1
|
Fernandez-Garcia MD, Garcia-Ibañez N, Camacho J, Gutierrez A, Sánchez García L, Calvo C, Moreno-Docón A, Menasalvas AI, Medina A, Perez-Ruiz M, Nieto Toboso MC, Muñoz-Almagro C, Launes C, Berengua C, Cabrerizo M. Enhanced echovirus 11 genomic surveillance in neonatal infections in Spain following a European alert reveals new recombinant forms linked to severe cases, 2019 to 2023. Euro Surveill 2024; 29:2400221. [PMID: 39484685 PMCID: PMC11528903 DOI: 10.2807/1560-7917.es.2024.29.44.2400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 11/03/2024] Open
Abstract
BackgroundIn 2023, a European alert was issued regarding an increase in severe enterovirus (EV) neonatal infections associated with echovirus 11 (E11) new lineage 1.AimTo analyse E11-positive cases between 2019 and 2023 to investigate whether the new lineage 1 circulated in Spain causing severe neonatal infections.MethodsEV-positive samples from hospitalised cases are sent for typing to the National Reference Enterovirus Laboratory. Available samples from 2022-23 were subjected to metagenomic next-generation sequencing.ResultsOf 1,288 samples genotyped, 103 were E11-positive (98 patients: 6 adults, 33 neonates, 89 children under 6 years; male to female ratio 1.9). E11 detection rate was similar before and after detection of the new lineage 1 in Spain in June 2022 (9.7% in 2019 vs 10.6% in 2023). The proportion of E11-infected ICU-admitted neonates in 2019-2022 (2/7) vs 2022-2023 (5/12) did not significantly differ (p = 0.65). In severe neonatal infections, 4/7 E11 strains were not linked to the new lineage 1. The three novel E11 recombinant genomes were associated with severe (n = 2) and non-severe (n = 1) cases from 2022-2023 and clustered outside the new lineage 1. Coinfecting pathogenic viruses were present in four of 10 E11-positive samples.ConclusionThe emergence of the new lineage 1 is not linked with an increase in incidence or severity of neonatal E11 infections in Spain. The detection of two novel E11 recombinants associated with severe disease warrants enhancing genomic and clinical surveillance.
Collapse
Affiliation(s)
- Maria Dolores Fernandez-Garcia
- Enterovirus and Viral Gastroenteritis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Nerea Garcia-Ibañez
- Enterovirus and Viral Gastroenteritis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Camacho
- Enterovirus and Viral Gastroenteritis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Almudena Gutierrez
- Hospital Universitario La Paz, Madrid, Spain
- IdiPaz Foundation, Translational Research Network in Pediatric Infectious Diseases, Hospital Universitario La Paz, Madrid, Spain
| | - Laura Sánchez García
- Hospital Universitario La Paz, Madrid, Spain
- IdiPaz Foundation, Translational Research Network in Pediatric Infectious Diseases, Hospital Universitario La Paz, Madrid, Spain
| | - Cristina Calvo
- Hospital Universitario La Paz, Madrid, Spain
- IdiPaz Foundation, Translational Research Network in Pediatric Infectious Diseases, Hospital Universitario La Paz, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Antonio Moreno-Docón
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Ana Isabel Menasalvas
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Antonio Medina
- Hospital Universitario Regional de Málaga, Málaga, Spain
| | | | | | - Carmen Muñoz-Almagro
- Medicine Department, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristian Launes
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carla Berengua
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Cabrerizo
- Enterovirus and Viral Gastroenteritis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- IdiPaz Foundation, Translational Research Network in Pediatric Infectious Diseases, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
2
|
Leser JS, Frost JL, Wilson CJ, Rudy MJ, Clarke P, Tyler KL. VP1 is the primary determinant of neuropathogenesis in a mouse model of enterovirus D68 acute flaccid myelitis. J Virol 2024; 98:e0039724. [PMID: 38869283 PMCID: PMC11264684 DOI: 10.1128/jvi.00397-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory and neurologic disease [acute flaccid myelitis (AFM)]. Intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with US/IL/14-18952 (IL52), a clinical isolate from the 2014 EV-D68 epidemic, results in many of the pathogenic features of human AFM, including viral infection of the spinal cord, death of motor neurons, and resultant progressive paralysis. In distinction, CA/14-4231 (CA4231), another clinical isolate from the 2014 EV-D68 outbreak, does not cause paralysis in mice, does not grow in the spinal cord, and does not cause motor neuron loss following IM injection. A panel of chimeric viruses containing sequences from IL52 and CA4231 was used to demonstrate that VP1 is the main determinant of EV-D68 neurovirulence following IM injection of neonatal SW mice. VP1 contains four amino acid differences between IL52 and CA4231. Mutations resulting in substituting these four amino acids (CA4231 residues into the IL52 polyprotein) completely abolished neurovirulence. Conversely, mutations resulting in substituting VP1 IL52 amino acid residues into the CA4231 polyprotein created a virus that induced paralysis to the same degree as IL52. Neurovirulence following infection of neonatal SW mice with parental and chimeric viruses was associated with viral growth in the spinal cord. IMPORTANCE Emerging viruses allow us to investigate mutations leading to increased disease severity. Enterovirus D68 (EV-D68), once the cause of rare cases of respiratory illness, recently acquired the ability to cause severe respiratory and neurologic disease. Chimeric viruses were used to demonstrate that viral structural protein VP1 determines growth in the spinal cord, motor neuron loss, and paralysis following intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with EV-D68. These results have relevance for predicting the clinical outcome of future EV-D68 epidemics as well as targeting retrograde transport as a potential strategy for treating virus-induced neurologic disease.
Collapse
Affiliation(s)
- J. Smith Leser
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joshua L. Frost
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Courtney J. Wilson
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
3
|
Calabria de Araujo J, Carvalho APA, Leal CD, Natividade M, Borin M, Guerra A, Carobin N, Sabino A, Almada M, Costa MCM, Saia F, Frutuoso LV, Iani FCM, Adelino T, Fonseca V, Giovanetti M, Alcantara LCJ. Detection of Multiple Human Viruses, including Mpox, Using a Wastewater Surveillance Approach in Brazil. Pathogens 2024; 13:589. [PMID: 39057816 PMCID: PMC11279579 DOI: 10.3390/pathogens13070589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Sewage surveillance can be used as an effective complementary tool for detecting pathogens in local communities, providing insights into emerging threats and aiding in the monitoring of outbreaks. In this study using qPCR and whole genomic sewage surveillance, we detected the Mpox virus along with other viruses, in municipal and hospital wastewaters in Belo Horizonte, Brazil over a 9-month period (from July 2022 until March 2023). MPXV DNA detection rates varied in our study, with 19.6% (11 out of 56 samples) detected through the hybrid capture method of whole-genome sequencing and 20% (12 out of 60 samples) through qPCR. In hospital wastewaters, the detection rate was higher, at 40% (12 out of 30 samples) compared to 13.3% (4 out of 30 samples) in municipal wastewaters. This variation could be attributed to the relatively low number of MPXV cases reported in the city, which ranged from 106 to 341 cases during the study period, and the dilution effects, given that each of the two wastewater treatment plants (WWTP) investigated serves approximately 1.1 million inhabitants. Additionally, nine other virus families were identified in both hospitals and municipal wastewaters, including Adenoviridade, Astroviridae, Caliciviridae, Picornaviridade, Polyomaviridae, Coronaviridae (which includes SARS-CoV-2), Herspesviridae, Papillomaviridae and Flaviviridae (notably including Dengue). These findings underscore the potential of genomic sewage surveillance as a robust public health tool for monitoring a wide range of viruses circulating in both community and hospitals environments, including MPXV.
