1
|
Yin Y, Kan X, Miao X, Sun Y, Chen S, Qin T, Ding C, Peng D, Liu X. H5 subtype avian influenza virus induces Golgi apparatus stress response via TFE3 pathway to promote virus replication. PLoS Pathog 2024; 20:e1012748. [PMID: 39652582 PMCID: PMC11627363 DOI: 10.1371/journal.ppat.1012748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
During infection, avian influenza virus (AIV) triggers endoplasmic reticulum (ER) stress, a well-established phenomenon in previous research. The Golgi apparatus, situated downstream of the ER and crucial for protein trafficking, may be impacted by AIV infection. However, it remains unclear whether this induces Golgi apparatus stress (GAS) and its implications for AIV replication. We investigated the morphological changes in the Golgi apparatus and identified GAS response pathways following infection with the H5 subtype AIV strain A/Mallard/Huadong/S/2005. The results showed that AIV infection induced significant swelling and fragmentation of the Golgi apparatus in A549 cells, indicating the presence of GAS. Among the analyzed GAS response pathways, TFE3 was significantly activated during AIV infection, while HSP47 was activated early in the infection process, and CREB3-ARF4 remained inactive. The blockade of the TFE3 pathway effectively inhibited AIV replication in A549 cells and attenuated AIV virulence in mice. Additionally, activation of the TFE3 pathway promoted endosome acidification and upregulated transcription levels of glycosylation enzymes, facilitating AIV replication. These findings highlight the crucial role of the TFE3 pathway in mediating GAS response during AIV infection, shedding light on its significance in viral replication.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Chan Ding
- Shanghai Jiaotong University School of Agriculture and Biology, Shanghai, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, PR China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| |
Collapse
|
2
|
Al-Eitan L, Khair I, Shakhatreh Z, Almahdawi D, Alahmad S. Epidemiology, biosafety, and biosecurity of Avian Influenza: Insights from the East Mediterranean region. Rev Med Virol 2024; 34:e2559. [PMID: 38886173 DOI: 10.1002/rmv.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Iliya Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Shakhatreh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Diana Almahdawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Seo YR, Cho AY, Si YJ, Lee SI, Kim DJ, Jeong H, Kwon JH, Song CS, Lee DH. Evolution and Spread of Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Wild Birds, South Korea, 2022-2023. Emerg Infect Dis 2024; 30:299-309. [PMID: 38215495 PMCID: PMC10826760 DOI: 10.3201/eid3002.231274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
During October 2022-March 2023, highly pathogenic avian influenza (HPAI) A(H5N1) clade 2.3.4.4b virus caused outbreaks in South Korea, including 174 cases in wild birds. To understand the origin and role of wild birds in the evolution and spread of HPAI viruses, we sequenced 113 HPAI isolates from wild birds and performed phylogenetic analysis. We identified 16 different genotypes, indicating extensive genetic reassortment with viruses in wild birds. Phylodynamic analysis showed that the viruses were most likely introduced to the southern Gyeonggi-do/northern Chungcheongnam-do area through whooper swans (Cygnus cygnus) and spread southward. Cross-species transmission occurred between various wild bird species, including waterfowl and raptors, resulting in the persistence of HPAI in wild bird populations and further geographic spread as these birds migrated throughout South Korea. Enhanced genomic surveillance was an integral part of the HPAI outbreak response, aiding in timely understanding of the origin, evolution, and spread of the virus.
Collapse
|
4
|
Zhao W, Liu X, Zhang X, Qiu Z, Jiao J, Li Y, Gao R, Wang X, Hu J, Liu X, Hu S, Jiao X, Peng D, Gu M, Liu X. Virulence and transmission characteristics of clade 2.3.4.4b H5N6 subtype avian influenza viruses possessing different internal gene constellations. Virulence 2023; 14:2250065. [PMID: 37635408 PMCID: PMC10464537 DOI: 10.1080/21505594.2023.2250065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Clade 2.3.4.4 H5N6 avian influenza virus (AIV) has been predominant in poultry in China, and the circulating haemagglutinin (HA) gene has changed from clade 2.3.4.4h to clade 2.3.4.4b in recent years. In 2021, we isolated four H5N6 viruses from ducks during the routine surveillance of AIV in China. The whole-genome sequencing results demonstrated that the four isolates all belonged to the currently prevalent clade 2.3.4.4b but had different internal gene constellations, which could be divided into G1 and G2 genotypes. Specifically, G1 possessed H9-like PB2 and PB1 genes on the H5-like genetic backbone while G2 owned an H3-like PB1 gene and the H5-like remaining internal genes. By determining the characteristics of H5N6 viruses, including growth performance on different cells, plaque-formation ability, virus attachment ability, and pathogenicity and transmission in different animal models, we found that G1 strains were more conducive to replication in mammalian cells (MDCK and A549) and BALB/c mice than G2 strains. However, G2 strains were more advantageously replicated in avian cells (CEF and DF-1) and slightly more transmissible in waterfowls (mallards) than G1 strains. This study enriched the epidemiological data of H5 subtype AIV to further understand its dynamic evolution, and laid the foundation for further research on the mechanism of low pathogenic AIV internal genes in generating novel H5 subtype reassortants.
