1
|
Gleerup D, Trypsteen W, Fraley SI, De Spiegelaere W. Digital PCR in Virology: Current Applications and Future Perspectives. Mol Diagn Ther 2024:10.1007/s40291-024-00751-9. [PMID: 39487879 DOI: 10.1007/s40291-024-00751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Digital PCR (dPCR) has been used in the field of virology since its inception. Technological innovations in microfluidics more than a decade ago caused a sharp increase in its use. There is an emerging consensus that dPCR now outperforms quantitative PCR (qPCR) in the basic parameters such as precision, sensitivity, accuracy, repeatability and resistance to inhibitors. These strengths have led to several current applications in quantification, mutation detection and environmental DNA and RNA samples. In high throughput scenarios, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the cost and throughput still significantly hampered the adaption of dPCR. There is much unexplored potential within the multiplexing capabilities of dPCR. This will allow simultaneous multi-target quantification and can also partially alleviate the throughput and cost drawback. In this review, we discuss the strengths and weaknesses of dPCR with a focus on virology applications and we discuss future applications. Finally, we discuss recent evolutions of the technology in the form of real-time dPCR and digital high-resolution melting.
Collapse
Affiliation(s)
- David Gleerup
- Laboratory of Veterinary Morphology, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820, Merelbeke, Belgium
- Ghent University Digital PCR Consortium, Ghent University, Ghent, Belgium
| | - Wim Trypsteen
- Ghent University Digital PCR Consortium, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stephanie I Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Ghent University Digital PCR Consortium, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Arevalo-Rodriguez I, Mateos-Haro M, Dinnes J, Ciapponi A, Davenport C, Buitrago-Garcia D, Bennouna-Dalero T, Roqué-Figuls M, Van den Bruel A, von Eije KJ, Emperador D, Hooft L, Spijker R, Leeflang MM, Takwoingi Y, Deeks JJ. Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2024; 10:CD015618. [PMID: 39400904 PMCID: PMC11472845 DOI: 10.1002/14651858.cd015618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND Diagnosing people with a SARS-CoV-2 infection played a critical role in managing the COVID-19 pandemic and remains a priority for the transition to long-term management of COVID-19. Initial shortages of extraction and reverse transcription polymerase chain reaction (RT-PCR) reagents impaired the desired upscaling of testing in many countries, which led to the search for alternatives to RNA extraction/purification and RT-PCR testing. Reference standard methods for diagnosing the presence of SARS-CoV-2 infection rely primarily on real-time reverse transcription-polymerase chain reaction (RT-PCR). Alternatives to RT-PCR could, if sufficiently accurate, have a positive impact by expanding the range of diagnostic tools available for the timely identification of people infected by SARS-CoV-2, access to testing and the use of resources. OBJECTIVES To assess the diagnostic accuracy of alternative (to RT-PCR assays) laboratory-based molecular tests for diagnosing SARS-CoV-2 infection. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern until 30 September 2020 and the WHO COVID-19 Research Database until 31 October 2022. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with suspected or known SARS-CoV-2 infection, or where tests were used to screen for infection, and studies evaluating commercially developed laboratory-based molecular tests for the diagnosis of SARS-CoV-2 infection considered as alternatives to RT-PCR testing. We also included all reference standards to define the presence or absence of SARS-CoV-2, including RT-PCR tests and established clinical diagnostic criteria. DATA COLLECTION AND ANALYSIS Two authors independently screened studies and resolved disagreements by discussing them with a third author. Two authors independently extracted data and assessed the risk of bias and applicability of the studies using the QUADAS-2 tool. We presented sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots and summarised results using average sensitivity and specificity using a bivariate random-effects meta-analysis. We illustrated the findings per index test category and assay brand compared to the WHO's acceptable sensitivity and specificity threshold for diagnosing SARS-CoV-2 infection using nucleic acid tests. MAIN RESULTS We included data from 64 studies reporting 94 cohorts of participants and 105 index test evaluations, with 74,753 samples and 7517 confirmed SARS-CoV-2 cases. We did not identify any published or preprint reports of accuracy for a considerable number of commercially produced NAAT assays. Most cohorts were judged at unclear or high risk of bias in more than three QUADAS-2 domains. Around half of the cohorts were considered at high risk of selection bias because of recruitment based on COVID status. Three quarters of 94 cohorts were at high risk of bias in the reference standard domain because of reliance on a single RT-PCR result to determine the absence of SARS-CoV-2 infection or were at unclear risk of bias due to a lack of clarity about the time interval between the index test assessment and the reference standard, the number of missing results, or the absence of a participant flow diagram. For index tests categories with four or more evaluations and when summary estimations were possible, we found that: a) For RT-PCR assays designed to omit/adapt RNA extraction/purification, the average sensitivity was 95.1% (95% CI 91.1% to 97.3%), and the average specificity was 99.7% (95% CI 98.5% to 99.9%; based on 27 evaluations, 2834 samples and 1178 SARS-CoV-2 cases); b) For RT-LAMP assays, the average sensitivity was 88.4% (95% CI 83.1% to 92.2%), and the average specificity was 99.7% (95% CI 98.7% to 99.9%; 24 evaluations, 29,496 samples and 2255 SARS-CoV-2 cases); c) for TMA assays, the average sensitivity was 97.6% (95% CI 95.2% to 98.8%), and the average specificity was 99.4% (95% CI 94.9% to 99.9%; 14 evaluations, 2196 samples and 942 SARS-CoV-2 cases); d) for digital PCR assays, the average sensitivity was 98.5% (95% CI 95.2% to 99.5%), and the average specificity was 91.4% (95% CI 60.4% to 98.7%; five evaluations, 703 samples and 354 SARS-CoV-2 cases); e) for RT-LAMP assays omitting/adapting RNA extraction, the average sensitivity was 73.1% (95% CI 58.4% to 84%), and the average specificity was 100% (95% CI 98% to 100%; 24 evaluations, 14,342 samples and 1502 SARS-CoV-2 cases). Only two index test categories fulfil the WHO-acceptable sensitivity and specificity requirements for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. In addition, WHO-acceptable performance criteria were met for two assays out of 35 when tests were used according to manufacturer instructions. At 5% prevalence using a cohort of 1000 people suspected of SARS-CoV-2 infection, the positive predictive value of RT-PCR assays omitting/adapting RNA extraction/purification will be 94%, with three in 51 positive results being false positives, and around two missed cases. For TMA assays, the positive predictive value of RT-PCR assays will be 89%, with 6 in 55 positive results being false positives, and around one missed case. AUTHORS' CONCLUSIONS Alternative laboratory-based molecular tests aim to enhance testing capacity in different ways, such as reducing the time, steps and resources needed to obtain valid results. Several index test technologies with these potential advantages have not been evaluated or have been assessed by only a few studies of limited methodological quality, so the performance of these kits was undetermined. Only two index test categories with enough evaluations for meta-analysis fulfil the WHO set of acceptable accuracy standards for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. These assays might prove to be suitable alternatives to RT-PCR for identifying people infected by SARS-CoV-2, especially when the alternative would be not having access to testing. However, these findings need to be interpreted and used with caution because of several limitations in the evidence, including reliance on retrospective samples without information about the symptom status of participants and the timing of assessment. No extrapolation of found accuracy data for these two alternatives to any test brands using the same techniques can be made as, for both groups, one test brand with high accuracy was overrepresented with 21/26 and 12/14 included studies, respectively. Although we used a comprehensive search and had broad eligibility criteria to include a wide range of tests that could be alternatives to RT-PCR methods, further research is needed to assess the performance of alternative COVID-19 tests and their role in pandemic management.
Collapse
Affiliation(s)
- Ingrid Arevalo-Rodriguez
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Evidence Production & Methods Directorate, Cochrane, London, UK
| | - Miriam Mateos-Haro
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- Doctoral programme in Clinical Medicine and Public Health, Universidad de Granada, Granada, Spain
| | - Jacqueline Dinnes
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Agustín Ciapponi
- Argentine Cochrane Centre, Institute for Clinical Effectiveness and Health Policy (IECS-CONICET), Buenos Aires, Argentina
| | - Clare Davenport
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Diana Buitrago-Garcia
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Hospital Universitario Mayor - Méderi. Universidad del Rosario, Bogotá, Colombia
| | - Tayeb Bennouna-Dalero
- Preventive Medicine and Public Health Department, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Roqué-Figuls
- Iberoamerican Cochrane Centre, Institut de Recerca Sant Pau (IR SANT PAU), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Karin J von Eije
- Department of Viroscience, ErasmusMC, University Medical Center, Rotterdam, Netherlands
| | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Yemisi Takwoingi
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Kaisar MMM, Kristin H, Wijaya FA, Rachel C, Anggraini F, Ali S. Optimization and application of digital droplet PCR for the detection of SARS-CoV-2 in saliva specimen using commercially available kit. Biol Methods Protoc 2024; 9:bpae068. [PMID: 39355137 PMCID: PMC11444740 DOI: 10.1093/biomethods/bpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The coronavirus disease-19 pandemic has resulted in a significant global health crisis, causing hundreds of millions of cases and millions of deaths. Despite being declared endemic, SARS-CoV-2 infection continues to pose a significant risk, particularly for immunocompromised individuals, highlighting the need for a more sensitive and specific detection. Reverse transcription digital droplet polymerase chain reaction (RT-ddPCR) possesses a sensitive and absolute quantification compared to the gold standard. This study is the first to optimize RT-ddPCR for detecting SARS-CoV-2 in saliva specimens using a commercially available RT-qPCR kit. Optimization involved the assessment of the RT-ddPCR reaction mixture, annealing temperature adjustments, and validation using 40 stored saliva specimens. RT-qPCR was used as a reference method in this study. Compatibility assessment revealed that ddPCR Supermix for Probes (no dUTP) was preferable with an optimal annealing temperature of 57.6°C. Although a 25% higher primer/probe concentration provides a higher amplitude in droplet separation of positive control, the number of copy numbers decreased. An inverse correlation between Ct value and copy number concentration was displayed, presenting that the lower the Ct value, the higher the concentration, for the N and E genes with r2 values of 0.98 and 0.85, respectively. However, ORF1ab was poorly correlated (r2 of 0.34). The sensitivity of targeted and E genes was 100% and 93.3%, respectively; as for the specificity, the percentage ranged from 80.8% to 91.3%. This study implicates the applicability of a modified method in the ddPCR platform for similar types of pathogens using saliva specimens.
Collapse
Affiliation(s)
- Maria M M Kaisar
- Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | - Helen Kristin
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | | | - Clarissa Rachel
- Undergraduate Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | - Felicia Anggraini
- Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | - Soegianto Ali
- Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| |
Collapse
|
4
|
Zuo W, He D, Liang C, Du S, Hua Z, Nie Q, Zhou X, Yang M, Tan H, Xu J, Yu Y, Zhan Y, Zhang Y, Gu X, Zhu W, Zhang H, Li H, Sun W, Sun M, Liu X, Liu L, Cao C, Li R, Li J, Zhang Y, Zhang Y, Guo J, Zhao L, Zhang CP, Liu H, Wang S, Xiao F, Wang Y, Wang Z, Li H, Cao B. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. THE LANCET. INFECTIOUS DISEASES 2024; 24:845-855. [PMID: 38663423 DOI: 10.1016/s1473-3099(24)00171-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Growing evidence suggests that symptoms associated with post-COVID-19 condition (also known as long COVID) can affect multiple organs and systems in the human body, but their association with viral persistence is not clear. The aim of this study was to investigate the persistence of SARS-CoV-2 in diverse tissues at three timepoints following recovery from mild COVID-19, as well as its association with long COVID symptoms. METHODS This single-centre, cross-sectional cohort study was done at China-Japan Friendship Hospital in Beijing, China, following the omicron wave of COVID-19 in December, 2022. Individuals with mild COVID-19 confirmed by PCR or a lateral flow test scheduled to undergo gastroscopy, surgery, or chemotherapy, or scheduled for treatment in hospital for other reasons, at 1 month, 2 months, or 4 months after infection were enrolled in this study. Residual surgical samples, gastroscopy samples, and blood samples were collected approximately 1 month (18-33 days), 2 months (55-84 days), or 4 months (115-134 days) after infection. SARS-CoV-2 was detected by digital droplet PCR and further confirmed through RNA in-situ hybridisation, immunofluorescence, and immunohistochemistry. Telephone follow-up was done at 4 months post-infection to assess the association between the persistence of SARS-CoV-2 RNA and long COVID symptoms. FINDINGS Between Jan 3 and April 28, 2023, 317 tissue samples were collected from 225 patients, including 201 residual surgical specimens, 59 gastroscopy samples, and 57 blood component samples. Viral RNA was detected in 16 (30%) of 53 solid tissue samples collected at 1 month, 38 (27%) of 141 collected at 2 months, and seven (11%) of 66 collected at 4 months. Viral RNA was distributed across ten different types of solid tissues, including liver, kidney, stomach, intestine, brain, blood vessel, lung, breast, skin, and thyroid. Additionally, subgenomic RNA was detected in 26 (43%) of 61 solid tissue samples tested for subgenomic RNA that also tested positive for viral RNA. At 2 months after infection, viral RNA was detected in the plasma of three (33%), granulocytes of one (11%), and peripheral blood mononuclear cells of two (22%) of nine patients who were immunocompromised, but in none of these blood compartments in ten patients who were immunocompetent. Among 213 patients who completed the telephone questionnaire, 72 (34%) reported at least one long COVID symptom, with fatigue (21%, 44 of 213) being the most frequent symptom. Detection of viral RNA in recovered patients was significantly associated with the development of long COVID symptoms (odds ratio 5·17, 95% CI 2·64-10·13, p<0·0001). Patients with higher virus copy numbers had a higher likelihood of developing long COVID symptoms. INTERPRETATION Our findings suggest that residual SARS-CoV-2 can persist in patients who have recovered from mild COVID-19 and that there is a significant association between viral persistence and long COVID symptoms. Further research is needed to verify a mechanistic link and identify potential targets to improve long COVID symptoms. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and New Cornerstone Science Foundation. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoyang Liang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zhan Hua
- Division of Gastrointestinal Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Qiangqiang Nie
- Department of General Surgery, Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Meng Yang
- Division of Breast and Thyroid Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Haidong Tan
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuliang Zhan
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ying Zhang
- Department of Anesthesiology and Operating Theatre, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaoying Gu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weijie Zhu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Hui Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Mingzhi Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China
| | - Xiaolei Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Liguo Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuanzhen Cao
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Rui Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuting Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ling Zhao
- Department of Pathology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuan-Peng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongyu Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyao Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Fei Xiao
- Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yeming Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China.