Collapse
Affiliation(s)
- Juliana Calabria de Araujo
- Department of Sanitary and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte 31270901, Brazil
| | - Ana Paula Assad Carvalho
- Department of Sanitary and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte 31270901, Brazil
| | - Cintia D. Leal
- Department of Sanitary and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte 31270901, Brazil
| | - Manuelle Natividade
- Department of Social Pharmacy, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270901, Brazil
| | - Marcus Borin
- Department of Social Pharmacy, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270901, Brazil
| | - Augusto Guerra
- Department of Social Pharmacy, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270901, Brazil
| | - Natália Carobin
- Clinical and Toxicological Analysis Department, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270901, Brazil
| | - Adriano Sabino
- Clinical and Toxicological Analysis Department, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270901, Brazil
| | - Mariana Almada
- Centro Federal de Educação Tecnológica—CEFET-MG, Belo Horizonte 30421169, Brazil
| | | | - Flavia Saia
- Department of Marine Sciences, Marine Institute, Universidade Federal de São Paulo—UNIFESP, Baixada Santista 11070100, Brazil
| | - Livia V. Frutuoso
- General Coordination of Arbovirus Surveillance, Department of Health and Environmental Surveillance, Ministry of Health, Brasília 70304000, Brazil
| | - Felipe C. M. Iani
- Central Public Health Laboratory, Fundação Ezequiel Dias, Belo Horizonte 30510010, Brazil; (F.C.M.I.); (T.A.)
| | - Talita Adelino
- Central Public Health Laboratory, Fundação Ezequiel Dias, Belo Horizonte 30510010, Brazil; (F.C.M.I.); (T.A.)
| | - Vagner Fonseca
- Coordination of Surveillance, Emergency Preparedness and Response (PHE), Pan American Health Organization/World Health Organization (PAHO/WHO), Pan-Americana da Saúde/Organização Mundial da Saúde (OPAS/OMS), Brasilia 70312970, Brazil;
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di, 00128 Roma, Italy;
- René Rachou Institute, Fundação Oswaldo Cruz, Belo Horizonte 30190001, Brazil;
| | | |
Collapse
|
4
|
Mengual-Chuliá B, Tamayo-Trujillo R, Mira-Iglesias A, Cano L, García-Esteban S, Ferrús ML, Puig-Barberà J, Díez-Domingo J, López-Labrador FX. Enterovirus D68 disease burden and epidemiology in hospital-admitted influenza-like illness, Valencia region of Spain, 2014-2020 influenza seasons. J Med Virol 2024; 96:e29810. [PMID: 39049549 DOI: 10.1002/jmv.29810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Enterovirus D68 (EV-D68) is an emerging agent for which data on the susceptible adult population is scarce. We performed a 6-year analysis of respiratory samples from influenza-like illness (ILI) admitted during 2014-2020 in 4-10 hospitals in the Valencia Region, Spain. EV-D68 was identified in 68 (3.1%) among 2210 Enterovirus (EV)/Rhinovirus (HRV) positive samples. Phylogeny of 59 VP1 sequences showed isolates from 2014 clustering in B2 (6/12), B1 (5/12), and A2/D1 (1/12) subclades; those from 2015 (n = 1) and 2016 (n = 1) in B3 and A2/D1, respectively; and isolates from 2018 in A2/D3 (42/45), and B3 (3/45). B1 and B2 viruses were mainly detected in children (80% and 67%, respectively); B3 were equally distributed between children and adults; whereas A2/D1 and A2/D3 were observed only in adults. B3 viruses showed up to 16 amino acid changes at predicted antigenic sites. In conclusion, two EV-D68 epidemics linked to ILI hospitalized cases occurred in the Valencia Region in 2014 and 2018, with three fatal outcomes and one ICU admission. A2/D3 strains from 2018 were associated with severe respiratory infection in adults. Because of the significant impact of non-polio enteroviruses in ILI and the potential neurotropism, year-round surveillance in respiratory samples should be pursued.
Collapse
Affiliation(s)
- Beatriz Mengual-Chuliá
- Virology Laboratory, Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ainara Mira-Iglesias
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Vaccine Research Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | - Laura Cano
- Virology Laboratory, Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | - Sandra García-Esteban
- Virology Laboratory, Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | - Maria Loreto Ferrús
- Virology Laboratory, Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | - Joan Puig-Barberà
- Vaccine Research Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | - Javier Díez-Domingo
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Vaccine Research Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | - F Xavier López-Labrador
- Virology Laboratory, Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology & Ecology, Medical School, University of Valencia, Valencia, Spain
| |
Collapse
|
5
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
6
|
Yun KW, Ahn B, Choi SH, Kang DY, Kim TS, Lee MK, Park KU, Choi EH. First Detection of Enterovirus D68 in Korean Children, September 2022. Infect Chemother 2023; 55:422-430. [PMID: 37674335 PMCID: PMC10771948 DOI: 10.3947/ic.2023.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/20/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Enterovirus D68 (EV-D68) is a re-emerging pathogen that is particularly common in children and may cause asthma-like respiratory infection and acute flaccid myelitis. However, in Korea, EV-D68 has never been reported thus far. This study aimed to identify EV-D68 from nasopharyngeal aspirates (NPAs) in Korean children with a respiratory tract infection. MATERIALS AND METHODS The EV-D68 reference strain was purchased and blindly used to assess the detection ability of three commercial and one in-house mRT-PCR kit in 2018. Then, we selected children whose specimens were positive for human rhinovirus (HRV) and/or enterovirus (EV) by Allplex mRT-PCR (Seegene, Inc., Seoul, Korea) from April to December 2022. Total RNA was extracted from NPAs, and a partial 5'-UTR gene was amplified and sequenced for the identification of HRV/EV species. Additionally, PCR targeting the VP1 gene was performed to assess EV-D68-positive NPAs, followed by sequencing. Phylogenetic analysis and comparison of amino acid sequence alignments were performed using a partial VP1 gene of our and recent international EV-D68 strains. RESULTS Among the mRT-PCR kits tested, only the in-house kit was able to detect EV-D68 in 2018. However, we detected three EV-D68 strains among children hospitalized with fever and/or respiratory symptoms in September - December 2022 who tested positive for EV by the Allplex kit. Two of them were healthy toddlers with lower respiratory infections accompanied by new-onset wheezing but no neurologic complications. Among 34 children with lower respiratory infection who tested positive for HRV during the same period, EV-D68 was not detected. Phylogenetic analysis revealed that the first Korean EV-D68 belonged to subclade B3. Amino acid sequence alignment of international subclade B3 EV-D68 strains also showed that our strain is genetically more related to those from Europe than those from Japan. CONCLUSION We first detected EV-D68 in three Korean children who had EV detected by the Allplex mRT-PCR kit in 2022. EV-D68 also circulated in Korea in fall 2022, but the prevalence and severity seemed to be lower than those in previous reports from other countries.