Collapse
Affiliation(s)
- Wanchen Zhao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xin Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Zhang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiwei Qiu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Li
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Rafique S, Rashid F, Mushtaq S, Ali A, Li M, Luo S, Xie L, Xie Z. Global review of the H5N8 avian influenza virus subtype. Front Microbiol 2023; 14:1200681. [PMID: 37333639 PMCID: PMC10272346 DOI: 10.3389/fmicb.2023.1200681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Orthomyxoviruses are negative-sense, RNA viruses with segmented genomes that are highly unstable due to reassortment. The highly pathogenic avian influenza (HPAI) subtype H5N8 emerged in wild birds in China. Since its emergence, it has posed a significant threat to poultry and human health. Poultry meat is considered an inexpensive source of protein, but due to outbreaks of HPAI H5N8 from migratory birds in commercial flocks, the poultry meat industry has been facing severe financial crises. This review focuses on occasional epidemics that have damaged food security and poultry production across Europe, Eurasia, the Middle East, Africa, and America. HPAI H5N8 viral sequences have been retrieved from GISAID and analyzed. Virulent HPAI H5N8 belongs to clade 2.3.4.4b, Gs/GD lineage, and has been a threat to the poultry industry and the public in several countries since its first introduction. Continent-wide outbreaks have revealed that this virus is spreading globally. Thus, continuous sero- and viro-surveillance both in commercial and wild birds, and strict biosecurity reduces the risk of the HPAI virus appearing. Furthermore, homologous vaccination practices in commercial poultry need to be introduced to overcome the introduction of emergent strains. This review clearly indicates that HPAI H5N8 is a continuous threat to poultry and people and that further regional epidemiological studies are needed.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sajda Mushtaq
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Akbar Ali
- Poultry Research Institute, Rawalpindi, Pakistan
| | - Meng Li
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
6
|
Liu Y, Zhou S, Wang L, Xu M, Huang X, Li Z, Hajdu A, Zhang L. Machine learning approach combined with causal relationship inferring unlocks the shared pathomechanism between COVID-19 and acute myocardial infarction. Front Microbiol 2023; 14:1153106. [PMID: 37065165 PMCID: PMC10090501 DOI: 10.3389/fmicb.2023.1153106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundIncreasing evidence suggests that people with Coronavirus Disease 2019 (COVID-19) have a much higher prevalence of Acute Myocardial Infarction (AMI) than the general population. However, the underlying mechanism is not yet comprehended. Therefore, our study aims to explore the potential secret behind this complication.Materials and methodsThe gene expression profiles of COVID-19 and AMI were acquired from the Gene Expression Omnibus (GEO) database. After identifying the differentially expressed genes (DEGs) shared by COVID-19 and AMI, we conducted a series of bioinformatics analytics to enhance our understanding of this issue.ResultsOverall, 61 common DEGs were filtered out, based on which we established a powerful diagnostic predictor through 20 mainstream machine-learning algorithms, by utilizing which we could estimate if there is any risk in a specific COVID-19 patient to develop AMI. Moreover, we explored their shared implications of immunology. Most remarkably, through the Bayesian network, we inferred the causal relationships of the essential biological processes through which the underlying mechanism of co-pathogenesis between COVID-19 and AMI was identified.ConclusionFor the first time, the approach of causal relationship inferring was applied to analyzing shared pathomechanism between two relevant diseases, COVID-19 and AMI. Our findings showcase a novel mechanistic insight into COVID-19 and AMI, which may benefit future preventive, personalized, and precision medicine.Graphical abstract
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Shujing Zhou
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, Debrecen, Hungary
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Longbin Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Xu
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xufeng Huang
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, Debrecen, Hungary
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Andras Hajdu
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, Debrecen, Hungary
- *Correspondence: Andras Hajdu,
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Ling Zhang,
| |
Collapse
|
7
|
Yang XY, Gong QL, Li YJ, Ata EB, Hu MJ, Sun YY, Xue ZY, Yang YS, Sun XP, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. The global prevalence of highly pathogenic avian influenza A (H5N8) infection in birds: A systematic review and meta-analysis. Microb Pathog 2023; 176:106001. [PMID: 36682670 DOI: 10.1016/j.micpath.2023.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep., Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Man-Jie Hu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yong-Yang Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Zhi-Yang Xue
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ying-Shi Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xue-Pan Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
8
|
Emerging Highly Pathogenic Avian Influenza (H5N8) Virus in Podiceps nigricollis in Northwest China in 2021. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/7896376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Three highly pathogenic avian influenza (H5N8) viruses were detected in the migratory bird Podiceps nigricollis in Northwest China in June 2021. Phylogenetic analysis indicated that these H5N8 isolates belonged to clade 2.3.4.4b, which were highly homologous to strains isolated in China and South Korea. In this study, H5N8 virus infection in Podiceps nigricollis was detected using Oxford Nanopore Technologies sequencing technology and caused pathological changes in multiple organs.