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Haibo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China.
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Changping Laboratory, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
5
|
Li R, Zhu Z, Guo Y, Yang L. Quadruplex Droplet Digital PCR Assay for Screening and Quantification of SARS-CoV-2. Int J Mol Sci 2024; 25:8157. [PMID: 39125726 PMCID: PMC11311395 DOI: 10.3390/ijms25158157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since early 2020, has highlighted the need for sensitive and reliable diagnostic methods. Droplet digital PCR (ddPCR) has demonstrated superior performance over the gold-standard reverse transcription PCR (RT-PCR) in detecting SARS-CoV-2. In this study, we explored the development of a multiplex ddPCR assay that enables sensitive quantification of SARS-CoV-2, which could be utilized for antiviral screening and the monitoring of COVID-19 patients. We designed a quadruplex ddPCR assay targeting four SARS-CoV-2 genes and evaluated its performance in terms of specificity, sensitivity, linearity, reproducibility, and precision using a two-color ddPCR detection system. The results showed that the quadruplex assay had comparable limits of detection and accuracy to the simplex ddPCR assays. Importantly, the quadruplex assay demonstrated significantly improved performance for samples with low viral loads and ambiguous results compared to the standard qRT-PCR approach. The developed multiplex ddPCR represents a valuable alternative and complementary tool for the diagnosis of SARS-CoV-2 and potentially other pathogens in various application scenarios beyond the current COVID-19 pandemic. The improved sensitivity and reliability of this assay could contribute to more effective disease monitoring and antiviral screening during the ongoing public health crisis.
Collapse
Affiliation(s)
- Rong Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.L.); (Y.G.)
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zaobing Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yongkun Guo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.L.); (Y.G.)
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.L.); (Y.G.)
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| |
Collapse
|
6
|
Cutarelli A, De Falco F, Brunetti R, Napoletano M, Fusco G, Roperto S. Molecular detection of transcriptionally active ovine papillomaviruses in commercial equine semen. Front Vet Sci 2024; 11:1427370. [PMID: 39021410 PMCID: PMC11253197 DOI: 10.3389/fvets.2024.1427370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Virological evaluation was performed on equine semen to detect the presence of papillomaviruses (PVs) using droplet digital polymerase chain reaction (ddPCR) as the aim of this study was to investigate whether the sperm from asymptomatic stallions harbors ovine papillomaviruses (OaPVs). Twenty-seven semen samples were analyzed, 18 of which were commercially acquired. The remaining nine samples comprising semen and peripheral blood, were collected from nine stallions with no apparent signs of PV-related diseases during clinical examination at the Didactic Veterinary University Hospital (DVUH) of Naples. OaPV was detected in 26 semen samples. OaPV1 was the most prevalent virus infecting equine semen. OaPV1 infected 21 semen samples (~80.8%) and showed a high number of DNA and RNA copies per microliter. qPCR was used to detect OaPV1 DNA in the 18 semen samples. ddPCR was used to detect and quantify the expression of OaPV2, OaPV3, and OaPV4. qPCR failed to detect DNA for these genotypes. Additionally, ddPCR was used to detect the transcriptionally active OaPV1 in six blood and semen samples from the same stallion. ddPCR failed to detect any nucleic acids in OaPVs in peripheral blood samples from the three stallions. In one semen sample, ddPCR detected OaPV1 DNA but failed to detect any nucleic acid in the remaining two semen samples, and peripheral blood from the same animals of the remaining 18 semen samples was not available, OaPV1 and OaPV4 were responsible for nine and five single infections, respectively. No single infections with either OaPV3 or OaPV4 were seen.
Collapse
Affiliation(s)
- Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Francesca De Falco
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
- Area Science Park, Campus di Baronissi, Università degli Studi di Salerno, Salerno, Italy
| | - Roberta Brunetti
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | | | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
7
|
Sun W, Zhou C, Peng C, Yang R, Li M, Geng J, Zhou J, Chen L, Li W. Diagnostic value of plasma circular RNA based on droplet digital polymerase chain reaction in lung adenocarcinoma. Lab Med 2024; 55:420-432. [PMID: 38048812 DOI: 10.1093/labmed/lmad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Plasma circular (circ)RNAs detected by droplet digital polymerase chain reaction (ddPCR) may be ideal markers for liquid biopsy. However, ddPCR detection of circRNAs in plasma for diagnosis of lung adenocarcinoma has been rarely reported. METHODS An RNA sequencing analysis was performed in plasma from patients with early lung adenocarcinoma and healthy individuals. Droplet digital PCR was used to verify the differentially expressed genes. RESULTS The copy numbers of circle RNALZIC (circLZIC)and circle RNACEP350 (circCEP350) in the plasma of lung adenocarcinoma patients were significantly higher than in plasma of healthy people, and the copy numbers in postoperative plasma of the same patients were significantly lower than those in preoperative plasma. CircLZIC and circCEP350 alone and in combination had diagnostic value in lung adenocarcinoma and early lung adenocarcinoma. CircLZIC and circCEP350 had more binding sites with multiple microRNAs. Their target genes were enriched in several signaling pathways. CONCLUSION The copy numbers of circLZIC and circCEP350 were higher in plasma of lung adenocarcinoma patients than in plasma of healthy controls, significantly correlated with tumor size and TNM stage, and closely related to the occurrence and development of tumors. These circRNAs may serve as molecular markers for the diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Wanying Sun
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Changming Zhou
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Caiqiu Peng
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Ran Yang
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Mengting Li
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Jian Geng
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, China
| | - Jihong Zhou
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, China
| | - Liang Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Li
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| |
Collapse
|
8
|
Wang C, Chen L, Li X, Gu J, Xiang Y, Fang L, Chen L, Li Y. Development of an all-in-one real-time PCR assay for simultaneous detection of spotted fever group rickettsiae, severe fever with thrombocytopenia syndrome virus and hantaan virus prevalent in central China. PLoS Negl Trop Dis 2024; 18:e0012024. [PMID: 39012922 PMCID: PMC11280241 DOI: 10.1371/journal.pntd.0012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Central China has been reported to be one of the most important endemic areas of zoonotic infection by spotted fever group rickettsiae (SFGR), severe fever with thrombocytopenia syndrome virus (SFTSV) and hantaan virus (HTNV). Due to similar clinical symptoms, it is challenging to make a definite diagnosis rapidly and accurately in the absence of microbiological tests. In the present study, an all-in-one real-time PCR assay was developed for the simultaneous detection of nucleic acids from SFGR, SFTSV and HTNV. Three linear standard curves for determining SFGR-ompA, SFTSV-L and HTNV-L were obtained within the range of 101-106 copies/μL, with the PCR amplification efficiencies ranging from 93.46% to 96.88% and the regression coefficients R2 of >0.99. The detection limit was 1.108 copies/μL for SFGR-ompA, 1.075 copies/μL for SFTSV-L and 1.006 copies/μL for HTNV-L, respectively. Both the within-run and within-laboratory coefficients of variation on the cycle threshold (Ct) values were within the range of 0.53%-2.15%. It was also found there was no statistical difference in the Ct values between single template and multiple templates (PSFGR-ompA = 0.186, PSFTSV-L = 0.612, PHTNV-L = 0.298). The sensitivity, specificity, positive and negative predictive value were all 100% for determining SFGR-ompA and SFTSV-L, 97%, 100%, 100% and 99.6% for HTNV-L, respectively. Therefore, the all-in-one real-time PCR assay appears to be a reliable, sensitive, rapid, high-throughput and low cost-effective method to diagnose the zoonotic infection by SFGR, SFTSV and HTNV.
Collapse
Affiliation(s)
- Cuixiang Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingrong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jihong Gu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yating Xiang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Liang Fang
- Department of Wuhan EasyDiagnosis Biomedicine, Wuhan, China
| | - Lili Chen
- Department of Wuhan EasyDiagnosis Biomedicine, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, People’s Republic of China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Lee SS, Kim AL, Park JH, Lee DH, Bae YK. Optimization of duplex digital PCR for the measurement of SARS-CoV-2 RNA. J Virol Methods 2024; 326:114911. [PMID: 38447644 DOI: 10.1016/j.jviromet.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Quantitative PCR (qPCR) is the gold standard for detecting nucleic acid sequences specific to the target pathogen. For COVID-19 diagnosis, several molecular assays have been developed. In this study, we present an optimization strategy for the measurement of SARS-CoV-2 RNA via multiplex qPCR and digital PCR (dPCR). Compared to qPCR, both droplet and chip-based dPCR, which are known to be more sensitive and accurate, showed a better resilience to suboptimal assay compositions and cycling conditions following the proposed optimizations. In particular, the formation of heterodimers among assays greatly interfered with qPCR results, but only minimally with dPCR results. In dPCR, existing heterodimers lowered the PCR efficiency, producing a dampened fluorescent signal in positive partitions. This can be corrected by adjusting the PCR cycling conditions, after which dPCR shows the capability of measuring the expected copy number. In addition, we present a process to improve the existing RdRp assay by correcting the primer sequences and matching the melting temperature, ultimately producing highly sensitive and robust assays. The results of this study can reduce the cost and time of SARS-CoV-2 diagnosis while increasing accuracy. Furthermore, our results suggest that dPCR is a reliable method for the accurate measurement of nucleic acid targets.
Collapse
Affiliation(s)
- Sang-Soo Lee
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Ah Leum Kim
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hyung Park
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Da-Hye Lee
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea.
| | - Young-Kyung Bae
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Momenifar N, Pirouzfar M, Hashemian Z, Daneshvar Amoli A. Development of an optimized RT-LAMP test for the detection of SARS-CoV-2. Biologicals 2023; 84:101716. [PMID: 37801803 DOI: 10.1016/j.biologicals.2023.101716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
SARS-COV-2 is the causative agent of an acute respiratory syndrome called Coronavirus disease 2019 (COVID-19) with a varying mortality rate from 2019 to 2022. There are several measures for control and prevention of Covid-19 including using mask, vaccine injections, as well as screening the potential cases. We aimed to design and develop a molecular method (RT-LAMP) for detecting coronavirus in biological samples that is cheaper, faster and easier than conventional molecular methods. In this study, various reaction components were explored to make the optimal combination of an RT-LAMP master mix composition. The results revealed the ability of this RT-LAMP test in specifically identifying 100 copies of mixture of N and E genes in just 30-45 min. This study demonstrated the reliable performance of the RT-LAMP method for the detection of SARS-COV-2 in biological samples. Given the significant advantages of this method compared to the gold standard qRT-PCR, it can be employed as a promising tool for the diagnosis of coronavirus as well as other pathogenic viruses.
