1
|
Hughes Lago C, Blackburn D, Kinder Pavlicek M, Threadgill DS. Comparative Genomic Analysis of Campylobacter rectus and Closely Related Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605372. [PMID: 39211246 PMCID: PMC11360918 DOI: 10.1101/2024.07.26.605372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Campylobacter rectus is a gram-negative, anaerobic bacterium strongly associated with periodontitis. It also causes various extraoral infections and is linked to adverse pregnancy outcomes in humans and murine models. C. rectus and related oral Campylobacters have been termed "emerging Campylobacter species" because infections by these organisms are likely underreported. Previously, no comparative methods have been used to analyze more than single C. rectus strains and until recently, very few C. rectus genomes have been publicly available. More sequenced genomes and comparative analyses are needed to study the genomic features and pathogenicity of this species. We sequenced eight new C. rectus strains and used comparative methods to identify regions of interest. An emphasis was put on the type III flagellar secretion system (T3SS), type IV secretion system (T4SS), and type VI secretion system (T6SS) because these protein complexes are important for pathogenesis in other Campylobacter species. RAST, BV-BRC, and other bioinformatics tools were used to assemble, annotate, and compare these regions in the genomes. The pan-genome of C. rectus consists of 2670 genes with core and accessory genomes of 1429 and 1241 genes, respectively. All isolates analyzed in this study have T3SS and T6SS hallmark proteins, while five of the isolates are missing a T4SS system. Twenty-one prophage clusters were identified across the panel of isolates, including four that appear intact. Overall, significant genomic islands were found, suggesting regions in the genomes that underwent horizontal gene transfer. Additionally, the high frequency of CRISPR arrays and other repetitive elements has led to genome rearrangements across the strains, including in areas adjacent to secretion system gene clusters. This study describes the substantial diversity present among C. rectus isolates and highlights tools/assays that have been developed to permit functional genomic studies. Additionally, we have expanded the studies on C. showae T4SS since we have two new C. showae genomes to report. We also demonstrate that unlike C. rectus , C showae does not demonstrate evidence of intact T6SS except for the strain CAM. The only strain of sequenced C. massilensis has neither T4SS or T6SS.
Collapse
|
2
|
Maki JJ, Howard M, Connelly S, Pettengill MA, Hardy DJ, Cameron A. Species Delineation and Comparative Genomics within the Campylobacter ureolyticus Complex. J Clin Microbiol 2023; 61:e0004623. [PMID: 37129508 PMCID: PMC10204631 DOI: 10.1128/jcm.00046-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Campylobacter ureolyticus is an emerging pathogen increasingly appreciated as a common cause of gastroenteritis and extra-intestinal infections in humans. Outside the setting of gastroenteritis, little work has been done to describe the genomic content and relatedness of the species, especially regarding clinical isolates. We reviewed the epidemiology of clinical C. ureolyticus cultured by our institution over the past 10 years. Fifty-one unique C. ureolyticus isolates were identified between January 2010 and August 2022, mostly originating from abscesses and blood cultures. To clarify the taxonomic relationships between isolates and to attribute specific genes with different clinical manifestations, we sequenced 19 available isolates from a variety of clinical specimen types and conducted a pangenomic analysis with publicly available C. ureolyticus genomes. Digital DNA:DNA hybridization suggested that these C. ureolyticus comprised a species complex of 10 species clusters (SCs) and several subspecies clusters. Although some orthologous genes or gene functions were enriched in isolates found in different SCs and clinical specimens, no association was significant. Nearly a third of the isolates possessed antimicrobial resistance genes, including the ermA resistance gene, potentially conferring resistance to macrolides, the treatment of choice for severe human campylobacteriosis. This work effectively doubles the number of publicly available C. ureolyticus genomes, provides further clarification of taxonomic relationships within this bacterial complex, and identifies target SCs for future analysis.