Collapse
Affiliation(s)
- Ki Wook Yun
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Bin Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Sung Hwan Choi
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Da Yeon Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Mi Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea.
| |
Collapse
|
7
|
Li Q, Chen X, Ai J, Li L, Li C, Zhu Y, Wang R, Duan Y, Zhang M, Xie Z. Clinical and molecular epidemiologic features of enterovirus D68 infection in children with acute lower respiratory tract infection in China. Arch Virol 2023; 168:206. [PMID: 37453955 DOI: 10.1007/s00705-023-05823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/25/2023] [Indexed: 07/18/2023]
Abstract
Acute flaccid paralysis (AFP) associated with enterovirus D68 (EV-D68) infection has attracted much attention since an outbreak in the USA in 2014. Notably, EV-D68 was detected in a child with AFP for the first time in China in 2018. In a multicentre study from May 2017 to December 2019, we monitored EV-D68 infections in hospitalized children with acute lower respiratory tract infection (ALRTI) in China. Out of 3,071 samples collected from patients with ALRTI, ten were positive for EV-D68. All patients presented with mild diseases with no neurological symptoms or signs. Phylogenetic analysis based on the VP1 gene showed that all EV-D68 sequences obtained in this study belonged to subclade B3 and were close to sequences of EV-D68 strains obtained from patients with AFP in the USA. Four EV-D68 strains were isolated, and their complete genome sequences were determined. These sequences did not show any evidence of recombination events. To assess their neurotropism, the isolates were used to infect the "neuronal-like" cell line SH-SY5Y, and resulted in a cytopathic effect. We further analysed the structure and sites that may be associated with neurovirulence, including the stem-loop structure in the untranslated region (3'UTR) and identified amino acid substitutions (M291T, V341A, T860N, D927N, S1108G, and R2005K) in the coding region and specific nucleotides (127T, 262C, and 339T) in the 5' UTR. In conclusion, EV-D68 infection was detected in a small number of children with ALRTI in China from 2017 to 2019. Disease symptoms in these children were relatively mild with no neurological complications, and all EV-D68 sequences belonged to subclade B3.
Collapse
Affiliation(s)
- Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lei Li
- Yinchuan Maternal and Child Health Care Hospital, Yinchuan, 750001, China
| | - Changchong Li
- The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Meng Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
8
|
Kang J, Huang M, Li J, Zhang K, Zhu C, Liu S, Zhou Z, Wang T, Wang Z. Enterovirus D68 VP3 Targets the Interferon Regulatory Factor 7 To Inhibit Type I Interferon Response. Microbiol Spectr 2023; 11:e0413822. [PMID: 37125923 PMCID: PMC10269600 DOI: 10.1128/spectrum.04138-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a globally emerging pathogen causing severe respiratory illnesses mainly in children. The protease from EV-D68 could impair type I interferon (IFN-I) production. However, the role of the EV-D68 structural protein in antagonizing host antiviral responses remains largely unknown. We showed that the EV-D68 structural protein VP3 interacted with IFN regulatory factor 7 (IRF7), and this interaction suppressed the phosphorylation and nuclear translocation of IRF7 and then repressed the transcription of IFN. Furthermore, VP3 inhibited the TNF receptor associated factor 6 (TRAF6)-induced ubiquitination of IRF7 by competitive interaction with IRF7. IRF7Δ305-503 showed much weaker interaction ability to VP3, and VP3Δ41-50 performed weaker interaction ability with IRF7. The VP3 from enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) was also found to interact with the IRF7 protein. These results indicate that the enterovirus structural protein VP3 plays a pivotal role in subverting host innate immune responses and may be a potential target for antiviral drug research. IMPORTANCE EV-D68 is a globally emerging pathogen that causes severe respiratory illnesses. Here, we report that EV-D68 inhibits innate immune responses by targeting IRF7. Further investigations revealed that the structural protein VP3 inhibited the TRAF6-induced ubiquitination of IRF7 by competitive interaction with IRF7. These results indicate that the control of IRF7 by VP3 may be a mechanism by which EV-D68 represses IFN-I production.
Collapse
Affiliation(s)
- Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Jinyu Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Keke Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Cheng Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Zhenwei Zhou
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Fall A, Forman M, Morris CP, Gniazdowski V, Luo CH, Hanlon A, Miller H, Bergman Y, Mostafa HH. Enterovirus characterized from cerebrospinal fluid in a cohort from the Eastern United States. J Clin Virol 2023; 161:105401. [PMID: 36805602 DOI: 10.1016/j.jcv.2023.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Enteroviruses (EVs) are predominant causes of a spectrum of neurological diseases. To better understand the origins of the outbreaks of disease associated with EV, it is essential to develop an efficient surveillance system that identifies the circulating EVs and correlate their genomic evolution with the disease presentations. METHODS The clinical presentations of patients with positive EV from cerebrospinal fluid (CSF) between 2014 and 2022, diagnosed at the Johns Hopkins Medical Microbiology Laboratory, were compared from year to year. EV typing and whole genome sequencing were performed and correlated to the spectrum of disease. RESULTS A total of 95 CSF specimens were positive for EV between 2014 and 2022. The percentage positivity ranged from the lowest of 1.1% in 2020 to the highest of 3.2% in 2015. The median ages declined from 22 years in 2014 to less than one year starting in 2016 to 34 in 2022. Typing using VP1 sequencing revealed that E30 and E6 were associated with meningitis in adults but coxsackieviruses (CVs-B3 and B5) were detected from pediatric patients with fever. Whole genome sequencing revealed multiple recombination events. In 2020, a recombinant CV-A9 was detected in a CSF sample associated with unusual presentation of sepsis, profound acute bilateral sensory neural hearing loss, and myofasciitis. CONCLUSIONS EV genomic surveillance is needed for a better understanding of the genetic determinants of neurovirulence. Whole genome sequencing can reveal recombination events missed by traditional molecular surveillance methods.
Collapse
Affiliation(s)
- Amary Fall
- Johns Hopkins School of Medicine, Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA
| | - Michael Forman
- Johns Hopkins School of Medicine, Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA
| | - C Paul Morris
- Johns Hopkins School of Medicine, Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA; National Institute of Allergy and Infectious Disease, National Institutes of Health, Frederick, MD, USA
| | - Victoria Gniazdowski
- Johns Hopkins School of Medicine, Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA
| | - Chun Huai Luo
- Johns Hopkins School of Medicine, Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA
| | - Ann Hanlon
- Johns Hopkins Hospital Medical Microbiology Laboratory, Meyer B-130, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA
| | - Heather Miller
- Johns Hopkins Hospital Medical Microbiology Laboratory, Meyer B-130, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA
| | - Yehudit Bergman
- Johns Hopkins School of Medicine, Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD, 21287-7093, USA.
| |
Collapse
|
10
|
Sridhar A, Depla JA, Mulder LA, Karelehto E, Brouwer L, Kruiswijk L, Vieira de Sá R, Meijer A, Evers MM, van Kuppeveld FJM, Pajkrt D, Wolthers KC. Enterovirus D68 Infection in Human Primary Airway and Brain Organoids: No Additional Role for Heparan Sulfate Binding for Neurotropism. Microbiol Spectr 2022; 10:e0169422. [PMID: 36154279 PMCID: PMC9603061 DOI: 10.1128/spectrum.01694-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that can cause outbreaks of acute flaccid paralysis (AFP), a polio-like disease. Before 2010, EV-D68 was a rare pathogen associated with mild respiratory symptoms, but the recent EV-D68 related increase in severe respiratory illness and outbreaks of AFP is not yet understood. An explanation for the rise in severe disease is that it may be due to changes in the viral genome resulting in neurotropism. In this regard, in addition to sialic acid, binding to heparan sulfate proteoglycans (HSPGs) has been identified as a feature for viral entry of some EV-D68 strains in cell lines. Studies in human primary organotypic cultures that recapitulate human physiology will address the relevance of these HSPG-binding mutations for EV-D68 infection in vivo. Therefore, in this work, we studied the replication and neurotropism of previously determined sialic acid-dependent and HSPG-dependent strains using primary human airway epithelial (HAE) cultures and induced human pluripotent stem cell (iPSC)-derived brain organoids. All three strains (B2/2042, B2/947, and A1/1348) used in this study infected HAE cultures and human brain organoids (shown for the first time). Receptor-blocking experiments in both cultures confirm that B2/2042 infection is solely dependent on sialic acid, while B2/947 and A1/1348 (HSPG to a lesser extent) binds to sialic acid and HSPG for cell entry. Our data suggest that HSPG-binding can be used by EV-D68 for entry in human physiological models but offers no advantage for EV-D68 infection of brain cells. IMPORTANCE Recent outbreaks of enterovirus D68, a nonpolio enterovirus, is associated with a serious neurological condition in young children, acute flaccid myelitis (AFM). As there is no antiviral treatment or vaccine available for EV-D68 it is important to better understand how EV-D68 causes AFM and why only recent outbreaks are associated with AFM. We investigated if a change in receptor usage of EV-D68 increases the virulence of EV-D68 in the airway or the central nervous system and thus could explain the increase in AFM cases. We studied this using physiologically relevant human airway epithelium and cerebral organoid cultures that are physiologically relevant human models. Our data suggest that heparan sulfate proteoglycans can be used by EV-D68 as an additional entry receptor in human physiological models but offers no advantage for EV-D68 infection of brain cells, and our data show the potential of these 46 innovative models for virology.