Collapse
Affiliation(s)
- Navid Momenifar
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Mohammad Pirouzfar
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Zohreh Hashemian
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | | |
Collapse
|
11
|
Rashid SA, Nazakat R, Muhamad Robat R, Ismail R, Suppiah J, Rajendran K, Raj Louis Masalamany ASS, Muhamad Hendri NA, Mohamad N, Khairul Hasni NA, Suib FA, Nik Hassan NMN, Pahrol MA, Shaharudin R. Droplet digital PCR application for the detection of SARS-CoV-2 in air sample. Front Public Health 2023; 11:1208348. [PMID: 37965510 PMCID: PMC10641526 DOI: 10.3389/fpubh.2023.1208348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may transmit through airborne route particularly when the aerosol particles remain in enclosed spaces with inadequate ventilation. There has been no standard recommended method of determining the virus in air due to limitations in pre-analytical and technical aspects. Furthermore, the presence of low virus loads in air samples could result in false negatives. Our study aims to explore the feasibility of detecting SARS-CoV-2 ribonucleic acid (RNA) in air samples using droplet digital polymerase chain reaction (ddPCR). Active and passive air sampling was conducted between December 2021 and February 2022 with the presence of COVID-19 confirmed cases in two hospitals and a quarantine center in Klang Valley, Malaysia. SARS-CoV-2 RNA in air was detected and quantified using ddPCR and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The comparability of two different digital PCR platforms (QX200 and QIAcuity) to RT-PCR were also investigated. Additionally negative staining transmission electron microscopy was performed to visualize virus ultrastructure. Detection rates of SARS-CoV-2 in air samples using ddPCR were higher compared to RT-PCR, which were 15.2% (22/145) and 3.4% (5/145), respectively. The sensitivity and specificity of ddPCR was 100 and 87%, respectively. After excluding 17 negative samples (50%) by both QX200 and QIAcuity, 15% samples (5/34) were found to be positive both ddPCR and dPCR. There were 23.5% (8/34) samples that were detected positive by ddPCR but negative by dPCR. In contrast, there were 11.7% (4/34) samples that were detected positive by dPCR but negative by ddPCR. The SARS-CoV-2 detection method by ddPCR is precise and has a high sensitivity for viral RNA detection. It could provide advances in determining low viral titter in air samples to reduce false negative reports, which could complement detection by RT-PCR.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Rohaida Ismail
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Jeyanthi Suppiah
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Kamesh Rajendran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - A. S. Santhana Raj Louis Masalamany
- Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nur Afrina Muhamad Hendri
- Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nadia Mohamad
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Fatin Amirah Suib
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nik Muhamad Nizam Nik Hassan
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Muhammad Alfatih Pahrol
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Rafiza Shaharudin
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| |
Collapse
|
12
|
Marwaha B. Role of Tau protein in long COVID and potential therapeutic targets. Front Cell Infect Microbiol 2023; 13:1280600. [PMID: 37953801 PMCID: PMC10634420 DOI: 10.3389/fcimb.2023.1280600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Long COVID is an emerging public health burden and has been defined as a syndrome with common symptoms of fatigue, shortness of breath, cognitive dysfunction, and others impacting day-to-day life, fluctuating or relapsing over, occurring for at least two months in patients with a history of probable or confirmed SARS CoV-2 infection; usually three months from the onset of illness and cannot be explained by an alternate diagnosis. The actual prevalence of long-term COVID-19 is unknown, but it is believed that more than 17 million patients in Europe may have suffered from it during pandemic. Pathophysiology Currently, there is limited understanding of the pathophysiology of this syndrome, and multiple hypotheses have been proposed. Our literature review has shown studies reporting tau deposits in tissue samples of the brain from autopsies of COVID-19 patients compared to the control group, and the in-vitro human brain organoid model has shown aberrant phosphorylation of tau protein in response to SARS-CoV-2 infection. Tauopathies, a group of neurodegenerative disorders with the salient features of tau deposits, can manifest different symptoms based on the anatomical region of brain involvement and have been shown to affect the peripheral nervous system as well and explained even in rat model studies. Long COVID has more than 203 symptoms, with predominant symptoms of fatigue, dyspnea, and cognitive dysfunction, which tauopathy-induced CNS and peripheral nervous system dysfunction can explain. There have been no studies up till now to reveal the pathophysiology of long COVID. Based on our literature review, aberrant tau phosphorylation is a promising hypothesis that can be explored in future studies. Therapeutic approaches for tauopathies have multidimensional aspects, including targeting post-translational modifications, tau aggregation, and tau clearance through the autophagy process with the help of lysosomes, which can be potential targets for developing therapeutic interventions for the long COVID. In addition, future studies can attempt to find the tau proteins in CSF and use those as biomarkers for the long COVID.
Collapse
Affiliation(s)
- Bharat Marwaha
- Department of Cardiology, Adena Health System, Chillicothe, OH, United States
| |
Collapse
|
13
|
Hanna N, De Mejia CM, Heffes-Doon A, Lin X, Botros B, Gurzenda E, Clauss-Pascarelli C, Nayak A. Biodistribution of mRNA COVID-19 vaccines in human breast milk. EBioMedicine 2023; 96:104800. [PMID: 37734205 PMCID: PMC10514401 DOI: 10.1016/j.ebiom.2023.104800] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND COVID-19 mRNA vaccines play a vital role in the fight against SARS-CoV-2 infection. However, lactating women have been largely excluded from most vaccine clinical trials. As a result, limited research has been conducted on the systemic distribution of vaccine mRNA during lactation and whether it is excreted in human breast milk (BM). Here, we evaluated if COVID-19 vaccine mRNA is detectable in BM after maternal vaccination and determined its potential translational activity. METHODS We collected BM samples from 13 lactating, healthy, post-partum women before and after COVID-19 mRNA vaccination. Vaccine mRNA in whole BM and BM extracellular vesicles (EVs) was assayed using quantitative Droplet Digital PCR, and its integrity and translational activity were evaluated. FINDINGS Of 13 lactating women receiving the vaccine (20 exposures), trace mRNA amounts were detected in 10 exposures up to 45 h post-vaccination. The mRNA was concentrated in the BM EVs; however, these EVs neither expressed SARS-COV-2 spike protein nor induced its expression in the HT-29 cell line. Linkage analysis suggests vaccine mRNA integrity was reduced to 12-25% in BM. INTERPRETATION Our findings demonstrate that the COVID-19 vaccine mRNA is not confined to the injection site but spreads systemically and is packaged into BM EVs. However, as only trace quantities are present and a clear translational activity is absent, we believe breastfeeding post-vaccination is safe, especially 48 h after vaccination. Nevertheless, since the minimum mRNA vaccine dose to elicit an immune reaction in infants <6 months is unknown, a dialogue between a breastfeeding mother and her healthcare provider should address the benefit/risk considerations of breastfeeding in the first two days after maternal vaccination. FUNDING This study was supported by the Department of Pediatrics, NYU-Grossman Long Island School of Medicine.
Collapse
Affiliation(s)
- Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA; Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA.
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ari Heffes-Doon
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Bishoy Botros
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ellen Gurzenda
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Christie Clauss-Pascarelli
- Department of Pharmacy, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Amrita Nayak
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| |
Collapse
|
14
|
Yang Y, Feng X, Pan Y, Wang X, Peng T, Niu C, Qu W, Zou Q, Dong L, Dai X, Li M, Fang X. A culture-free method for rapidly and accurately quantifying active SARS-CoV-2. Anal Bioanal Chem 2023; 415:5745-5753. [PMID: 37486370 DOI: 10.1007/s00216-023-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Determining the quantity of active virus is the most important basis to judge the risk of virus infection, which usually relies on the virus median tissue culture infectious dose (TCID50) assay performed in a biosafety level 3 laboratory within 5-7 days. We have developed a culture-free method for rapid and accurate quantification of active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by targeting subgenomic RNA (sgRNA) based on reverse transcription digital PCR (RT-dPCR). The dynamic range of quantitative assays for sgRNA-N and sgRNA-E by RT-dPCR was investigated, and the result showed that the limits of detection (LoD) and quantification (LoQ) were 2 copies/reaction and 10 copies/reaction, respectively. The delta strain (NMDC60042793) of SARS-CoV-2 was cultured at an average titer of 106.13 TCID50/mL and used to evaluate the developed quantification method. Copy number concentrations of the cultured SARS-CoV-2 sgRNA and genomic RNA (gRNA) gave excellent linearity (R2 = 0.9999) with SARS-CoV-2 titers in the range from 500 to 105 TCID50/mL. Validation of 63 positive clinical samples further proves that the quantification of sgRNA-N by RT-dPCR is more sensitive for active virus quantitative detection. It is notable that we can infer the active virus titer through quantification of SARS-CoV-2 sgRNA based on the linear relationship in a biosafety level 2 laboratory within 3 h. It can be used to timely and effectively identify infectious patients and reduce unnecessary isolation especially when a large number of COVID-19 infected people impose a burden on medical resources.
Collapse
Affiliation(s)
- Yi Yang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China
| | - Xiaoli Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Control and Prevention, Beijing, 100029, China
| | - Xia Wang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Tao Peng
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Chunyan Niu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Wang Qu
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China
| | - Qingcui Zou
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China
| | - Lianhua Dong
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Xinhua Dai
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Minghua Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China.
| | - Xiang Fang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
15
|
Zhao X, Wu J, Yuan R, Li Y, Yang Q, Wu B, Zhai X, Wang J, Magalon J, Sabatier F, Daumas A, Zhu WM, Zhu N. Adipose-derived mesenchymal stem cell therapy for reverse bleomycin-induced experimental pulmonary fibrosis. Sci Rep 2023; 13:13183. [PMID: 37580529 PMCID: PMC10425426 DOI: 10.1038/s41598-023-40531-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive respiratory disease. Arguably, the complex interplay between immune cell subsets, coupled with an incomplete understanding of disease pathophysiology, has hindered the development of successful therapies. Despite efforts to understand its pathophysiology and develop effective treatments, IPF remains a fatal disease, necessitating the exploration of new treatment options. Mesenchymal stromal/stem cell (MSC) therapy has shown promise in experimental models of IPF, but further investigation is needed to understand its therapeutic effect. This study aimed to assess the therapeutic effect of adipose-derived mesenchymal stem cells in a bleomycin-induced pulmonary fibrosis model. First, MSC cells were obtained from mice and characterized using flow cytometry and cell differentiation culture methods. Then adult C57BL/6 mice were exposed to endotracheal instillation of bleomycin and concurrently treated with MSCs for reversal models on day 14. Experimental groups were evaluated on days 14, 21, or 28. Additionally, lung fibroblasts challenged with TGF-β1 were treated with MSCs supernatant or MSCs to explore the mechanisms underlying of pulmonary fibrosis reversal. Mesenchymal stem cells were successfully isolated from mouse adipose tissue and characterized based on their differentiation ability and cell phenotype. The presence of MSCs or their supernatant stimulated the proliferation and migration of lung fibrotic cells. MSCs supernatant reduced lung collagen deposition, improved the Ashcroft score and reduced the gene and protein expression of lung fibrosis-related substances. Bleomycin-challenged mice exhibited severe septal thickening and prominent fibrosis, which was effectively reversed by MSCs treatment. MSC supernatant could suppress the TGF-β1/Smad signaling pathway and supernatant promotes fibroblast autophagy. In summary, this study demonstrates that MSCs supernatant treatment is as effective as MSCs in revert the core features of bleomycin-induced pulmonary fibrosis. The current study has demonstrated that MSCs supernatant alleviates the BLM-induced pulmonary fibrosis in vivo. In vitro experiments further reveal that MSC supernatant could suppress the TGF-β1/Smad signaling pathway to inhibit the TGF-β1-induced fibroblast activation, and promotes fibroblast autophagy by Regulating p62 expression. These findings contribute to the growing body of evidence supporting the therapeutic application of MSCs in cell therapy medicine for IPF.
Collapse
Affiliation(s)
- Xiansheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinyan Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ruoyue Yuan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yue Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Quyang Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Baojin Wu
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaowen Zhai
- Children's Hospital of Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jérémy Magalon
- Culture and Cell Therapy Laboratory, INSERM CIC BT 1409, Assistance Publique Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Florence Sabatier
- Culture and Cell Therapy Laboratory, INSERM CIC BT 1409, Assistance Publique Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Aurélie Daumas
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
- Internal Medicine Department, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Winston M Zhu
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
16
|
Ferrara F, Zovi A, Masi M, Langella R, Trama U, Boccellino M, Vitiello A. Long COVID could become a widespread post-pandemic disease? A debate on the organs most affected. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1583-1589. [PMID: 36773054 PMCID: PMC9918819 DOI: 10.1007/s00210-023-02417-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Long COVID is an emerging problem in the current health care scenario. It is a syndrome with common symptoms of shortness of breath, fatigue, cognitive dysfunction, and other conditions that have a high impact on daily life. They are fluctuating or relapsing states that occur in patients with a history of SARS-CoV-2 infection for at least 2 months. They are usually conditions that at 3 months after onset cannot be explained by an alternative diagnosis. Currently very little is known about this syndrome. A thorough review of the literature highlights that the cause is attributable to deposits of tau protein. Massive phosphorylation of tau protein in response to SARS-CoV-2 infection occurred in brain samples from autopsies of people previously affected with COVID-19. The neurological disorders resulting from this clinical condition are termed tauopathies and can give different pathological symptoms depending on the involved anatomical region of the brain. Peripheral small-fiber neuropathies are also evident among patients with Long COVID leading to fatigue, which is the main symptom of this syndrome. Certainly more research studies could confirm the association between tau protein and Long COVID by defining the main role of tau protein as a biomarker for the diagnosis of this syndrome that is widespread in the post-pandemic period.