Collapse
Affiliation(s)
- Joel J. Maki
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mondraya Howard
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara Connelly
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew A. Pettengill
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dwight J. Hardy
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrew Cameron
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Izidoro C, Botelho J, Machado V, Reis AM, Proença L, Barroso H, Alves R, Mendes JJ. Non-Surgical Periodontal Treatment Impact on Subgingival Microbiome and Intra-Oral Halitosis. Int J Mol Sci 2023; 24:ijms24032518. [PMID: 36768839 PMCID: PMC9916745 DOI: 10.3390/ijms24032518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to characterize and compare subgingival microbiome before and after periodontal treatment to learn if any changes of the subgingival microbiome were reflected in intra-oral halitosis. We tested the hypothesis that intra-oral halitosis (Volatile sulfur compounds levels) correlates with corresponding subgingival bacterial levels before and after periodontal treatment. Twenty patients with generalized periodontitis completed the study. Subgingival plaque samples were collected at baseline and 6-8 weeks after nonsurgical periodontal therapy. Full-mouth periodontal status assessed probing depth (PD), clinical attachment loss (CAL), gingival recession (REC), bleeding on probing (BoP), PISA and PESA. Halitosis assessment was made using a volatile sulfur compounds (VSC) detector device. Periodontal measures were regressed across VSC values using adjusted multivariate linear analysis. The subgingival microbiome was characterized by sequencing on an Illumina platform. From a sample of 20 patients referred to periodontal treatment, 70% were females (n = 14), with a mean age of 56.6 (±10.3) years; full-mouth records of PD, CAL, BOP (%) allowed to classify the stage and grade of periodontitis, with 45% (n = 9) of the sample having Periodontitis Stage IV grade C and 95% (n = 19) had generalized periodontitis. The correlation of bacterial variation with VSCs measured in the periodontal diagnosis and in the reassessment after treatment were evaluated. Fusobacterium nucleatum, Capnocytophaga gingivalis and Campylobacter showaei showed correlation with the reduction of VSC after periodontal treatment (p-value = 0.044; 0.047 and 0.004, respectively). Capnocytophaga sputigena had a significant reverse correlation between VSCs variation from diagnosis (baseline) and after treatment. Microbial diversity was high in the subgingival plaque on periodontitis and intra-oral halitosis participants of the study. Furthermore, there were correlations between subgingival plaque composition and VSC counting after periodontal treatment. The subgingival microbiome can offer important clues in the investigation of the pathogenesis and treatment of halitosis.
Collapse
Affiliation(s)
- Catarina Izidoro
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Correspondence: ; Tel.: +351-212-946-737
| | - João Botelho
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ana Mafalda Reis
- Instituto de Ciências Biomédicas Abel Salazar, School of Health and Life Sciences, University of Porto, 4099-002 Porto, Portugal
- Neuroradiology Department, Hospital Pedro Hispano, 4464-513 Matosinhos, Portugal
| | - Luís Proença
- Quantitative Methods for Health Research Unit (MQIS), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Helena Barroso
- Microbiology and Public Health Unit, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ricardo Alves
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - José João Mendes
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| |
Collapse
|
4
|
Mazzarelli A, Giancola ML, Fontana A, Piselli P, Binda E, Trivieri N, Mencarelli G, Marchioni L, Vulcano A, De Giuli C, Panebianco C, Villani A, Copetti M, Perri F, Fontana C, Nicastri E, Pazienza V. Gut microbiota composition in COVID-19 hospitalized patients with mild or severe symptoms. Front Microbiol 2022; 13:1049215. [PMID: 36560946 PMCID: PMC9763305 DOI: 10.3389/fmicb.2022.1049215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aimCOVID-19, the infectious disease caused by SARS-CoV-2 virus that has been causing a severe pandemic worldwide for more than 2 years, is characterized by a high heterogeneity of clinical presentations and evolution and, particularly, by a varying severity of respiratory involvement. This study aimed to analyze the diversity and taxonomic composition of the gut microbiota at hospital admission, in order to evaluate its association with COVID-19 outcome. In particular, the association between gut microbiota and a combination of several clinical covariates was analyzed in order to characterize the bacterial signature associate to mild or severe symptoms during the SARS-CoV-2 infection.Materials and methodsV3–V4 hypervariable region of 16S rRNA gene sequencing of 97 rectal swabs from a retrospective cohort of COVID-19 hospitalized patients was employed to study the gut microbiota composition. Patients were divided in two groups according to their outcome considering the respiratory supports they needed during hospital stay: (i) group “mild,” including 47 patients with a good prognosis and (ii) group “severe,” including 50 patients who experienced a more severe disease due to severe respiratory distress that required non-invasive or invasive ventilation. Identification of the clusters of bacterial population between patients with mild or severe outcome was assessed by PEnalized LOgistic Regression Analysis (PELORA).ResultsAlthough no changes for Chao1 and Shannon index were observed between the two groups a significant greater proportion of Campylobacterota and Actinobacteriota at phylum level was found in patients affected by SARS-CoV-2 infection who developed a more severe disease characterized by respiratory distress requiring invasive or non-invasive ventilation. Clusters have been identified with a useful early potential prognostic marker of the disease evolution.DiscussionMicroorganisms residing within the gut of the patients at hospital admission, were able to significantly discriminate the clinical evolution of COVID-19 patients, in particular who will develop mild or severe respiratory involvement. Our data show that patients affected by SARS-CoV-2 with mild or severe symptoms display different gut microbiota profiles which can be exploited as potential prognostic biomarkers paving also the way to new integrative therapeutic approaches.