Collapse
Affiliation(s)
- Adithya Sridhar
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Josse A. Depla
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Lance A. Mulder
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Eveliina Karelehto
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Lieke Brouwer
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Leonie Kruiswijk
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
| | | | - Adam Meijer
- National Institute for Public Health and Environment, Centre for Infectious Diseases Research and Laboratory Surveillance, Bilthoven, The Netherlands
| | | | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dasja Pajkrt
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Katja C. Wolthers
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Al-Qahtani SM, Shati AA, Alqahtani YA, Ali AS. Etiology, Clinical Phenotypes, Epidemiological Correlates, Laboratory Biomarkers and Diagnostic Challenges of Pediatric Viral Meningitis: Descriptive Review. Front Pediatr 2022; 10:923125. [PMID: 35783317 PMCID: PMC9249085 DOI: 10.3389/fped.2022.923125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Meningitis is an inflammation of the brain and spinal cord meninges caused by infectious and non-infectious agents. Infectious agents causing meningitis include viruses, bacteria, and fungi. Viral meningitis (VM), also termed aseptic meningitis, is caused by some viruses, such as enteroviruses (EVs), herpesviruses, influenza viruses, and arboviruses. However, EVs represent the primary cause of VM. The clinical symptoms of this neurological disorder may rapidly be observed after the onset of the disease, or take prolonged time to develop. The primary clinical manifestations of VM include common flu-like symptoms of headache, photophobia, fever, nuchal rigidity, myalgia, and fatigue. The severity of these symptoms depends on the patient's age; they are more severe among infants and children. The course of infection of VM varies between asymptomatic, mild, critically ill, and fatal disease. Morbidities and mortalities of VM are dependent on the early recognition and treatment of the disease. There were no significant distinctions in the clinical phenotypes and symptoms between VM and meningitis due to other causative agents. To date, the pathophysiological mechanisms of VM are unclear. In this scientific communication, a descriptive review was performed to give an overview of pediatric viral meningitis (PVM). PVM may occasionally result in severe neurological consequences such as mental retardation and death. Clinical examinations, including Kernig's, Brudzinski's, and nuchal rigidity signs, were attempted to determine the clinical course of PVM with various success rates revealed. Some epidemiological correlates of PVM were adequately reviewed and presented in this report. They were seen depending mainly on the causative virus. The abnormal cytological and biochemical features of PVM were also discussed and showed potentials to distinguish PVM from pediatric bacterial meningitis (PBM). The pathological, developmental, behavioral, and neuropsychological complications of PVM were also presented. All the previously utilized techniques for the etiological diagnosis of PVM which include virology, serology, biochemistry, and radiology, were presented and discussed to determine their efficiencies and limitations. Finally, molecular testing, mainly PCR, was introduced and showed 100% sensitivity rates.
Collapse
Affiliation(s)
- Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdelwahid Saeed Ali
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Rmadi Y, Elargoubi A, González-Sanz R, Mastouri M, Cabrerizo M, Aouni M. Molecular characterization of enterovirus detected in cerebrospinal fluid and wastewater samples in Monastir, Tunisia, 2014-2017. Virol J 2022; 19:45. [PMID: 35303921 PMCID: PMC8932122 DOI: 10.1186/s12985-022-01770-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Enteroviruses (EVs) are considered the main causative agents responsible for aseptic meningitis worldwide. This study was conducted in the Monastir region of Tunisia in order to know the prevalence of EV infections in children with meningitis symptoms. Detected EV types were compared to those identified in wastewater samples.
Methods Two hundred CSF samples collected from hospitalized patients suspected of having aseptic meningitis for an EV infection between May 2014 and May 2017 and 80 wastewater samples collected in the same time-period were analyzed. EV detection and genotyping were performed using PCR methods followed by sequencing. Phylogenetic analyses in the 3′-VP1 region were also carried-out. Results EVs were detected in 12% (24/200) CSF and in 35% (28/80) wastewater samples. EV genotyping was reached in 50% (12/24) CSF-positive samples and in 64% (18/28) sewage. Most frequent types detected in CSF were CVB3, E-30 and E-9 (25% each). In wastewater samples, the same EVs were identified, but also other types non-detected in CSF samples, such as E-17,CVA9 and CVB1 from EV species B, and EV-A71 and CVA8 from EV-A, suggesting their likely lower pathogenicity. Phylogenetic analysis showed that within the same type, different strains circulate in Tunisia. For some of the EV types such as E-9, E-11 or CVB3, the same strains were detected in CSF and wastewater samples. Conclusions Epidemiological studies are important for the surveillance of the EV infections and to better understand the emergence of certain types and variants.
Collapse
Affiliation(s)
- Yosra Rmadi
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia
| | - Aida Elargoubi
- Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rubén González-Sanz
- Enterovirus and Viral Gastrointestinal Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maha Mastouri
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia.,Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Maria Cabrerizo
- Enterovirus and Viral Gastrointestinal Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Mahjoub Aouni
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia
| |
Collapse
|
13
|
Epidemiology of Echovirus 30 Infections Detected in a University Hospital in Catalonia, Spain, in 1995–2020. Microorganisms 2022; 10:microorganisms10030592. [PMID: 35336167 PMCID: PMC8955149 DOI: 10.3390/microorganisms10030592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
There is a growing interest in echovirus 30 (E30), an enterovirus responsible for neurological disease and hospitalization. There are multiple studies of outbreaks, but few that study the epidemiology over long periods of time. Our study aims to describe the clinical, epidemiological and microbiological characteristics of a series of E30 infections detected over 26 years. Data were retrospectively collected from a database of all enterovirus infections identified in our laboratory. They were detected by viral isolation or nucleic acid detection in patients presenting with respiratory or neurological infections, rash, sepsis-like syndrome, or gastroenteritis. Enterovirus genotyping was performed by amplification of the VP1 gene using RT-nested PCR, followed by sequencing and BLAST analysis. Of the 2402 enterovirus infections detected, 1619 were linked to at least one genotype and 173 were caused by E30. Clinical information was available for 158 (91.3%) patients. E30 was associated with neurological infection in 107 (67.8%) cases and it was detected almost every year. Phylogenetic analysis was performed with 67 sequences. We observed that E30 strains circulating in Catalonia from 1996 to 2016 belong to two lineages (E and F), although the majority cluster was in F. In 2018, lineage I emerged as the dominant lineage.