Collapse
Affiliation(s)
- Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia street 22, 80035 Nola, Naples, Italy
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Marta Masi
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia street 22, 80035 Nola, Naples, Italy
| | - Roberto Langella
- Italian Society of Hospital Pharmacy (SIFO), SIFO Secretariat of the Lombardy Region, Via Carlo Farini, 81, 20159 Milan, Italy
- Pharmacy Department, Agency for Health Protection (ATS) of Milan, Via Ippocrate, 45, 20161 Milan, Italy
| | - Ugo Trama
- General Direction for Health Protection and Coordination of the Campania Regional Health System, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
17
|
Shinde M, Lavania M, Rawal J, Chavan N, Shinde P. Evaluation of droplet digital qRT-PCR (dd qRT-PCR) for quantification of SARS CoV-2 RNA in stool and urine specimens of COVID-19 patients. Front Med (Lausanne) 2023; 10:1148688. [PMID: 37469662 PMCID: PMC10352106 DOI: 10.3389/fmed.2023.1148688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction There have been a few reports of viral load detection in stool and urine samples of patients with coronavirus disease 2019 (COVID-19), and the transmission of the virus through faecal oral route. For clinical diagnosis and treatment, the widely used reverse transcription-polymerase chain reaction (qRT-PCR) method has some limitations. Methods The aim of our study to assess the presence and concentration of SARS CoV-2 RNA in stool and urine samples from COVID-19 patients with mild, moderate, and severe disease, we compared a traditional qRT-PCR approach with a ddPCR. ddPCR and qRT-PCR-based target gene analysis were performed on 107 COVID-19-confirmed patients paired samples (N1 and N2). The MagMax magnetic beads base method was used to isolate RNA. Real-time qRT-PCR and dd PCR were performed on all patients. Results and Discussion The average cycle threshold (Ct) of qRT-PCR was highly correlated with the average copy number of 327.10 copies/l analyzed in ddPCR. In ddPCR, urine samples showed 27.1% positivity while for stool it was 100%. Conclusion This study's findings not only show that SARS CoV-2 is present in urine and faeces, but also suggest that low concentrations of the viral target ddPCR make it easier to identify positive samples and help resolve for cases of inconclusive diagnosis.
Collapse
|
18
|
Zhao H, Yan C, Feng Y, Du B, Feng J, Cui X, Cui J, Gan L, Fan Z, Xu Z, Fu T, Yu Z, Yuan J, Xue G. Absolute quantification of Mycoplasma pneumoniae in infected patients by droplet digital PCR to track disease severity and treatment efficacy. Front Microbiol 2023; 14:1177273. [PMID: 37426001 PMCID: PMC10324665 DOI: 10.3389/fmicb.2023.1177273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Mycoplasma pneumoniae is a common causative pathogen of community-acquired pneumonia. An accurate and sensitive detection method is important for evaluating disease severity and treatment efficacy. Digital droplet PCR (ddPCR) is a competent method enabling the absolute quantification of DNA copy number with high precision and sensitivity. We established ddPCR for M. pneumoniae detection, using clinical specimens for validation, and this showed excellent specificity for M. pneumoniae. The limit of detection of ddPCR was 2.9 copies/reaction, while that for real-time PCR was 10.8 copies/reaction. In total, 178 clinical samples were used to evaluate the ddPCR assay, which correctly identified and differentiated 80 positive samples, whereas the real-time PCR tested 79 samples as positive. One sample that tested negative in real-time PCR was positive in ddPCR, with a bacterial load of three copies/test. For samples that tested positive in both methods, the cycle threshold of real-time PCR was highly correlated with the copy number of ddPCR. Bacterial loads in patients with severe M. pneumoniae pneumonia were significantly higher than those in patients with general M. pneumoniae pneumonia. The ddPCR showed that bacterial loads were significantly decreased after macrolide treatment, which could have reflected the treatment efficacy. The proposed ddPCR assay was sensitive and specific for the detection of M. pneumoniae. Quantitative monitoring of bacterial load in clinical samples could help clinicians to evaluate treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jing Yuan
- *Correspondence: Jing Yuan, ; Guanhua Xue,
| | | |
Collapse
|
19
|
Mahamad P, Dahlan W, Kahong S, So-audon S, Munaowaroh W, Nopponpunth V. Duplex droplet digital PCR (ddPCR) for simultaneous quantification of bovine and porcine gelatin in capsules. Food Sci Biotechnol 2023; 32:803-811. [PMID: 37041814 PMCID: PMC10082860 DOI: 10.1007/s10068-022-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Detection of bovine and porcine in gelatin-based products is important as species fraud and product mislabeling may have a detrimental impact on customers who have health, ethical, and religious concerns about animal products. The duplex droplet digital PCR (ddPCR) assay using double-quenched probes has been developed for quantification and detection of porcine and bovine DNA in gelatin capsules. A DNA mixture derived from gelatin was found to have a limit of detection as low as 0.001 ng/µl for porcine samples and 0.01 ng/µl for bovine samples. DNA from 12 other distinct species was tested with the bovine and porcine probes, showing high specificity for this method. The test was validated using fifty-five commercial supplement and pharmaceutical capsules, of which 17 were positive for bovine and/or porcine DNA. This study shows that the duplex ddPCR is reliable for routine analysis in the identification of bovine and porcine origins for gelatin capsules. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01204-x.
Collapse
Affiliation(s)
- Pornpimol Mahamad
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Winai Dahlan
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Saveeyah Kahong
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Sukanya So-audon
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Wila Munaowaroh
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Vanida Nopponpunth
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Science, Chulalongkorn University, 154 Rama I Road, Chula Soi 12, Pathumwan, Bangkok, 10330 Thailand
| |
Collapse
|
20
|
Bermejo-Martin JF, García-Mateo N, Motos A, Resino S, Tamayo L, Ryan Murua P, Bustamante-Munguira E, Gallego Curto E, Úbeda-Iglesias A, de la Torre MDC, Estella Á, Campos-Fernández S, Martínez Varela I, Pérez-García F, Socias L, López Messa J, Vidal-Cortés P, Sagredo Meneses V, González-Rivera M, Carbonell N, de Gonzalo-Calvo D, Martín Delgado MC, Valdivia LJ, Martín-López C, Jorge García RN, Maseda E, Loza-Vázquez A, Kelvin DJ, Barbé F, Torres A. Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: a multicentre, prospective, cohort study. THE LANCET. MICROBE 2023:S2666-5247(23)00041-1. [PMID: 37116517 PMCID: PMC10129133 DOI: 10.1016/s2666-5247(23)00041-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. METHODS We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero (<1 N1 copies per mL), VIR-N1-Low (1-2747 N1 copies per mL), and VIR-N1-Storm (>2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. FINDINGS 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16-0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26-0·57; p<0·0001, compared with the VIR-N1-Storm group). INTERPRETATION The presence of a so-called viral storm is associated with increased all-cause death in patients admitted to the intensive care unit with severe COVID-19. Preventing this viral storm could help to reduce poor outcomes. Viral storm could be an enrichment marker for treatment with antivirals or purification devices to remove viral components from the blood. FUNDING Instituto de Salud Carlos III, Canadian Institutes of Health Research, Li Ka-Shing Foundation, Research Nova Scotia, and European Society of Clinical Microbiology and Infectious Diseases. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Jesús F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Gerencia Regional de Salud de Castilla y León, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain.
| | - Nadia García-Mateo
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - Anna Motos
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Salvador Resino
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Luis Tamayo
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Critical Care Medicine Service, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Pablo Ryan Murua
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Internal Medicine Service, Hospital Infanta Leonor, Madrid, Spain
| | - Elena Bustamante-Munguira
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Critical Care Medicine Service, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Elena Gallego Curto
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Critical Care Medicine Service, Hospital San Pedro de Alcántara, Cáceres, Spain
| | | | | | - Ángel Estella
- Intensive Care Unit, Hospital Universitario de Jerez, Departamento de Medicina Universidad de Cádiz, INiBICA, Cádiz, Spain
| | - Sandra Campos-Fernández
- Critical Care Medicine Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | - Felipe Pérez-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Clinical Microbiology Service, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain; Biomedicine and Biotechnology Department, Faculty of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - Juan López Messa
- Critical Care Medicine Service, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | - Pablo Vidal-Cortés
- Intensive Care Unit, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | | | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - David de Gonzalo-Calvo
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | | | | | | | | | - Emilio Maseda
- Anesthesiology and Reanimation Service, Hospital Universitario de la Paz, Madrid, Spain
| | - Ana Loza-Vázquez
- Critical Care Medicine Service, Hospital Universitario Nuestra Señora de Valme, Sevilla, Spain
| | - David J Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Ferrán Barbé
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | - Antoni Torres
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Hastie E, Amogan H, Looney D, Mehta SR. Association between SARS-CoV-2 Viral Load and Patient Symptoms and Clinical Outcomes Using Droplet Digital PCR. Viruses 2023; 15:446. [PMID: 36851660 PMCID: PMC9961727 DOI: 10.3390/v15020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The association between nasopharyngeal (NP) SARS-CoV-2 viral loads and clinical outcomes remains debated. Here, we examined the factors that might predict the NP viral load and the role of the viral load as a predictor of clinical outcomes. A convenience sample of 955 positive remnant NP swab eluent samples collected during routine care between 18 November 2020 and 26 September 2021 was cataloged and a chart review was performed. For non-duplicate samples with available demographic and clinical data (i.e., non-employees), an aliquot of eluent was sent for a droplet digital PCR quantification of the SARS-CoV-2 viral load. Univariate and multivariate analyses were performed to identify the clinical predictors of NP viral loads and the predictors of COVID-19-related clinical outcomes. Samples and data from 698 individuals were included in the final analysis. The sample cohort had a mean age of 50 years (range: 19-91); 86.6% were male and 76.3% were unvaccinated. The NP viral load was higher in people with respiratory symptoms (p = 0.0004) and fevers (p = 0.0006). In the predictive models for the clinical outcomes, the NP viral load approached a significance as a predictor for in-hospital mortality. In conclusion, the NP viral load did not appear to be a strong predictor of moderate-to-severe disease in the pre-Delta and Delta phases of the pandemic, but was predictive of symptomatic diseases and approached a significance for in-hospital mortality, providing support to the thesis that early viral control prevents the progression of disease.
Collapse
Affiliation(s)
- Elizabeth Hastie
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92039, USA
| | - Harold Amogan
- Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - David Looney
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92039, USA
- San Diego Veterans Affairs Medical Center, Department of Medicine, San Diego, CA 92161, USA
| | - Sanjay R. Mehta
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92039, USA
- San Diego Veterans Affairs Medical Center, Department of Medicine, San Diego, CA 92161, USA
| |
Collapse
|
22
|
Zhou L, Mo C, Yang Y, Zhou Z, You A, Fan Y, Liu W, Li X, Zhou R, Tian X. Characterization and application of a series of monoclonal antibodies against SARS-CoV-2 nucleocapsid protein. J Med Virol 2023; 95:e28225. [PMID: 36238992 PMCID: PMC9874425 DOI: 10.1002/jmv.28225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has a significant global social and economic impact, and the emergence of new and more destructive mutant strains highlights the need for accurate virus detection. Here, 90 monoclonal antibodies (MAbs) that exclusively reacted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NP) were generated. These MAbs did not cross-react with NPs of common human coronaviruses (HCoVs, i.e., 229E, OC43, HKU1, and NL63) and Middle East Respiratory Syndrome Coronavirus. Subsequently, overlapped peptides in individual fragments (N1-N4) of NP were synthesized. N1-3 (25-GSNQNGERSGARSKQ-39), N3-1 (217-AALALLLLDRLNQL-230), and N4-8 (393-TLLPAADLDDFSKQL-407) were identified as major epitopes using enzyme-linked immunoassay (ELISA) and recognized by 47, 1, and 18 MAbs, respectively. The 24 remaining MAbs exhibited no reactivity with all synthetic peptides. Among MAb-epitope pairs, only MAbs targeting epitope N1-3 displayed no cross-reaction with NPs of SARS-CoV-1 and other SARS-related CoVs. All Omicron variants contained a three-amino acid deletion (31ERS33) in the N1-3 region. Thus, MAbs targeting N1-3 failed to recognize these variants. Furthermore, a double-antibody sandwich ELISA for antigen detection was established using the optimal MAbs. Overall, a series of MAbs targeting SARS-CoV-2 NP was prepared, characterized with epitope mapping, and applied for the detection of SARS-CoV-2 antigens, and some novel B-cell epitopes of the viral NP were identified.
