-phenylindole) is a blue-fluorescent DNA stain, and we have found that there was loss of DAPI staining in the compound treated cancerous cells. The compounds were found to potentially act through the HSP90 and TRAP1 mediated signaling pathway. Compounds 7a and 7g showed the highest selectivity to TRAP1 which explained its superior activity. A series of 24 compounds were synthesized based on structure modification of the model methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate as potent HDACIs.![]()
Collapse
Affiliation(s)
- Samir M. El Rayes
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Ahmed Aboelmagd
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Mohamed S. Gomaa
- Department of Pharmaceutical
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Walid Fathalla
- Department of Physics and Math
- Faculty of Engineering
- Port-Said University
- Port-Said
- Egypt
| | - Ibrahim A. I. Ali
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Faheem H. Pottoo
- Department of Pharmacology
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research
- Institute of Research and Medical Consultations (IRMC)
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| |
Collapse
|
34
|
Rehman S, Jermy R, Mousa Asiri S, Shah MA, Farooq R, Ravinayagam V, Azam Ansari M, Alsalem Z, Al Jindan R, Reshi Z, Khan FA. UsingFomitopsis pinicolafor bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Adv 2020; 10:32137-32147. [PMID: 35518181 PMCID: PMC9056542 DOI: 10.1039/d0ra02637a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/20/2020] [Indexed: 12/28/2022] Open
Abstract
The current study proposes a bio-directed approach for the formation of titanium oxide and silver nanoparticles (TiO2 and Ag NPs), using a wild mushroom, Fomitopsis pinicola, identified by 18S ribosomal RNA gene sequencing (gene accession no. MK635350) and phenotypic examination. NP synthesis was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance UV-visible spectroscopy (DR-UV), and scanning and transmission electron microscopy (SEM/TEM). Furthermore, the impact of NPs on Escherichia coli and Staphylococcus aureus and a human colon cancer cell line (HCT) were evaluated by MIC/MBC and MTT assays, respectively, along with structural morphogenesis by different microscopy methods. The results obtained showed that TiO2 and Ag NPs were found to be significantly active, however, slightly enhanced antibacterial and anticancer action was seen with Ag NPs (10–30 nm). Such NPs can be utilized to control and treat infectious diseases and colon cancer and therefore have potential in a range of biomedical applications. This study proposes a bio-directed approach for the formation of titanium oxide and silver nanoparticles (TiO2 and Ag NPs), using a wild mushroom, Fomitopsis pinicola, identified by 18S ribosomal RNA gene sequencing (gene accession no. MK635350) and phenotypic examination.![]()
Collapse
|
35
|
Rehman S, Almessiere MA, Khan FA, Korkmaz AD, Tashkandi N, Slimani Y, Baykal A. Synthesis and biological characterization of Mn 0.5Zn 0.5Eu xDy xFe 1.8-2xO 4 nanoparticles by sonochemical approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110534. [PMID: 32228890 DOI: 10.1016/j.msec.2019.110534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Metallic nanoparticles (NPs) possess unique properties which makes them attractive candidates for various applications especially in field of experimental medicine and drug delivery. Many approaches were developed to synthesize divers and customized metallic NPs that can be useful in many areas such as, experimental medicine, drug design, drug delivery, electrical and electronic engineering, electrochemical sensors, and biochemical sensors. Among different metallic nanoparticles, manganese (Mn) NPs are the most prominent materials, in the present study, we have synthetized unique Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs by using ultrasonication method (x ≤ 0.1). The structure, and surface morphology of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs was characterized by XRD, SEM, TEM and EDX methods. We have examined the biological effects of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs on both normal (HEK-293) and cancerous (HCT-116) cells. We have found that the treatment of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs post 48 h, showed significant decline in cancer cells population as revealed by MTT assay. The IC50 value of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs was ranged between (2.35 μg/mL to 2.33 μg/mL). To check the specificity of the actions, we found that the treatment of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs did not produce any effects on the normal cells, which suggest that Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs selectively targeted the cancerous cells. The anti-bacterial properties of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs were also evaluated by MIC and MBC assays. We suggest that Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs produced by sonochemical method possess potential anti-cancer and anti-bacterial capabilities.
Collapse
Affiliation(s)
- S Rehman
- Department of Epidemiology, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - M A Almessiere
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - F A Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations (IRMC),Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - A Demir Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700, Istanbul, Uskudar, Turkey.
| | - N Tashkandi
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Y Slimani
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - A Baykal
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|