Collapse
|
14
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
15
|
Penela-Sánchez D, González-de-Audicana J, Armero G, Henares D, Esteva C, de-Sevilla MF, Ricart S, Jordan I, Brotons P, Cabrerizo M, Muñoz-Almagro C, Launes C. Lower Respiratory Tract Infection and Genus Enterovirus in Children Requiring Intensive Care: Clinical Manifestations and Impact of Viral Co-Infections. Viruses 2021; 13:2059. [PMID: 34696489 PMCID: PMC8541154 DOI: 10.3390/v13102059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Infection by rhinovirus (RV) and enterovirus (EV) in children ranges from asymptomatic infection to severe lower respiratory tract infection (LRTI). This cohort study evaluates the clinical impact of RV/EV species, alone or in codetection with other viruses, in young children with severe LRTI. Seventy-one patients aged less than 5 years and admitted to the Paediatric Intensive Care Unit (PICU) of a reference children's hospital with RV or EV (RV/EV) LRTI were prospectively included from 1/2018 to 3/2020. A commercial PCR assay for multiple respiratory pathogens was performed in respiratory specimens. In 22/71, RV/EV + respiratory syncytial virus (RSV) was found, and 18/71 had RV/EV + multiple viral detections. Patients with single RV/EV detection required invasive mechanical ventilation (IMV) as frequently as those with RSV codetection, whereas none of those with multiple viral codetections required IMV. Species were determined in 60 samples, 58 being RV. No EV-A, EV-C, or EV-D68 were detected. RV-B and EV-B were only found in patients with other respiratory virus codetections. There were not any associations between RV/EV species and severity outcomes. To conclude, RV/EV detection alone was observed in young children with severe disease, while multiple viral codetections may result in reduced clinical severity. Differences in pathogenicity between RV and EV species could not be drawn.
Collapse
Affiliation(s)
- Daniel Penela-Sánchez
- Paediatrics Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.P.-S.); (G.A.); (M.-F.d.-S.); (S.R.)
- Paediatrics Intensive Care Unit, Hospital Sant Joan de Déu, 08195 Barcelona, Spain;
| | - Jon González-de-Audicana
- Enterovirus and Viral Gastroenteritis Unit, Centro Nacional de Microbiología, Instituto Carlos III, 28222 Madrid, Spain; (J.G.-d.-A.); (M.C.)
| | - Georgina Armero
- Paediatrics Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.P.-S.); (G.A.); (M.-F.d.-S.); (S.R.)
- Paediatrics Intensive Care Unit, Hospital Sant Joan de Déu, 08195 Barcelona, Spain;
| | - Desiree Henares
- Grupo de Investigación en Enfermedades Infecciosas Pediátricas, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.H.); (C.E.); (P.B.); (C.M.-A.)
- Molecular Microbiology Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Esteva
- Grupo de Investigación en Enfermedades Infecciosas Pediátricas, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.H.); (C.E.); (P.B.); (C.M.-A.)
- Molecular Microbiology Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain
| | - Mariona-Fernández de-Sevilla
- Paediatrics Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.P.-S.); (G.A.); (M.-F.d.-S.); (S.R.)
- Grupo de Investigación en Enfermedades Infecciosas Pediátricas, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.H.); (C.E.); (P.B.); (C.M.-A.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Paediatrics Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Silvia Ricart
- Paediatrics Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.P.-S.); (G.A.); (M.-F.d.-S.); (S.R.)
- Paediatrics Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Iolanda Jordan
- Paediatrics Intensive Care Unit, Hospital Sant Joan de Déu, 08195 Barcelona, Spain;
- Grupo de Investigación en Enfermedades Infecciosas Pediátricas, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.H.); (C.E.); (P.B.); (C.M.-A.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Paediatrics Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Pedro Brotons
- Grupo de Investigación en Enfermedades Infecciosas Pediátricas, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.H.); (C.E.); (P.B.); (C.M.-A.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, School of Medicine, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - María Cabrerizo
- Enterovirus and Viral Gastroenteritis Unit, Centro Nacional de Microbiología, Instituto Carlos III, 28222 Madrid, Spain; (J.G.-d.-A.); (M.C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Muñoz-Almagro
- Grupo de Investigación en Enfermedades Infecciosas Pediátricas, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.H.); (C.E.); (P.B.); (C.M.-A.)
- Molecular Microbiology Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, School of Medicine, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Cristian Launes
- Paediatrics Department, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.P.-S.); (G.A.); (M.-F.d.-S.); (S.R.)
- Grupo de Investigación en Enfermedades Infecciosas Pediátricas, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08195 Barcelona, Spain; (D.H.); (C.E.); (P.B.); (C.M.-A.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Paediatrics Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
16
|
de Ceano-Vivas M, García ML, Velázquez A, Martín del Valle F, Menasalvas A, Cilla A, Epalza C, Romero MP, Cabrerizo M, Calvo C. Neurodevelopmental Outcomes of Infants Younger Than 90 Days Old Following Enterovirus and Parechovirus Infections of the Central Nervous System. Front Pediatr 2021; 9:719119. [PMID: 34650940 PMCID: PMC8505960 DOI: 10.3389/fped.2021.719119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Enteroviruses (EVs) and human parechoviruses (HPeVs) are a major cause of central nervous system (CNS) infection in young infants. They have been implicated in neurodevelopmental delay, however limited data are available. The aim of this study is to describe the clinical outcome of young infants and to assess and compare the medium-term neurodevelopment following CNS infections caused by EV and HPeV. A multicentre observational ambispective study was conducted between May 2013 and March 2018. Children under 3 months of age with EV or HPeV CNS infection excluding encephalitis were included. Infants were contacted 1 year after the acute infection and their neurological development was evaluated using the Ages and Stages Questionnaire-3 (ASQ-3). If any area assessed was abnormal during the first round of tests, a second round was completed 6 to 12 months later. Forty-eight young infants with EV and HPeV CNS infection were identified: 33 (68.8%) were positive for EV and 15 (31.3%) for HPeV. At first assessment 14 out of 29 EV (48.3%) and 3 out of 15 HPeV (20%) positive cases presented some developmental concern in the ASQ-3 test. EV-positive infants showed mild and moderate alteration in all domains analyzed and HPeV-positive infants showed mild alterations only in gross and fine motor domains. Significant alterations in communication were observed in EV-positive but not in HPeV-positive infants (31 vs. 0%, p = 0.016). At second assessment 4 out of 13 EV-positive patients (30.8%) showed mild to moderate concerns in communication and gross motor function domains and 3 out of 13 (23.1%) showed significant concern in fine motor function. Although CNS infections without associated encephalitis are generally assumed to be benign our study shows that at a median age of 18 months almost half of the EV-infected infants (48.3%) and 20% of HPeV-positive infants presented some developmental concern in the ASQ-3 test. We recommend monitor the neurological development of infants during the first years of life after HPeV CNS infection and especially after EV CNS infection, even in mild cases, for an early intervention and stimulation of psychomotor development if necessary.