Collapse
Affiliation(s)
- Liling Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| | - Yujie Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Aiping You
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
23
|
Abstract
Droplet digital polymerase chain reaction (ddPCR) is a new quantitative PCR method based on water-oil emulsion droplet technology. ddPCR enables highly sensitive and accurate quantification of nucleic acid molecules, especially when their copy numbers are low. In ddPCR, a sample is fractionated into ~20,000 droplets, and every nanoliter-sized droplet undergoes PCR amplification of the target molecule. The fluorescence signals of droplets are then recorded by an automated droplet reader. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitously expressed in animals and plants. CircRNAs are promising as biomarkers for cancer diagnosis and prognosis and as therapeutic targets or agents to inhibit oncogenic microRNAs or proteins (Kristensen LS, Jakobsen T, Hager H, Kjems J, Nat Rev Clin Oncol 19:188-206, 2022). In this chapter, the procedures for the quantitation of a circRNA in single pancreatic cancer cells using ddPCR are described.
Collapse
Affiliation(s)
- Jiayi Peng
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Feng Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xiangdong Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Shen Hu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Usai C, Pailler-García L, Lorca-Oró C, Fernández-Bastit L, Roca N, Brustolin M, Rodon J, Pérez M, Cantero G, Carrillo J, Izquierdo-Useros N, Blanco J, Clotet B, Napp S, Segalés J, Vergara-Alert J. Agreement and differential use of laboratory methods for the detection and quantification of SARS-CoV-2 in experimentally infected animals. Front Microbiol 2022; 13:1016201. [PMID: 36458182 PMCID: PMC9706237 DOI: 10.3389/fmicb.2022.1016201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 10/08/2024] Open
Abstract
Rodents are widely used for the development of COVID-19-like animal models, the virological outcome being determined through several laboratory methods reported in the literature. Our objective was to assess the agreement between methods performed on different sample types from 342 rodents experimentally infected with SARS-CoV-2 (289 golden Syrian hamsters and 53 K18-hACE2 mice). Our results showed moderate agreement between methods detecting active viral replication, and that increasing viral loads determined by either RT-qPCR or infectious viral titration corresponded to increasing immunohistochemical scores. The percentage of agreement between methods decreased over experimental time points, and we observed poor agreement between RT-qPCR results and viral titration from oropharyngeal swabs. In conclusion, RT-qPCR and viral titration on tissue homogenates are the most reliable techniques to determine the presence and replication of SARS-CoV-2 in the early and peak phases of infection, and immunohistochemistry is valuable to evaluate viral distribution patterns in the infected tissues.
Collapse
Affiliation(s)
- Carla Usai
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Lola Pailler-García
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Cristina Lorca-Oró
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Leira Fernández-Bastit
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Marco Brustolin
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Mónica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Sebastián Napp
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la UAB, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia, Spain
| |
Collapse
|
26
|
Gul I, Zhai S, Zhong X, Chen Q, Yuan X, Du Z, Chen Z, Raheem MA, Deng L, Leeansyah E, Zhang C, Yu D, Qin P. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. BIOSENSORS 2022; 12:984. [PMID: 36354493 PMCID: PMC9688389 DOI: 10.3390/bios12110984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/30/2023]
Abstract
Rapid and cost-effective diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a critical and valuable weapon for the coronavirus disease 2019 (COVID-19) pandemic response. SARS-CoV-2 invasion is primarily mediated by human angiotensin-converting enzyme 2 (hACE2). Recent developments in ACE2-based SARS-CoV-2 detection modalities accentuate the potential of this natural host-virus interaction for developing point-of-care (POC) COVID-19 diagnostic systems. Although research on harnessing ACE2 for SARS-CoV-2 detection is in its infancy, some interesting biosensing devices have been developed, showing the commercial viability of this intriguing new approach. The exquisite performance of the reported ACE2-based COVID-19 biosensors provides opportunities for researchers to develop rapid detection tools suitable for virus detection at points of entry, workplaces, or congregate scenarios in order to effectively implement pandemic control and management plans. However, to be considered as an emerging approach, the rationale for ACE2-based biosensing needs to be critically and comprehensively surveyed and discussed. Herein, we review the recent status of ACE2-based detection methods, the signal transduction principles in ACE2 biosensors and the development trend in the future. We discuss the challenges to development of ACE2-biosensors and delineate prospects for their use, along with recommended solutions and suggestions.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyun Zhong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- Department of Computer Science and Technology, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
27
|
Colagrossi L, Costabile V, Scutari R, Cento V, Coltella L, Reale A, Scilipoti M, Villani A, Alteri C, Perno CF, Russo C. Performance evaluation of a new on-demand molecular test for the rapid identification of severe acute respiratory syndrome coronavirus 2 in pediatric and adult patients. Front Microbiol 2022; 13:999783. [DOI: 10.3389/fmicb.2022.999783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased the need to identify additional rapid diagnostic tests for an accurate and early diagnosis of infection. Here, we evaluated the diagnostic performance of the cartridge-based reverse transcription polymerase chain reaction (RT-PCR) test STANDARD M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, South Korea), targeting the ORF1ab and E gene of SARS-CoV-2, and which can process up to eight samples in parallel in 60 min. From January 2022 to March 2022, STANDARD™ M10 assay performance was compared with Xpert® Xpress SARS-CoV-2 (Cepheid, Sunnyvale CA) on 616 nasopharyngeal swabs from consecutive pediatric (N = 533) and adult (N = 83) patients presenting at the “Istituto di Ricovero e Cura a Carattere Scientifico” (IRCCS) Ospedale Pediatrico Bambino Gesù, Roma. The overall performance of STANDARD M10 SARS-CoV-2 was remarkably and consistently comparable to the Xpert® Xpress SARS-CoV-2 with an overall agreement of 98% (604/616 concordant results), and negligible differences in time-to-result (60 min vs. 50 min, respectively). When the Xpert® Xpress SARS-CoV-2 results were considered as the reference, STANDARD™ M10 SARS-CoV-2 had 96.5% sensitivity and 98.4% specificity. STANDARD M10 SARS-CoV-2 can thus be safely included in diagnostic pathways because it rapidly and accurately identifies SARS-CoV-2 present in nasopharyngeal swabs.
Collapse
|
28
|
Xu W, Zhu P, Xin T, Lou Q, Li R, Fu W, Ma T, Song J. Droplet digital PCR for the identification of plant-derived adulterants in highly processed products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154376. [PMID: 35963193 DOI: 10.1016/j.phymed.2022.154376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The high sensitivity of droplet digital PCR (ddPCR) contributes to its excellent performance in animal and microorganism identification, but the utilization of ddPCR is limited in plant adulterant identification of highly processed products for which effective methods are lacking. PURPOSE This study investigated the feasibility of ddPCR in the identification of plant adulterants in Chinese patent medicine (CPM) as groundwork to develop ddPCR assays for other highly processed goods. METHODS The original plant, processed and highly processed products of Mutong (Akebiae Caulis) and its two adulterants were used to analyze the specificity, sensitivity, and practical performance of the developed singleplex and triplex ddPCR assays. RESULTS The results revealed that the limit of detection (LOD) and limit of quantification (LOQ) for the selective ddPCR assays developed to identify Mutong and its adulterants were 0.00002 ng/μl and 0.00016 ng/μl, respectively, and that the regression equations representing the relationships between DNA concentration and target copy number all exhibited good linearity. Furthermore, the common adulterant of Mutong in three samples of Longdan Xiegan pills was successfully identified through ddPCR assays and confirmed by Sanger sequencing. CONCLUSION This work comprehensively revealed the great ability of ddPCR technology in detecting plant adulterants in traditional Chinese medicine (TCM), providing a method for the quality control of highly processed plant products with complex components for commonly used goods.
Collapse
Affiliation(s)
- Wenjie Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Pengyu Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tianyi Xin
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Qian Lou
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ranjun Li
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wei Fu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tingyu Ma
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China; Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China.
| |
Collapse
|
29
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
30
|
Strati A, Zavridou M, Paraskevis D, Magiorkinis G, Sapounas S, Lagiou P, Thomaidis NS, Lianidou ES. Development and Analytical Validation of a One-Step Five-Plex RT-ddPCR Assay for the Quantification of SARS-CoV-2 Transcripts in Clinical Samples. Anal Chem 2022; 94:12314-12322. [PMID: 35960711 PMCID: PMC9397566 DOI: 10.1021/acs.analchem.2c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Highly sensitive methodologies for SARS-CoV-2 detection are essential for the control of COVID-19 pandemic. We developed and analytically validated a highly sensitive and specific five-plex one-step RT-ddPCR assay for SARS-CoV-2. We first designed in-silico novel primers and probes for the simultaneous absolute quantification of three different regions of the nucleoprotein (N) gene of SARS-CoV-2 (N1, N2, N3), a synthetic RNA as an external control (RNA-EC), and Beta-2-Microglobulin (B2M) as an endogenous RNA internal control (RNA-IC). The developed assay was analytically validated using synthetic DNA and RNA calibrator standards and then was applied to 100 clinical specimens previously analyzed with a commercially available CE-IVD RT-qPCR assay. The analytical validation of the developed assay resulted in very good performance characteristics in terms of analytical sensitivity, linearity, analytical specificity, and reproducibility and recovery rates even at very low viral concentrations. The simultaneous absolute quantification of the RNA-EC and RNA-IC provides the necessary metrics for quality control assessment. Direct comparison of the developed one-step five-plex RT-ddPCR assay with a CE-IVD RT-qPCR kit revealed a very high concordance and a higher sensitivity [concordance: 99/100 (99.0%, Spearman's correlation coefficient: -0.850, p < 0.001)]. The developed assay is highly sensitive, specific, and reproducible and has a broad linear dynamic range, providing absolute quantification of SARS-COV-2 transcripts. The inclusion of two RNA quality controls, an external and an internal, is highly important for standardization of SARS-COV-2 molecular testing in clinical and wastewater samples.
Collapse
Affiliation(s)
- Areti Strati
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| | - Martha Zavridou
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical
Statistics, Medical School, National and Kapodistrian University of
Athens, 11527 Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical
Statistics, Medical School, National and Kapodistrian University of
Athens, 11527 Athens, Greece
| | | | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical
Statistics, Medical School, National and Kapodistrian University of
Athens, 11527 Athens, Greece
| | - Nikolaos S. Thomaidis
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| | - Evi S. Lianidou
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| |
Collapse
|
31
|
Joan TV, Kristiyan SA, Ernest SL, Nuria TP, Herme GB, Josep MB. Efficiency and sensitivity optimization of a protocol to quantify indoor airborne SARS-CoV-2 levels. J Hosp Infect 2022; 130:44-51. [PMID: 36100140 PMCID: PMC9465472 DOI: 10.1016/j.jhin.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
Abstract
Background Development of methodologies to quantify airborne micro-organisms is needed for the prevention and control of infections. It is difficult to conclude which is the most efficient and sensitive strategy to assess airborne SARS-CoV-2 RNA levels due to the disparity of results reported in clinical settings. Aim To improve our previously reported protocol of measuring SARS-CoV-2 RNA levels, which was based on bioaerosol collection with a liquid impinger and RNA quantification with droplet digital polymerase chain reaction (ddPCR). Methods Air samples were collected in COVID-19 patient rooms to assess efficiency and/or sensitivity of different air samplers, liquid collection media, and reverse transcriptases (RT). Findings Mineral oil retains airborne RNA better than does hydrophilic media without impairing integrity. SARS-CoV-2 ORF1ab target was detected in 80% of the air samples using BioSampler with mineral oil. No significant differences in effectiveness were obtained with MD8 sampler equipped with gelatine membrane filters, but the SARS-CoV-2 copies/m3 air obtained with the latter were lower (28.4 ± 6.1 vs 9 ± 1.7). SuperScript II RT allows the detection of a single SARS-CoV-2 genome RNA molecule by ddPCR with high efficiency. This was the only RT that allowed the detection of SARS-CoV-2 N1 target in air samples. Conclusion The collection efficiency and detection sensivity of a protocol to quantify SARS-CoV-2 RNA levels in indoor air has been improved in the present study. Such optimization is important to improve our understanding of the microbiological safety of indoor air.