Collapse
Affiliation(s)
- Antonio Mazzarelli
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Maria Letizia Giancola
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Andrea Fontana
- Biostatistic Unit, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Pierluca Piselli
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biologyl, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biologyl, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biologyl, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luisa Marchioni
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Antonella Vulcano
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Chiara De Giuli
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Massimiliano Copetti
- Biostatistic Unit, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Carla Fontana
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy,*Correspondence: Emanuele Nicastri,
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy,Valerio Pazienza,
| |
Collapse
|
5
|
Cai Z, Zhu T, Liu F, Zhuang Z, Zhao L. Co-pathogens in Periodontitis and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:723719. [PMID: 34616755 PMCID: PMC8488124 DOI: 10.3389/fmed.2021.723719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Localized inflammatory lesions in one area of the body may affect other distant organs through various modes of transmission thus initiating secondary inflammatory infections. Periodontal disease (PD) and inflammatory bowel disease (IBD) have been shown to coexist. Periodontitis is a multifactorial inflammatory disease, and dental plaque is considered to be the initial risk factor. Individuals with genetic susceptibility are more likely to develop periodontitis when exposed to external stimuli. IBD is affected by host genetics, immunoregulation, daily diet, and the gut microbiota, and its risk factors appear to be shared with those of PD. However, the key etiologies of both diseases remain unclear, thus hindering the exploration of possible links between IBD and PD. Recent studies and systematic reviews have focused on evidence-based statistics of the prevalence and clinical manifestations of both diseases, but discussions of the microbial etiological correlation between periodontitis and intestinal inflammation are scarce. Here, we summarize the potential common pathogenic microorganisms that may serve as bridges between the two diseases. Studies have shown that invasive microorganisms such as Porphyromonas gingivalis, Fusobacterium nucleatum, Klebsiella spp. and Campylobacter spp. play key roles in the comorbidity of PD and IBD.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Zixuan Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Thomas C, Nothaft H, Yadav R, Fodor C, Alemka A, Oni O, Bell M, Rada B, Szymanski CM. Characterization of ecotin homologs from Campylobacter rectus and Campylobacter showae. PLoS One 2020; 15:e0244031. [PMID: 33378351 PMCID: PMC7773321 DOI: 10.1371/journal.pone.0244031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ecotin, first described in Escherichia coli, is a potent
inhibitor of a broad range of serine proteases including those typically
released by the innate immune system such as neutrophil elastase (NE). Here we
describe the identification of ecotin orthologs in various
Campylobacter species, including Campylobacter
rectus and Campylobacter showae residing in the
oral cavity and implicated in the development and progression of periodontal
disease in humans. To investigate the function of these ecotins in
vitro, the orthologs from C.
rectus and C. showae were
recombinantly expressed and purified from E.
coli. Using CmeA degradation/protection assays,
fluorescence resonance energy transfer and NE activity assays, we found that
ecotins from C. rectus and C.
showae inhibit NE, factor Xa and trypsin, but not the
Campylobacter jejuni serine protease HtrA or its ortholog
in E. coli, DegP. To further evaluate ecotin
function in vivo, an E. coli
ecotin-deficient mutant was complemented with the C.
rectus and C. showae
homologs. Using a neutrophil killing assay, we demonstrate that the low survival
rate of the E. coli ecotin-deficient mutant
can be rescued upon expression of ecotins from C.
rectus and C. showae. In
addition, the C. rectus and
C. showae ecotins partially compensate for
loss of N-glycosylation and increased protease susceptibility in the related
pathogen, Campylobacter jejuni, thus implicating a similar role
for these proteins in the native host to cope with the protease-rich environment
of the oral cavity.
Collapse
Affiliation(s)
- Cody Thomas
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Ruchi Yadav
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christopher Fodor
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Abofu Alemka
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Oluwadamilola Oni
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Michael Bell
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christine M. Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
- * E-mail:
| |
Collapse
|
7
|
Yan Y, Nguyen LH, Franzosa EA, Huttenhower C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med 2020; 12:71. [PMID: 32791981 PMCID: PMC7427293 DOI: 10.1186/s13073-020-00765-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The biological importance and varied metabolic capabilities of specific microbial strains have long been established in the scientific community. Strains have, in the past, been largely defined and characterized based on microbial isolates. However, the emergence of new technologies and techniques has enabled assessments of their ecology and phenotypes within microbial communities and the human microbiome. While it is now more obvious how pathogenic strain variants are detrimental to human health, the consequences of subtle genetic variation in the microbiome have only recently been exposed. Here, we review the operational definitions of strains (e.g., genetic and structural variants) as they can now be identified from microbial communities using different high-throughput, often culture-independent techniques. We summarize the distribution and diversity of strains across the human body and their emerging links to health maintenance, disease risk and progression, and biochemical responses to perturbations, such as diet or drugs. We list methods for identifying, quantifying, and tracking strains, utilizing high-throughput sequencing along with other molecular and “culturomics” technologies. Finally, we discuss implications of population studies in bridging experimental gaps and leading to a better understanding of the health effects of strains in the human microbiome.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Long H Nguyen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|