Collapse
Affiliation(s)
| | - M. Luz García
- Department of Pediatrics, Severo Ochoa University Hospital, Madrid, Spain
| | - Ana Velázquez
- Department of Pediatrics, La Paz University Hospital, Madrid, Spain
| | | | - Ana Menasalvas
- Department of Pediatrics, Virgen de la Arixaca University Hospital, Murcia, Spain
| | - Amaia Cilla
- Department of Pediatrics, Burgos University Hospital, Burgos, Spain
| | - Cristina Epalza
- Department of Pediatrics, 12 de Octubre University Hospital, Madrid, Spain
| | - M. Pilar Romero
- Department of Microbiology, La Paz University Hospital, Madrid, Spain
| | - María Cabrerizo
- National Centre for Microbiology, Instituto de Salud Carlos III, CIBER de Epidemiología y Salud Pública, Madrid, Spain
| | - Cristina Calvo
- Department of Pediatric Infectious Diseases, La Paz University Hospital and La Paz Research Institute (IdiPaz), Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (Red de Investigación Traslacional en Infectología Pediátrica), Madrid, Spain
| |
Collapse
|
17
|
Duval M, Mirand A, Lesens O, Bay JO, Caillaud D, Gallot D, Lautrette A, Montcouquiol S, Schmidt J, Egron C, Jugie G, Bisseux M, Archimbaud C, Lambert C, Henquell C, Bailly JL. Retrospective Study of the Upsurge of Enterovirus D68 Clade D1 among Adults (2014-2018). Viruses 2021; 13:1607. [PMID: 34452471 PMCID: PMC8402803 DOI: 10.3390/v13081607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
Enterovirus D68 (EV-D68) has emerged as an agent of epidemic respiratory illness and acute flaccid myelitis in the paediatric population but data are lacking in adult patients. We performed a 4.5-year single-centre retrospective study of all patients who tested positive for EV-D68 and analysed full-length EV-D68 genomes of the predominant clades B3 and D1. Between 1 June 2014, and 31 December 2018, 73 of the 11,365 patients investigated for respiratory pathogens tested positive for EV-D68, of whom 20 (27%) were adults (median age 53.7 years [IQR 34.0-65.7]) and 53 (73%) were children (median age 1.9 years [IQR 0.2-4.0]). The proportion of adults increased from 12% in 2014 to 48% in 2018 (p = 0.01). All adults had an underlying comorbidity factor, including chronic lung disease in 12 (60%), diabetes mellitus in six (30%), and chronic heart disease in five (25%). Clade D1 infected a higher proportion of adults than clades B3 and B2 (p = 0.001). Clade D1 was more divergent than clade B3: 5 of 19 amino acid changes in the capsid proteins were located in putative antigenic sites. Adult patients with underlying conditions are more likely to present with severe complications associated with EV-D68, notably the emergent clade D1.
Collapse
Affiliation(s)
- Maxime Duval
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
| | - Audrey Mirand
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Olivier Lesens
- CHU Clermont-Ferrand, Service Des Maladies Infectieuses et Tropicales, 63003 Clermont-Ferrand, France;
| | - Jacques-Olivier Bay
- CHU Clermont-Ferrand, Service de Thérapie Cellulaire et Hématologie Clinique, 63003 Clermont-Ferrand, France;
| | - Denis Caillaud
- CHU Clermont-Ferrand, Service de Pneumologie, 63003 Clermont-Ferrand, France;
| | - Denis Gallot
- CHU Clermont-Ferrand, Service de Gynécologie-Obstétrique, 63003 Clermont-Ferrand, France;
| | | | - Sylvie Montcouquiol
- CHU Clermont-Ferrand, Centre de Référence et de Compétence Mucoviscidose, 63003 Clermont-Ferrand, France;
| | - Jeannot Schmidt
- CHU Clermont-Ferrand, Service Des Urgences, 63003 Clermont-Ferrand, France;
| | - Carole Egron
- CHU Clermont-Ferrand, Service de Pédiatrie Générale, 63003 Clermont-Ferrand, France;
| | - Gwendoline Jugie
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
| | - Maxime Bisseux
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Christine Archimbaud
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Céline Lambert
- CHU Clermont-Ferrand, Service Biométrie et Médico-Economie—Direction de la Recherche Clinique et Innovation, 63003 Clermont-Ferrand, France;
| | - Cécile Henquell
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
| |
Collapse
|
18
|
Hedrera-Fernandez A, Cancho-Candela R, Arribas-Arceredillo M, Garrido-Barbero M, Conejo-Moreno D, Sariego-Jamardo A, Perez-Poyato MS, Rodriguez-Fernandez C, Del Villar-Guerra P, Bermejo-Arnedo I, Peña-Valenceja A, Maldonado-Ruiz E, Ortiz-Madinaveitia S, Camina-Gutierrez AB, Blanco-Lago R, Malaga I. Outbreak of Enterovirus Infection with Neurological Presentations in a Pediatric Population in Northern Spain: A Clinical Observational Study. Neuropediatrics 2021; 52:192-200. [PMID: 33657631 DOI: 10.1055/s-0041-1725008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The study aimed to describe the cases of neurological disease related to the outbreak of enterovirus (EV) in three regions in Northern Spain during 2016. MATERIALS AND METHODS Multicenter retrospective observational study. Clinical, radiological, and microbiological data were analyzed from patients younger than 15 years with confirmed EV-associated neurological disease admitted to 10 hospitals of Asturias, Cantabria, and Castile and Leon between January 1 and December 31, 2016. RESULTS Fifty-five patients were included. Median age was 24 months (interquartile range = 18.5 months). Fifteen patients were classified as aseptic meningitis (27.3%). In total, 37 cases presented brainstem encephalitis (67.3%), 25 of them due to EV-A71 with excellent prognosis (84.6% asymptomatic 2 months following the onset). Three cases of acute flaccid myelitis (5.5%) by EV-D68 were reported and presented persistent paresis 2 months following the onset. Microbiological diagnosis by reverse transcriptase polymerase chain reaction was performed in all cases, finding EV in cerebrospinal fluid in meningitis, but not in brainstem encephalitis and acute flaccid myelitis, where EV was found in respiratory or rectal samples. Step therapy was administrated with intravenous immunoglobulin (IVIG; 32.7%), methylprednisolone (10%), and plasmapheresis (3.6%). Four patients received fluoxetine (7.3%). Twenty patients needed to be admitted to pediatric intensive care unit (36.4%). CONCLUSION Clinical, microbiological, and radiological diagnosis is essential in outbreaks of EV neurological disease, taking into account that it can be difficult to identify EV-A71 and EV-D68 in CSF, requiring throat or rectal samples. There is not specific treatment to these conditions and the efficacy and understanding of the mechanism of action of immune-modulatory treatment (IVIG, corticosteroids, and plasmapheresis) is limited.
Collapse
Affiliation(s)
- Antonio Hedrera-Fernandez
- Paediatric Neurology Unit, Hospital Universitario Rio Hortega, Valladolid, Spain.,Paediatric Neurology Unit, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Ramon Cancho-Candela
- Paediatric Neurology Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | | | | | | | - Andrea Sariego-Jamardo
- Paediatric Neurology Unit, Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
| | | | | | | | | | | | | | | | | | - Raquel Blanco-Lago
- Paediatric Neurology Unit, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Ignacio Malaga
- Paediatric Neurology Unit, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
19
|
Enteroviruses in Respiratory Samples from Paediatric Patients of a Tertiary Care Hospital in Germany. Viruses 2021; 13:v13050882. [PMID: 34064852 PMCID: PMC8151397 DOI: 10.3390/v13050882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Enteroviruses are associated with various diseases accompanied by rare but severe complications. In recent years, outbreaks of enterovirus D68 and enterovirus A71 associated with severe respiratory infections and neurological complications have been reported worldwide. Since information on molecular epidemiology in respiratory samples is still limited, the genetic diversity of enteroviruses was retrospectively analysed over a 4-year period (2013-2016) in respiratory samples from paediatric patients. Partial viral major capsid protein gene (VP1) sequences were determined for genotyping. Enteroviruses were detected in 255 (6.1%) of 4187 specimens. Phylogenetic analyses of 233 (91.4%) strains revealed 25 different genotypes distributed to Enterovirus A (39.1%), Enterovirus B (34.3%), and Enterovirus D (26.6%). The most frequently detected genotypes were enterovirus D68 (26.6%), coxsackievirus A6 (15.9%), and enterovirus A71 (7.3%). Enterovirus D68 detections were associated with lower respiratory tract infections and increased oxygen demand. Meningitis/encephalitis and other neurological symptoms were related to enterovirus A71, while coxsackievirus A6 was associated with upper respiratory diseases. Prematurity turned out as a potential risk factor for increased oxygen demand during enterovirus infections. The detailed analysis of epidemiological and clinical data contributes to the non-polio enterovirus surveillance in Europe and showed high and rapidly changing genetic diversity of circulating enteroviruses, including different enterovirus D68 variants.