Collapse
Affiliation(s)
- Truyols-Vives Joan
- Molecular Biology and One Health Research Group (MolONE), Universitat de Les Illes Balears (UIB), Palma, Spain
| | | | - Sala-Llinàs Ernest
- Molecular Biology and One Health Research Group (MolONE), Universitat de Les Illes Balears (UIB), Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Balearic Islands, Spain; Department of Pulmonary Medicine, Hospital Universitari Son Espases (HUSE), Balearic Islands, Spain; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Toledo-Pons Nuria
- Health Research Institute of the Balearic Islands (IdISBa), Balearic Islands, Spain; Department of Pulmonary Medicine, Hospital Universitari Son Espases (HUSE), Balearic Islands, Spain
| | - G Baldoví Herme
- Department of Chemistry, Universitat Politècnica de València (UPV)
| | - Mercader-Barceló Josep
- Molecular Biology and One Health Research Group (MolONE), Universitat de Les Illes Balears (UIB), Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Balearic Islands, Spain.
| |
Collapse
|
32
|
Zhang Z, Wang N, Liu X, Lv J, Jing H, Yuan X, Chen D, Lin X, Wu S. A Novel, Reverse Transcription, Droplet Digital PCR Assay for the Combined, Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 with Swine Acute Diarrhea Syndrome Coronavirus. J AOAC Int 2022; 105:1437-1446. [DOI: 10.1093/jaoacint/qsac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread over the world since its emergence. Although the dominant route of SARS-CoV-2 infection is respiratory, a number of studies revealed infection risk from contaminated surfaces and products, including porcine-derived food and other products. The SARS-CoV-2 outbreak has been severely threatening public health, and disrupting porcine products trade and the pig industry. Swine acute diarrhea syndrome coronavirus (SADS-CoV), which was responsible for large-scale, fatal disease in piglets, emerged in 2017 and has caused enormous economic losses in the pig industry. Currently, reverse transcription real-time PCR (RT-rPCR) is the gold standard method for SARS-CoV-2 diagnosis and is most commonly used for SADS-CoV detection. However, inaccurate detection of the SARS-CoV-2 infection obtained by RT-rPCR is increasingly reported, especially in specimens with low viral load.
Objective
This study aimed to develop an accurate reverse transcription droplet digital PCR (RT-ddPCR) assay for the detection of SARS-CoV-2 and SADS-CoV simultaneously.
Methods
Two pairs of primers and one double-quenched probe targeting the RNA-dependent RNA polymerase (RDRP) region of the open reading frame 1ab (ORF1ab) gene of SARS-CoV-2 and the corresponding ORF1ab region of SADS-CoV were designed to develop the RT-ddPCR assay. The sensitivity, specificity, repeatability, and reproducibility were tested using complementary RNAs (cRNAs) and clinical specimens.
Results
The detection limits of RT-ddPCR were 1.48 ± 0.18 and 1.38 ± 0.17 copies in a 20 μL reaction for SARS-CoV-2 and SADS-CoV cRNAs, respectively (n = 8), showing approximately 4- and 10-fold greater sensitivity than the RT-rPCR assay. This assay also exhibited good specificity, repeatability, and reproducibility.
Conclusion
The established RT-ddPCR assay was shown to be a highly effective, accurate, and reliable method for the sensitive detection of SARS-CoV-2 and SADS-CoV.
Highlights
This RT-ddPCR assay could be used to detect both SARS-CoV-2 and SADS-CoV in a sample with one double-quenched probe, and is also the first reported RT-ddPCR assay for SADS-CoV detection.
Collapse
Affiliation(s)
- Zhou Zhang
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Xiaofei Liu
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Jizhou Lv
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Hongli Jing
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Xiangfen Yuan
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Dongjie Chen
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Xiangmei Lin
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| | - Shaoqiang Wu
- Chinese Academy of Inspection and Quarantine, Institute of Animal Inspection and Quarantine , Beijing 100176, China
| |
Collapse
|
33
|
Pelegri‐Martinez E, Guruceaga X, Martin‐Souto L, Abad‐Diaz‐de‐Cerio A, Rementeria A, Dominguez A, Gallego M, Martinez O, Arana‐Arri E, Aranzamendi M, Ramirez‐Garcia A. Flexible multiplex
PCR
to detect
SARS‐CoV
‐2, coronavirus
OC43
and influenza A virus in nasopharyngeal swab samples. J Appl Microbiol 2022; 133:3534-3545. [PMID: 35988051 PMCID: PMC9537992 DOI: 10.1111/jam.15788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo Pelegri‐Martinez
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Leire Martin‐Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Ana Abad‐Diaz‐de‐Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Alazne Dominguez
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Mikel Gallego
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Oscar Martinez
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Eunate Arana‐Arri
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Maitane Aranzamendi
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Andoni Ramirez‐Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| |
Collapse
|
34
|
Li YQ, Tan GJ, Zhou YQ. Digital PCR and its applications in noninvasive prenatal testing. Brief Funct Genomics 2022; 21:376-386. [PMID: 35923115 DOI: 10.1093/bfgp/elac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
In the past decade, digital PCR (dPCR), as a new nucleic acid absolute quantification technology, has been widely used in clinical research. dPCR does not rely on the standard curve and has a higher tolerance to inhibitors. Therefore, it is more accurate than quantitative real-time PCR (qPCR) for the absolute quantification of target sequences. In this article, we aim to review the application of dPCR in noninvasive prenatal testing (NIPT). We focused on the progress of dPCR in screening and identifying fetal chromosome aneuploidies and monogenic mutations. We introduced some common strategies for dPCR in NIPT and analyzed the advantages and disadvantages of different methods. In addition, we compared dPCR with qPCR and next-generation sequencing, respectively, and described their superiority and shortcomings in clinical applications. Finally, we envisaged what the future of dPCR might be in NIPT. Although dPCR can provide reproducible results with improved accuracy due to the digital detection system, it is essential to combine the merits of dPCR and other molecular techniques to achieve more effective and accurate prenatal diagnostic strategies.
Collapse
Affiliation(s)
- Yue-Qi Li
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| | - Gong-Jun Tan
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| | - Yu-Qiu Zhou
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| |
Collapse
|
35
|
Nelson JR, Lu A, Maestre JP, Palmer EJ, Jarma D, Kinney KA, Grubesic TH, Kirisits MJ. Space-time analysis of COVID-19 cases and SARS-CoV-2 wastewater loading: A geodemographic perspective. Spat Spatiotemporal Epidemiol 2022; 42:100521. [PMID: 35934330 PMCID: PMC9142176 DOI: 10.1016/j.sste.2022.100521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2) continues to effect communities across the world. One way to combat these effects is to enhance our collective ability to remotely monitor community spread. Monitoring SARS-CoV-2 in wastewater is one approach that enables researchers to estimate the total number of infected people in a region; however, estimates are often made at the sewershed level which may mask the geographic nuance required for targeted interdiction efforts. In this work, we utilize an apportioning method to compare the spatial and temporal trends of daily case count with the temporal pattern of viral load in the wastewater at smaller units of analysis within Austin, TX. We find different lag-times between wastewater loading and case reports. Daily case reports for some locations follow the temporal trend of viral load more closely than others. These findings are then compared to socio-demographic characteristics across the study area.
Collapse
Affiliation(s)
- J R Nelson
- Department of Geosciences, Auburn University, 2050 Beard Eaves Coliseum, Auburn, AL 36849, USA
| | - A Lu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - J P Maestre
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - E J Palmer
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - D Jarma
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - K A Kinney
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - T H Grubesic
- Geoinformatics & Policy Analytics Laboratory, School of Information, University of Texas at Austin, USA
| | - M J Kirisits
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| |
Collapse
|
36
|
Ngouth N, Monaco MC, Walker L, Corey S, Ikpeama I, Fahle G, Cortese I, Das S, Jacobson S. Comparison of qPCR with ddPCR for the Quantification of JC Polyomavirus in CSF from Patients with Progressive Multifocal Leukoencephalopathy. Viruses 2022; 14:v14061246. [PMID: 35746716 PMCID: PMC9229850 DOI: 10.3390/v14061246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Lytic infection of oligodendrocytes by the human JC polyomavirus (JCPyV) results in the demyelinating disease called progressive multifocal leukoencephalopathy (PML). The detection of viral DNA in the cerebrospinal fluid (CSF) by PCR is an important diagnostic tool and, in conjunction with defined radiological and clinical features, can provide diagnosis of definite PML, avoiding the need for brain biopsy. The main aim of this study is to compare the droplet digital PCR (ddPCR) assay with the gold standard quantitative PCR (qPCR) for the quantification of JC viral loads in clinical samples. Methods: A total of 62 CSF samples from 31 patients with PML were analyzed to compare the qPCR gold standard technique with ddPCR to detect conserved viral DNA sequences in the JCPyV genome. As part of the validation process, ddPCR results were compared to qPCR data obtained in 42 different laboratories around the world. In addition, the characterization of a novel triplex ddPCR to detect viral DNA sequence from both prototype and archetype variants and a cellular housekeeping reference gene is described. Triplex ddPCR was used to analyze the serum from six PML patients and from three additional cohorts, including 20 healthy controls (HC), 20 patients with multiple sclerosis (MS) who had never been treated with natalizumab (no-NTZ-treated), and 14 patients with MS who were being treated with natalizumab (NTZ-treated); three from this last group seroconverted during the course of treatment with natalizumab. Results: JCPyV DNA was detected only by ddPCR for 5 of the 62 CSF samples (8%), while remaining undetected by qPCR. For nine CSF samples (15%), JCPyV DNA was at the lower limit of quantification for qPCR, set at <250 copies/mL, and therefore no relative quantitation could be determined. By contrast, exact copies of JCPyV for each of these samples were quantified by ddPCR. No differences were observed between qPCR and ddPCR when five standardized plasma samples were analyzed for JCPyV in 42 laboratories in the United States and Europe. JCPyV-DNA was undetected in all the sera from HC and MS cohorts tested by triplex ddPCR, while serum samples from six patients with PML tested positive for JCPyV. Conclusion: This study shows strong correlation between ddPCR and qPCR with increased sensitivity of the ddPCR assay. Further work will be needed to determine whether multiplex ddPCR can be useful to determine PML risk in natalizumab-treated MS patients.
Collapse
Affiliation(s)
- Nyater Ngouth
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
| | - Maria Chiara Monaco
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
| | - Lorenzo Walker
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Sydney Corey
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (S.C.); (I.C.)
| | - Ijeoma Ikpeama
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Gary Fahle
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (S.C.); (I.C.)
| | - Sanchita Das
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
- Correspondence:
| |
Collapse
|
37
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
38
|
Gao P, Wu C, Zhang J, Wang S, Huang Y, Dong Y, Liu T, Ye C, Xu X, Xin W. Evaluation and Optimization of Microdrop Digital PCR for Detection of Serotype A and B Clostridium botulinum. Front Microbiol 2022; 13:860992. [PMID: 35615503 PMCID: PMC9125207 DOI: 10.3389/fmicb.2022.860992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Clostridium botulinum is the causative pathogen of botulism. Laboratory detection of C. botulinum is essential for clinical therapy treatment of botulism due to the difficulty in diagnosis, especially in infant botulism. The extreme toxicity of botulinum neurotoxin (BoNT) requires a sensitive detection method. Due to the detection limit of real-time quantitative PCR (q-PCR), a more sensitive detection method, micro-drop digital PCR (ddPCR) was applied in C. botulinum main serotypes A and B. The following performance criteria were evaluated by ddPCR: analytical sensitivity; repeatability; and diagnostic specificity. The limit of detection (LOD) was 0.84 and 0.88 copies/μl for BoNT A and B genes, respectively, by ddPCR with high specificity, compared to 5.04×102 and 6.91×102 copies/μl by q-PCR. It was increased 10 times compared with q-PCR in spiked stool samples. This improvement in sensitivity was especially important in clinical samples as more positive samples were detected by digital PCR compared with q-PCR. Meanwhile, enrichment time for low bacteria content samples was shortened by four hours both in serotypes A and B C. botulinum by ddPCR compared with q-PCR, which are important for laboratory diagnosis and epidemiology work.
Collapse
Affiliation(s)
- Pengya Gao
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Changde Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jin Zhang
- Criminal Investigation School, People's Public Security University of China, Beijing, China
| | - Shuping Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Xuefang Xu
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- Wenwen Xin
| |
Collapse
|
39
|
Su W, Qiu J, Mei Y, Zhang XE, He Y, Li F. A microfluidic cell chip for virus isolation via rapid screening for permissive cells. Virol Sin 2022; 37:547-557. [PMID: 35504535 PMCID: PMC9437619 DOI: 10.1016/j.virs.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/11/2022] [Indexed: 12/09/2022] Open
Abstract
Virus identification is a prerequisite not only for the early diagnosis of viral infectious diseases but also for the effective prevention of epidemics. Successful cultivation is the gold standard for identifying a virus, according to the Koch postulates. However, this requires screening for a permissive cell line, which is traditionally time-, reagent- and labor-intensive. Here, a simple and easy-to-operate microfluidic chip, formed by seeding a variety of cell lines and culturing them in parallel, is reported for use in virus cultivation and virus-permissive host-cell screening. The chip was tested by infection with two known viruses, enterovirus 71 (EV71) and influenza virus H1N1. Infection with EV71 and H1N1 caused significant cytopathic effects (CPE) in RD and MDCK cells, respectively, demonstrating that virus cultivation based on this microfluidic cell chip can be used as a substitute for the traditional plate-based culture method and reproduce the typical CPE caused by virus infection. Using this microfluidic cell chip method for virus cultivation could make it possible to identify an emerging virus in a high-throughput, automatic, and unprecedentedly fast way. A simple microfluidic chip for tandem culture of different cell lines is achieved. The cell chip has been used for permissive cell screening and culture of viruses. The cell chip has advantages of being sample-, reagent-, and time-saving. The cell chip system holds potential for high-throughput and automated screening.
Collapse
|
40
|
Wang HJ, Xiang YH, Hu R, Ji R, Wang YP. Research progress in laboratory detection of SARS-CoV-2. Ir J Med Sci 2022; 191:509-517. [PMID: 33763777 PMCID: PMC7990494 DOI: 10.1007/s11845-021-02604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nucleic acid testing is a reliable method for diagnosing viral infection in clinical samples. However, when the number of cases is huge and there are individual differences in the virus itself, the probability of false-negative results increases. With the advancement in research on the new coronavirus, new detection technologies that use serum-specific antibodies as detection targets have been developed. These detection technologies have high efficiency and shorter turnaround time, which ultimately shortens the time required for diagnosis. This article summarizes the methods that have been reported to date for the detection of the new coronavirus and discusses their principles and technical characteristics. AIMS Compare the advantages and disadvantages of various SARS-CoV-2 detection methods and analyze their principles. METHODS Searched reports on SARS-CoV-2 detection methods published so far, extracted the data and analyzed them. Use the primer blast function of NCBI to analyze the primers used in qRT-PCR detection. RESULTS The detection sensitivity was the highest when nucleocapsid protein gene was used as the target, reaching 96.6%. The detection efficiency of the remaining targets ranged from 66.7% to 96.0%. Various new detection methods, like Serum specific antibody detection, can speed up the test time. However, due to the complexity of the method and higher testing requirements, it seems that it cannot be used as a complete replacement for qRT-PRC testing. CONCLUSIONS With the advancement of technology and the improvement of methods, the detection methods of SARSCoV-2 have become more mature. These advances provided great help to the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Hao-jia Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000 China
| | - Yang-hui Xiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000 China
| | - Rui Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000 China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Yu-ping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
41
|
End-point RT-PCR based on a conservation landscape for SARS-COV-2 detection. Sci Rep 2022; 12:4759. [PMID: 35306521 PMCID: PMC8933765 DOI: 10.1038/s41598-022-07756-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
End-point RT-PCR is a suitable alternative diagnostic technique since it is cheaper than RT-qPCR tests and can be implemented on a massive scale in low- and middle-income countries. In this work, a bioinformatic approach to guide the design of PCR primers was developed, and an alternative diagnostic test based on end-point PCR was designed. End-point PCR primers were designed through conservation analysis based on kmer frequency in SARS-CoV-2 and human respiratory pathogen genomes. Highly conserved regions were identified for primer design, and the resulting PCR primers were used to amplify 871 nasopharyngeal human samples with a previous RT-qPCR based SARS-CoV-2 diagnosis. The diagnostic test showed high accuracy in identifying SARS-CoV-2-positive samples including B.1.1.7, P.1, B.1.427/B.1.429 and B.1.617.2/ AY samples with a detection limit of 7.2 viral copies/µL. In addition, this test could discern SARS-CoV-2 infection from other viral infections with COVID-19-like symptomatology. The designed end-point PCR diagnostic test to detect SARS-CoV-2 is a suitable alternative to RT-qPCR. Since the proposed bioinformatic approach can be easily applied in thousands of viral genomes and over highly divergent strains, it can be used as a PCR design tool as new SARS-CoV-2 variants emerge. Therefore, this end-point PCR test could be employed in epidemiological surveillance to detect new SARS-CoV-2 variants as they emerge and propagate.
Collapse
|
42
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
43
|
Li J, Lin W, Du P, Liu W, Liu X, Yang C, Jia R, Wang Y, Chen Y, Jia L, Han L, Tan W, Liu N, Du J, Ke Y, Wang C. Comparison of reverse-transcription qPCR and droplet digital PCR for the detection of SARS-CoV-2 in clinical specimens of hospitalized patients. Diagn Microbiol Infect Dis 2022; 103:115677. [PMID: 35417835 PMCID: PMC8933867 DOI: 10.1016/j.diagmicrobio.2022.115677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 12/23/2022]
Abstract
Accurate detection of severe acute respiratory syndrome coronavirus 2 is not only necessary for viral load monitoring to optimize treatment in hospitalized coronavirus disease 2019 patients, but also critical for deciding whether the patient could be discharged without any risk of viral shedding. Digital droplet PCR (ddPCR) is more sensitive than reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and is usually considered the superior choice. In the current study, we compared the clinical performance of RT-qPCR and ddPCR using oropharyngeal swab samples from patients hospitalized in the temporary Huoshenshan Hospital, Wuhan, Hubei, China. Results demonstrated that ddPCR was indeed more sensitive than RT-qPCR. Negative results might be caused by poor sampling technique or recovered patients, as the range of viral load in these patients varied significantly. In addition, both methods were highly correlated in terms of their ability to detect all three target genes as well as the ratio of copies of viral genes to that of the IC gene. Furthermore, our results evidenced that both methods detected the N gene more easily than the ORF gene. Taken together, these findings imply that the use of ddPCR, as an alternative to RT-qPCR, is necessary for the accurate diagnosis of hospitalized coronavirus disease 2019 patients.
Collapse
|
44
|
Truyols Vives J, Muncunill J, Toledo Pons N, Baldoví HG, Sala Llinàs E, Mercader Barceló J. SARS-CoV-2 detection in bioaerosols using a liquid impinger collector and ddPCR. INDOOR AIR 2022; 32:e13002. [PMID: 35225399 PMCID: PMC9111801 DOI: 10.1111/ina.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The airborne route is the dominant form of COVID-19 transmission, and therefore, the development of methodologies to quantify SARS-CoV-2 in bioaerosols is needed. We aimed to identify SARS-CoV-2 in bioaerosols by using a highly efficient sampler for the collection of 1-3 µm particles, followed by a highly sensitive detection method. 65 bioaerosol samples were collected in hospital rooms in the presence of a COVID-19 patient using a liquid impinger sampler. The SARS-CoV-2 genome was detected by ddPCR using different primer/probe sets. 44.6% of the samples resulted positive for SARS-CoV-2 following this protocol. By increasing the sampled air volume from 339 to 650 L, the percentage of positive samples went from 41% to 50%. We detected five times less positives with a commercial one-step RT-PCR assay. However, the selection of primer/probe sets might be one of the most determining factor for bioaerosol SARS-CoV-2 detection since with the ORF1ab set more than 40% of the samples were positive, compared to <10% with other sets. In conclusion, the use of a liquid impinger collector and ddPCR is an adequate strategy to detect SARS-CoV-2 in bioaerosols. However, there are still some methodological aspects that must be adjusted to optimize and standardize a definitive protocol.
Collapse
Affiliation(s)
- Joan Truyols Vives
- Molecular Biology and One Health research group (MolONE)Universitat de les Illes Balears (UIB)PalmaSpain
| | - Josep Muncunill
- Health Research Institute of the Balearic Islands (IdISBa)Balearic IslandsSpain
| | - Núria Toledo Pons
- Health Research Institute of the Balearic Islands (IdISBa)Balearic IslandsSpain
- Department of Pulmonary MedicineHospital Universitari Son Espases (HUSE)Balearic IslandsSpain
| | - Herme G. Baldoví
- Department of ChemistryUniversitat Politècnica de València (UPV)ValenciaSpain
| | - Ernest Sala Llinàs
- Molecular Biology and One Health research group (MolONE)Universitat de les Illes Balears (UIB)PalmaSpain
- Health Research Institute of the Balearic Islands (IdISBa)Balearic IslandsSpain
- Department of Pulmonary MedicineHospital Universitari Son Espases (HUSE)Balearic IslandsSpain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES)MadridSpain
| | - Josep Mercader Barceló
- Molecular Biology and One Health research group (MolONE)Universitat de les Illes Balears (UIB)PalmaSpain
- Health Research Institute of the Balearic Islands (IdISBa)Balearic IslandsSpain
- Foners Medicina Veterinària i Innovació SLPPalmaSpain
| |
Collapse
|
45
|
Artik Y, Coşğun AB, Cesur NP, Hızel N, Uyar Y, Sur H, Ayan A. Comparison of COVID-19 laboratory diagnosis by commercial kits: Effectivity of RT-PCR to the RT-LAMP. J Med Virol 2022; 94:1998-2007. [PMID: 34997587 PMCID: PMC9015626 DOI: 10.1002/jmv.27559] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 or COVID-19 caused by novel coronavirus/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) is an ongoing pandemic that has emerging global effects and requires rapid and reliable diagnostic testing. Quantitative reverse transcription-polymerase chain reaction (q-RT-PCR) is the gold standard method for SARS-CoV-2 detections. On the other hand, new approaches remedy the diagnosis difficulties gradually. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) as one of these novel approaches may also contribute to faster and cheaper field-based testing. The present study was designed to evaluate this rapid screening diagnostic test that can give results in 30-45 min and to compare the effectiveness of LAMP to the q-RT-PCR. The 30 randomly chosen patient samples were generated by nasopharyngeal swabs with a portion of the SARS-CoV-2 nucleic sequence. The sample of quantification cycle (Cq) values was tested using RT-LAMP as well as by conventional q-RT-PCR. The patient samples were tested with four different kits (SENSObiz COVID-19 [SARS-CoV-2] LAMP Assay, the QIAseq DIRECT SARS-CoV-2 kit, Biospeedy SARS-CoV-2 Variant Plus kit, and CoVirion-CV19-2 SARS-CoV-2 OneStep RT-PCR kit) and two different PCR devices (GDS Rotor-Gene Q Thermocycler and Inovia Technologies GenX series). Based on 30 patient samples, the positive/negative ratio (P/N) was 30/0 as Biospeedy and Covirion (positivity 100%), 28/2 as Qiagen kit (positivity 93.3%) for the samples studied on the Inovia device while the same samples on the Rotor-Gene device were 30/0 as Biospeedy and Covirion (positivity 100%), 29/1 as Qiagen kit at the first day (96.7%). On the fifth day, the samples were studied in the Inovia device and the respective results were obtained: 27/3 as Biospeedy (positivity 90%), 16/14 as Qiagen (positivity 53.3%), 28/2 as Covirion kit (positivity 93.3%). When these samples were studied in the Rotor-Gene device, it was 29/1 in Biospeedy and Covirion (positivity 96.7%), 19/11 in the Qiagen kit (positivity 63.3%). When these samples were compared with the LAMP method it was found to be 19/11 (positivity 63.3%) on the first day and 18/12 (positivity 60%) on the fifth day. SARS-CoV-2 test studies will contribute to a proactive approach to the development of rapid diagnosis systems. The LAMP approach presents promising results to monitor exposed individuals and also improves screening efforts in potential ports of entry.