Collapse
|
20
|
Martínez-López N, Muñoz-Almagro C, Launes C, Navascués A, Imaz-Pérez M, Reina J, Romero MP, Calvo C, Ruiz-García M, Megias G, Valencia-Ramos J, Otero A, Cabrerizo M. Surveillance for Enteroviruses Associated with Hand, Foot, and Mouth Disease, and Other Mucocutaneous Symptoms in Spain, 2006-2020. Viruses 2021; 13:v13050781. [PMID: 33924875 PMCID: PMC8146579 DOI: 10.3390/v13050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a mild illness caused by enteroviruses (EV), although in some Asian countries, large outbreaks have been reported in the last 25 years, with a considerable incidence of neurological complications. This study describes epidemiological and clinical characteristics of EV infections involved in HFMD and other mucocutaneous symptoms from 2006 to 2020 in Spain. EV-positive samples from 368 patients were included. EV species A were identified in 85.1% of those typed EV. Coxsackievirus (CV) A6 was the prevalent serotype (60.9%), followed by EV-A71 (9.9%) and CVA16 (7.7%). Infections affected children (1-6 years old) mainly, and show seasonality with peaks in spring-summer and autumn. Clinical data indicated few cases of atypical HFMD as well as those with neurological complications (associated with the 2016 EV-A71 outbreak). Phylogenetic analysis of CVA6 VP1 sequences showed different sub-clusters circulating from 2010 to present. In conclusion, HFMD or exanthemas case reporting has increased in Spain in recent years, probably associated with an increase in circulation of CVA6, although they did not seem to show greater severity. However, EV surveillance in mucocutaneous manifestations should be improved to identify the emergence of new types or variants causing outbreaks and more severe pathologies.
Collapse
Affiliation(s)
- Nieves Martínez-López
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - Carmen Muñoz-Almagro
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Cristian Launes
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Ana Navascués
- Microbiological Department, Complejo Hospitalario de Navarra, 31008 Navarra, Spain;
| | - Manuel Imaz-Pérez
- Microbiological Department, Hospital de Basurto, 48013 Bilbao, Spain;
| | - Jordi Reina
- Microbiological Department, Hospital Son Espases, 07020 Palma de Mallorca, Spain;
| | - María Pilar Romero
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | - Cristina Calvo
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | | | - Gregoria Megias
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Juan Valencia-Ramos
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Almudena Otero
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - María Cabrerizo
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
- Correspondence: ; Tel.: +34-918-223-663
| |
Collapse
|
21
|
Kohil A, Jemmieh S, Smatti MK, Yassine HM. Viral meningitis: an overview. Arch Virol 2021; 166:335-345. [PMID: 33392820 PMCID: PMC7779091 DOI: 10.1007/s00705-020-04891-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Meningitis is a serious condition that affects the central nervous system. It is an inflammation of the meninges, which is the membrane that surrounds both the brain and the spinal cord. Meningitis can be caused by bacterial, viral, or fungal infections. Many viruses, such as enteroviruses, herpesviruses, and influenza viruses, can cause this neurological disorder. However, enteroviruses have been found to be the underlying cause of most viral meningitis cases worldwide. With few exceptions, the clinical manifestations and symptoms associated with viral meningitis are similar for the different causative agents, which makes it difficult to diagnose the disease at early stages. The pathogenesis of viral meningitis is not clearly defined, and more studies are needed to improve the health care of patients in terms of early diagnosis and management. This review article discusses the most common causative agents, epidemiology, clinical features, diagnosis, and pathogenesis of viral meningitis.
Collapse
Affiliation(s)
- Amira Kohil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sara Jemmieh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
22
|
Ikuse T, Aizawa Y, Yamanaka T, Habuka R, Watanabe K, Otsuka T, Saitoh A. Outbreak of Enterovirus D68 Among Children in Japan-Worldwide Circulation of Enterovirus D68 Clade B3 in 2018. Pediatr Infect Dis J 2021; 40:6-10. [PMID: 32947598 DOI: 10.1097/inf.0000000000002889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Enterovirus D68 (EV-D68) causes asthma-like respiratory infection in children. Several EV-D68 outbreaks have been reported worldwide since the largest outbreak occurred in the United States in 2014. We experienced an accumulation of pediatric cases with asthma-like respiratory illness in Niigata, Japan, in 2018. STUDY DESIGN To determine whether EV-D68 was responsible for the case accumulation, this prospective observational study evaluated children hospitalized in 1 of 8 hospitals with asthma-like respiratory illness in Niigata, Japan, during October and November 2018. Diagnoses were made by EV-D68-specific RT-PCR using nasopharyngeal samples. The clade was identified by sequence analyses, and a phylogenetic tree was created. To evaluate seasonal variation, data from pediatric cases with asthma-like respiratory illness in 2018 were retrospectively analyzed. RESULTS In 2018, 114 children were hospitalized with asthma-like respiratory illness in October and November, and 47 nasopharyngeal samples were collected. EV-D68 was detected in 22/47 (47%) patients during the study period. The phylogenetic tree revealed that all strains belonged to the clade B3 branch, which has been detected worldwide every 2 years since 2014. CONCLUSIONS EV-D68 was the associated pathogen for asthma-like respiratory illness in children in Japan in 2018. Clade B3, the dominant clade in outbreaks worldwide, was responsible for the outbreak. Detection and detailed virologic analysis of EV-D68 is important as part of worldwide surveillance, as it will aid in understanding the epidemiologic characteristics of EV-D68 infection.
Collapse
Affiliation(s)
- Tatsuki Ikuse
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
| | - Yuta Aizawa
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
| | | | - Rie Habuka
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
| | - Kanako Watanabe
- Department of Medical Technology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taketo Otsuka
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
| | - Akihiko Saitoh
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
23
|
Midgley SE, Benschop K, Dyrdak R, Mirand A, Bailly JL, Bierbaum S, Buderus S, Böttcher S, Eis-Hübinger AM, Hönemann M, Jensen VV, Hartling UB, Henquell C, Panning M, Thomsen MK, Hodcroft EB, Meijer A. Co-circulation of multiple enterovirus D68 subclades, including a novel B3 cluster, across Europe in a season of expected low prevalence, 2019/20. ACTA ACUST UNITED AC 2020; 25. [PMID: 31964463 PMCID: PMC6976881 DOI: 10.2807/1560-7917.es.2020.25.2.1900749] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enterovirus D68 (EV-D68) was detected in 93 patients from five European countries between 1 January 2019 and 15 January 2020, a season with expected low circulation. Patients were primarily children (n = 67, median age: 4 years), 59 patients required hospitalisation and five had severe neurologic manifestations. Phylogenetic analysis revealed two clusters in the B3 subclade and subclade A2/D. This circulation of EV-D68 associated with neurological manifestations stresses the importance of surveillance and diagnostics beyond expected peak years.