Collapse
Affiliation(s)
- Yakup Artik
- Republic of Turkey, Ministry of Health, Health Institutes of Turkey (TUSEB), COVID-19 Diagnostic Center, University of Health Sciences, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Küçükçekmece, Turkey.,Private Viromed Istanbul Central Laboratory and Imaging Center, COVID-19 Diagnostic Center, Istanbul, Şişli, Turkey.,Department of Molecular Biology and Genetics, Istanbul Kültür University, Faculty of Science and Letters, Istanbul, Bakırköy, Turkey
| | - Alp B Coşğun
- Private Viromed Istanbul Central Laboratory and Imaging Center, COVID-19 Diagnostic Center, Istanbul, Şişli, Turkey
| | - Nevra P Cesur
- Republic of Turkey, Ministry of Health, Health Institutes of Turkey (TUSEB), COVID-19 Diagnostic Center, University of Health Sciences, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Küçükçekmece, Turkey.,Private Viromed Istanbul Central Laboratory and Imaging Center, COVID-19 Diagnostic Center, Istanbul, Şişli, Turkey
| | - Nedret Hızel
- Private Viromed Istanbul Central Laboratory and Imaging Center, COVID-19 Diagnostic Center, Istanbul, Şişli, Turkey.,Faculty of Medicine, Medical Biochemistry, Üsküdar University, Istanbul, Üsküdar, Turkey
| | - Yavuz Uyar
- Private Viromed Istanbul Central Laboratory and Imaging Center, COVID-19 Diagnostic Center, Istanbul, Şişli, Turkey
| | - Haydar Sur
- Department of Public Health, Faculty of Medicine, Üsküdar University, Istanbul, Üsküdar, Turkey
| | - Alp Ayan
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Faculty of Science and Letters, Istanbul, Bakırköy, Turkey
| |
Collapse
|
46
|
Sayed MA, Abdelhakeem M. Typical and Atypical Clinical Presentation of COVID-19 Infection in Children in The Top of Pandemic in EL-Minia Governorate (Two Center Experience). Mediterr J Hematol Infect Dis 2022; 14:e2022002. [PMID: 35070209 PMCID: PMC8747082 DOI: 10.4084/mjhid.2022.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/14/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND A novel coronavirus that is identified as the cause of pandemic situation inFebruary2020 and affects adults and children with variable presentation and outcome. OBJECTIVE We studied the typical and atypical clinical and laboratory presentation of COVID-19 during the peak of the first wave in two main referral hospitals, upper Egypt EL-Minia governorate. METHODS Among 88 children with suspected cases tested for COVID-19, only 22 proved to be positive. Studied patients were classified into three groups based on age. The first group was 2-5years, the second was 5-10years, and the third included those aged more than 10 years. All patients met diagnostic guidelines established by the Egyptian Ministry of Health. RESULTS out of the positive 22 (25%) patients, 13(59.1%) of them were male, while 9 (40.9%) were females. All enrolled patients have a history of near contact exposure (100%). Thrombocytopenia was the highest presenting symptom in all enrolled patients18 (81.8%), while other hematological findings were anemia in 11 (50%), thrombotic symptoms in 2 (9.1%), pancytopenia in 2(9.1%) while bleeding was found in 1 patient (4.5%). Fever, present in 16 (72.7%), the most common constitutional symptom in COVID-19, was not reported in all enrolled patients, while sore throat was reported in only 2 patients (9.1%). The respiratory presentation was only dominant in positive chest C.T. finding, 17(72.3%), rather than clinical symptoms; GUT symptoms were the dominant presenting features as vomiting was found in 15 (68.2%), diarrhea in 10 (45.5%), abdominal pain in 11 (50%), jaundice in 9 (40.9%) and dehydration in 6 (27.3%). Neurological symptoms were convulsions in 4 (18.2%), while encephalopathy was 2 (9.1%). Nephritis was the only renal presentation in the enrolled patients, 3 (13.6%). Cardiac presentations were only cyanosis 8 (36.4%) and arrhythmias 6 (27.3%). CONCLUSION COVID-19 has many clinical classic presentations in children; however other non-typical presentations like hematological, CNS, and renal presentations have been reported.
Collapse
Affiliation(s)
- Madeha Abdalla Sayed
- Lecturer of pediatrics, Faculty of medicine, EL-Minia University, EL-Minia, Egypt
| | - Mohamed Abdelhakeem
- Assistant professor of clinical pathology, EL-Minia University, El-Minia, Egypt
| |
Collapse
|
47
|
Nyaruaba R, Li X, Mwaliko C, Ogolla F, Li C, Zhao L, Yang H, Yu J, Wei H. One-Step Reverse Transcription Droplet Digital PCR Protocols for SARS-CoV-2 Detection and Quantification. Methods Mol Biol 2022; 2452:147-166. [PMID: 35554906 DOI: 10.1007/978-1-0716-2111-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Droplet digital polymerase chain reaction (ddPCR) is a third generation of PCR that was recently developed to overcome the limitation of direct quantification observed in real-time quantification PCR (qPCR). Recent studies have shown that ddPCR is more sensitive than the gold standard reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) in detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) samples. In combination with multiplexing, multiple RT-ddPCR assays can be developed to directly quantify different SARS-CoV-2 nucleic acid targets within a single sample, significantly saving on cost and time. Since ddPCR is tolerant to a number of inhibitors unlike qPCR, it can be used to detect and quantify samples from complex environments like wastewater. Here we present three one-step RT-ddPCR protocols on how to develop simplex (one target), duplex (two targets), and triplex probe mix (three targets) assays for SARS-CoV-2 detection and quantification. The assays can be used for diagnosis or other research-related SARS-CoV-2 applications.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Xiohong Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Nairobi, Kenya
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Faith Ogolla
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Changchang Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Honping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Lam AHY, Cai JP, Leung KY, Zhang RR, Liu D, Fan Y, Tam AR, Cheng VCC, To KKW, Yuen KY, Hung IFN, Chan KH. In-House Immunofluorescence Assay for Detection of SARS-CoV-2 Antigens in Cells from Nasopharyngeal Swabs as a Diagnostic Method for COVID-19. Diagnostics (Basel) 2021; 11:diagnostics11122346. [PMID: 34943583 PMCID: PMC8700487 DOI: 10.3390/diagnostics11122346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Immunofluorescence is a traditional diagnostic method for respiratory viruses, allowing rapid, simple and accurate diagnosis, with specific benefits of direct visualization of antigens-of-interest and quality assessment. This study aims to evaluate the potential of indirect immunofluorescence as an in-house diagnostic method for SARS-CoV-2 antigens from nasopharyngeal swabs (NPS). Three primary antibodies raised from mice were used for immunofluorescence staining, including monoclonal antibody against SARS-CoV nucleocapsid protein, and polyclonal antibodies against SARS-CoV-2 nucleocapsid protein and receptor-binding domain of SARS-CoV-2 spike protein. Smears of cells from NPS of 29 COVID-19 patients and 20 non-infected individuals, and cells from viral culture were stained by the three antibodies. Immunofluorescence microscopy was used to identify respiratory epithelial cells with positive signals. Polyclonal antibody against SARS-CoV-2 N protein had the highest sensitivity and specificity among the three antibodies tested, detecting 17 out of 29 RT-PCR-confirmed COVID-19 cases and demonstrating no cross-reactivity with other tested viruses except SARS-CoV. Detection of virus-infected cells targeting SARS-CoV-2 N protein allow identification of infected individuals, although accuracy is limited by sample quality and number of respiratory epithelial cells. The potential of immunofluorescence as a simple diagnostic method was demonstrated, which could be applied by incorporating antibodies targeting SARS-CoV-2 into multiplex immunofluorescence panels used clinically, such as for respiratory viruses, thus allowing additional routine testing for diagnosis and surveillance of SARS-CoV-2 even after the epidemic has ended with low prevalence of COVID-19.
Collapse
Affiliation(s)
- Athene Hoi-Ying Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
| | - Ka-Yi Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
| | - Ricky-Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | - Danlei Liu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | - Yujing Fan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | | | | | - Kelvin Kai-Wang To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
- Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong, China;
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
- Department of Medicine, Queen Mary Hospital, Hong Kong, China;
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Correspondence: (I.F.-N.H.); (K.-H.C.)
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Correspondence: (I.F.-N.H.); (K.-H.C.)
| |
Collapse
|
49
|
Kohmer N, Eckermann L, Böddinghaus B, Götsch U, Berger A, Herrmann E, Kortenbusch M, Tinnemann P, Gottschalk R, Hoehl S, Ciesek S. Self-Collected Samples to Detect SARS-CoV-2: Direct Comparison of Saliva, Tongue Swab, Nasal Swab, Chewed Cotton Pads and Gargle Lavage. J Clin Med 2021; 10:jcm10245751. [PMID: 34945047 PMCID: PMC8709431 DOI: 10.3390/jcm10245751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by RT-PCR is a vital public health tool in the pandemic. Self-collected samples are increasingly used as an alternative to nasopharyngeal swabs. Several studies suggested that they are sufficiently sensitive to be a useful alternative. However, there are limited data directly comparing several different types of self-collected materials to determine which material is preferable. A total of 102 predominantly symptomatic adults with a confirmed SARS-CoV-2 infection self-collected native saliva, a tongue swab, a mid-turbinate nasal swab, saliva obtained by chewing a cotton pad and gargle lavage, within 48 h of initial diagnosis. Sample collection was unsupervised. Both native saliva and gargling with tap water had high diagnostic sensitivity of 92.8% and 89.1%, respectively. Nasal swabs had a sensitivity of 85.1%, which was not significantly inferior to saliva (p = 0.092), but 16.6% of participants reported they had difficult in self-collection of this sample. A tongue swab and saliva obtained by chewing a cotton pad had a significantly lower sensitivity of 74.2% and 70.2%, respectively. Diagnostic sensitivity was not related to the presence of clinical symptoms or to age. When comparing self-collected specimens from different material, saliva, gargle lavage or mid-turbinate nasal swabs may be considered for most symptomatic patients. However, complementary experiments are required to verify that differences in performance observed among the five sampling modes were not attributed to collection impairment.
Collapse
Affiliation(s)
- Niko Kohmer
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt, Germany; (N.K.); (L.E.); (A.B.); (M.K.); (R.G.); (S.C.)
| | - Lisa Eckermann
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt, Germany; (N.K.); (L.E.); (A.B.); (M.K.); (R.G.); (S.C.)
| | - Boris Böddinghaus
- Health Protection Authority, City of Frankfurt, 60313 Frankfurt, Germany; (B.B.); (U.G.); (P.T.)
| | - Udo Götsch
- Health Protection Authority, City of Frankfurt, 60313 Frankfurt, Germany; (B.B.); (U.G.); (P.T.)
| | - Annemarie Berger
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt, Germany; (N.K.); (L.E.); (A.B.); (M.K.); (R.G.); (S.C.)
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, Goethe University Frankfurt, 60596 Frankfurt, Germany;
| | - Marhild Kortenbusch
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt, Germany; (N.K.); (L.E.); (A.B.); (M.K.); (R.G.); (S.C.)
| | - Peter Tinnemann
- Health Protection Authority, City of Frankfurt, 60313 Frankfurt, Germany; (B.B.); (U.G.); (P.T.)
| | - Rene Gottschalk
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt, Germany; (N.K.); (L.E.); (A.B.); (M.K.); (R.G.); (S.C.)
- Health Protection Authority, City of Frankfurt, 60313 Frankfurt, Germany; (B.B.); (U.G.); (P.T.)
| | - Sebastian Hoehl
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt, Germany; (N.K.); (L.E.); (A.B.); (M.K.); (R.G.); (S.C.)
- Correspondence: ; Tel.: +49-69-6301-0
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt, Germany; (N.K.); (L.E.); (A.B.); (M.K.); (R.G.); (S.C.)
- German Centre for Infection Research, External Partner Site, 60323 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
50
|
Ishak A, AlRawashdeh MM, Esagian SM, Nikas IP. Diagnostic, Prognostic, and Therapeutic Value of Droplet Digital PCR (ddPCR) in COVID-19 Patients: A Systematic Review. J Clin Med 2021; 10:5712. [PMID: 34884414 PMCID: PMC8658157 DOI: 10.3390/jcm10235712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Accurate detection of SARS-CoV-2, the pathogen causing the global pandemic of COVID-19, is essential for disease surveillance and control. Quantitative reverse transcription PCR (RT-qPCR) is considered the reference standard test for the diagnosis of SARS-CoV-2 by the World Health Organization and Centers for Disease Control and Prevention. However, its limitations are a prompt for a more accurate assay to detect SARS-CoV-2, quantify its levels, and assess the prognosis. This article aimed to systematically review the literature and assess the diagnostic performance of droplet digital PCR (ddPCR), also to evaluate its potential role in prognosis and management of COVID-19 patients. PubMed and Scopus databases were searched to identify relevant articles published until 13 July 2021. An additional PubMed search was performed on 21 October 2021. Data from the 39 eligible studies were extracted and an overall 3651 samples from 2825 patients and 145 controls were used for our qualitative analysis. Most studies reported ddPCR was more accurate than RT-qPCR in detecting and quantifying SARS-CoV-2 levels, especially in patients with low viral loads. ddPCR was also found highly effective in quantifying SARS-CoV-2 RNAemia levels in hospitalized patients, monitoring their disease course, and predicting their response to therapy. These findings suggest ddPCR could serve as a complement or alternative SARS-CoV-2 tool with emerging diagnostic, prognostic, and therapeutic value, especially in hospital settings. Additional research is still needed to standardize its laboratory protocols, also to accurately assess its role in monitoring COVID-19 therapy response and in identifying SARS-CoV-2 emerging variants.
Collapse
Affiliation(s)
- Angela Ishak
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Mousa M. AlRawashdeh
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Stepan M. Esagian
- Jacobi Medical Center, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, USA;
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| |
Collapse
|