Collapse
Affiliation(s)
- Sofie Elisabeth Midgley
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Kimberley Benschop
- Centre for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robert Dyrdak
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Audrey Mirand
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
| | - Sibylle Bierbaum
- Institute of Virology, University of Freiburg, Freiburg, Germany
| | - Stefan Buderus
- Department of General Pediatrics, St.-Marien-Hospital, Bonn, Germany
| | - Sindy Böttcher
- National Reference Center for Poliomyelitis and Enteroviruses, Robert Koch-Institute, Berlin, Germany
| | | | - Mario Hönemann
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - Veronika Vorobieva Jensen
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Cécile Henquell
- CHU Clermont-Ferrand, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, Clermont-Ferrand, France
| | - Marcus Panning
- Institute of Virology, University of Freiburg, Freiburg, Germany
| | | | - Emma B Hodcroft
- Swiss Institute of Bioinformatics, Basel, Switzerland.,Biozentrum, University of Basel, Basel, Switzerland
| | - Adam Meijer
- Centre for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
24
|
Toczylowski K, Wieczorek M, Bojkiewicz E, Wietlicka-Piszcz M, Gad B, Sulik A. Pediatric Enteroviral Central Nervous System Infections in Bialystok, Poland: Epidemiology, Viral Types, and Drivers of Seasonal Variation. Viruses 2020; 12:v12080893. [PMID: 32824117 PMCID: PMC7472221 DOI: 10.3390/v12080893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses are common causes of infections of the central nervous system (CNS) that in temperate climates tend to peak in the summer. The aim of the study was to describe epidemiology, drivers of seasonality, and types of enteroviruses causing infections of the CNS in children in Northeastern Poland. We prospectively collected data on children hospitalized with infection of the CNS attributed to enteroviruses in Bialystok, Poland, from January 2015 to December 2019. In total, 224 children were included. Nineteen different enterovirus types were identified in isolates collected from 188 children. Coxsackie B5 (32%), echovirus 30 (20%), and echovirus 6 (14%) were the three most common types. Enteroviruses were more prevalent during the summer–fall season. Infections caused by echovirus 30 peaked early in June and coxsackievirus B5 in July, whereas echovirus 6 peaked late in October. Phylogenetic analyses of these three enterovirus types showed multiple lineages co-circulating in this region. Mean air temperatures and precipitation rates were independently associated with monthly number of cases. Considering lack of effective treatment or vaccine, easy transmission of enteroviruses between susceptible individuals, their high mutation rate and prolonged time of viral shedding, continued monitoring and surveillance are imperative to recognize enteroviral infections of the CNS and the changes in circulation of enteroviruses in Poland.
Collapse
Affiliation(s)
- Kacper Toczylowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (E.B.); (A.S.)
- Correspondence: ; Tel.: +48-857-450-680
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; (M.W.); (B.G.)
| | - Ewa Bojkiewicz
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (E.B.); (A.S.)
| | - Magdalena Wietlicka-Piszcz
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Nicolaus Copernicus University in Torun, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland;
| | - Beata Gad
- Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; (M.W.); (B.G.)
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (E.B.); (A.S.)
| |
Collapse
|
25
|
Yeh MT, Capponi S, Catching A, Bianco S, Andino R. Mapping Attenuation Determinants in Enterovirus-D68. Viruses 2020; 12:v12080867. [PMID: 32784424 PMCID: PMC7472100 DOI: 10.3390/v12080867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
Enterovirus (EV)-D68 has been associated with epidemics in the United Sates in 2014, 2016 and 2018. This study aims to identify potential viral virulence determinants. We found that neonatal type I interferon receptor knockout mice are susceptible to EV-D68 infection via intraperitoneal inoculation and were able to recapitulate the paralysis process observed in human disease. Among the EV-D68 strains tested, strain US/MO-14-18949 caused no observable disease in this mouse model, whereas the other strains caused paralysis and death. Sequence analysis revealed several conserved genetic changes among these virus strains: nucleotide positions 107 and 648 in the 5′-untranslated region (UTR); amino acid position 88 in VP3; 1, 148, 282 and 283 in VP1; 22 in 2A; 47 in 3A. A series of chimeric and point-mutated infectious clones were constructed to identify viral elements responsible for the distinct virulence. A single amino acid change from isoleucine to valine at position 88 in VP3 attenuated neurovirulence by reducing virus replication in the brain and spinal cord of infected mice.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Substitution
- Animals
- Brain/virology
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Cell Line
- Cell Line, Tumor
- Disease Models, Animal
- Enterovirus D, Human/genetics
- Enterovirus D, Human/pathogenicity
- Enterovirus D, Human/physiology
- Enterovirus Infections/virology
- Genes, Viral
- Humans
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Dynamics Simulation
- Receptor, Interferon alpha-beta/genetics
- Spinal Cord/virology
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; (M.T.Y.); (A.C.)
| | - Sara Capponi
- Industrial and Applied Genomics, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA 95120, USA; (S.C.); (S.B.)
- Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| | - Adam Catching
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; (M.T.Y.); (A.C.)
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simone Bianco
- Industrial and Applied Genomics, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA 95120, USA; (S.C.); (S.B.)
- Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; (M.T.Y.); (A.C.)
- Correspondence: ; Tel.: +1-415-502-6358
| |
Collapse
|
26
|
Sun Z, Li W, Xu J, Ren K, Gao F, Jiang Z, Ji F, Pan D. Proteomic Analysis of Cerebrospinal Fluid in Children with Acute Enterovirus-Associated Meningoencephalitis Identifies Dysregulated Host Processes and Potential Biomarkers. J Proteome Res 2020; 19:3487-3498. [PMID: 32678604 DOI: 10.1021/acs.jproteome.0c00307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enteroviruses (EVs) are major causes of viral meningoencephalitis in children. To better understand the pathogenesis and identify potential biomarkers, cerebrospinal fluid proteome in children (n = 52) suffering from EV meningoencephalitis was compared to that in EV-negative control subjects (n = 53) using the BoxCar acquisition technique. Among 1697 proteins identified, 1193 with robust assay readouts were used for quantitative analyses. Differential expression analyses identified 154 upregulated and 227 downregulated proteins in the EV-positive group. Functional analyses showed that the upregulated proteins are mainly related to activities of lymphocytes and cytokines, inflammation, and responses to stress and viral invasion, while the downregulated proteins are mainly related to neuronal integrity and activity as well as neurogenesis. According to receiver operating characteristic analysis results, Rho-GDP-dissociation inhibitor 2 exhibited the highest sensitivity (96.2%) and specificity (100%) for discriminating EV-positive from EV-negative patients. The chemokine CXCL10 was most upregulated (>300-fold) with also high sensitivity (92.3%) and specificity (94.3%) for indicating EV positivity. Thus, this study uncovered perturbations of multiple host processes due to EV meningoencephalitis, especially the general trend of enhanced immune responses but impaired neuronal functions. The identified dysregulated proteins may also prompt biomarker development.
Collapse
Affiliation(s)
- Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jialu Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dongli Pan
- Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
[The new comprehension of pulmonary infections]. DER PNEUMOLOGE 2020; 17:105-112. [PMID: 32214961 PMCID: PMC7088196 DOI: 10.1007/s10405-019-00291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epidemiological data on the distribution of mostly bacterial pathogens are still the basis for empirical treatment recommendations on respiratory infections. Because of the dynamic technological developments in molecular multiplexing and sequencing procedures, the spectrum of potential pathogens is increased and challenges the current dogma of virulence and pathogenicity of certain pathogens. Classical pathogens of the lungs are thereby not questioned but are increasingly placed in a context that reflects co-infections with viruses and changes of the local microbiome in more depth. Recent data indicate that integration of this novel information is required for a better understanding of the seasonal differences in the frequency of particular lung infections and to find new approaches to risk stratification of patients. This becomes most obvious in the subgroup of immunosuppressed patients who are at risk of severe courses of diseases with higher morbidity and mortality from infections with viruses and facultative pathogens, such as nontuberculous mycobacteria (NTM). Based on the fundamental knowledge on the spectrum of pathogens of community-acquired and nosocomial lung infections, novel approaches in pathogen diagnostics and lung microbiome analytics are discussed and the applicability with respect to the current clinical routine is questioned.
Collapse
|