Collapse
|
9
|
Cui P, Shi J, Wang C, Zhang Y, Xing X, Kong H, Yan C, Zeng X, Liu L, Tian G, Li C, Deng G, Chen H. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect 2022; 11:1693-1704. [PMID: 35699072 PMCID: PMC9246030 DOI: 10.1080/22221751.2022.2088407] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
H5N1 avian influenza viruses bearing the clade 2.3.4.4b hemagglutinin gene have been widely circulating in wild birds and are responsible for the loss of over 70 million domestic poultry in Europe, Africa, Asia, and North America since October 2020. During our routine surveillance, 13 H5N1 viruses were isolated from 26,767 wild bird and poultry samples that were collected between September 2021 and March 2022 in China. To investigate the origin of these Chinese isolates and understand their genetic relationship with the globally circulating H5N1 viruses, we performed a detailed phylogenic analysis of 233 representative H5N1 strains that were isolated from 28 countries. We found that, after they emerged in the Netherlands, the H5N1 viruses encountered complicated gene exchange with different viruses circulating in wild birds and formed 16 genotypes. Genotype one (G1) was predominant, being detected in 22 countries, whereas all other genotypes were only detected in one or two continents. H5N1 viruses of four genotypes (G1, G7, G9, and G10) were detected in China; three of these genotypes have been previously reported in other countries. The H5N1 viruses detected in China replicated in mice, with pathogenicity varying among strains; the G1 virus was highly lethal in mice. Moreover, we found that these viruses were antigenically similar to and well matched with the H5-Re14 vaccine strain currently used in China. Our study reveals the overall picture of H5N1 virus evolution and provides insights for the control of these viruses.
Collapse
Affiliation(s)
- Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Congcong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China.,National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
10
|
Zhang C, Cui H, Chen L, Yuan W, Dong S, Kong Y, Guo Z, Liu J. Pathogenicity and Transmissibility of Goose-Origin H5N6 Avian Influenza Virus Clade 2.3.4.4h in Mammals. Viruses 2022; 14:v14112454. [PMID: 36366552 PMCID: PMC9699601 DOI: 10.3390/v14112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Throughout the last decade, H5N6 avian influenza viruses (AIVs) circulating in poultry and infecting humans have caused increasing global concerns that they might become a pandemic threat to global health. Since AIVs could occasionally cause asymptomatic infections in geese, virus monitoring in such a host should be critical to the control of cross-species infection. In addition, previous studies showed that clade 2.3.4.4h H5N6 AIVs could infect mammals without adaptation. However, the pathogenicity and transmissibility of goose-origin clade 2.3.4.4h H5N6 AIVs in mammals remain unknown. In this study, two H5N6 AIVs were isolated from a domestic chicken (A/chicken/Hebei CK05/2019 (H5N6)) and a goose (A/goose/Hebei/GD07/2019(H5N6)). This study is the first to evaluate the pathogenicity and transmissibility of goose-origin clade 2.3.4.4h H5N6 AIVs in mammals by comparison with chicken-origin 2.3.4.4h H5N6 AIVs. The CK05 virus had an affinity for α-2,3-receptors, while the GD07 virus had an affinity for both α-2,3-and α-2,6-receptors. The GD07 virus had a higher replication capacity in vitro and more severe pathogenicity in mice than the CK05 virus. The CK05 virus could not be transmitted effectively among guinea pigs, whereas the GD07 virus could be transmitted through direct contact among guinea pigs. The results of this study indicated the potential health threat of clade 2.3.4.4h H5N6 AIVs to mammals and emphasized the importance of continuous monitoring of H5N6 AIVs, especially in waterfowl.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (Z.G.); (J.L.); Tel.: +86-0431-86985975 (Z.G.); +86-0312-7520278 (J.L.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Z.G.); (J.L.); Tel.: +86-0431-86985975 (Z.G.); +86-0312-7520278 (J.L.)
| |
Collapse
|
11
|
Ye H, Zhang J, Sang Y, Shan N, Qiu W, Zhong W, Li J, Yuan Z. Divergent Reassortment and Transmission Dynamics of Highly Pathogenic Avian Influenza A(H5N8) Virus in Birds of China During 2021. Front Microbiol 2022; 13:913551. [PMID: 35847056 PMCID: PMC9279683 DOI: 10.3389/fmicb.2022.913551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic influenza A(H5N8) viruses had caused several outbreaks among wild bird and poultry populations across the globe, and strikingly, caused human infection, posing serious public health concerns. In this study, we conducted influenza surveillance in China during 2021 to monitor the evolution of influenza viruses in poultry. A total of 35 influenza viruses were obtained in chickens, ducks, and geese, of which 30 H5N8 viruses, 3 H5N1 viruses, and 2 H5N6 viruses. Phylogenetic analysis suggested all of H5N1, H5N6, and H5N8 isolates were derived from clade 2.3.4.4b H5N8 viruses during 2020/21 season, and notably, the internal genes of H5N1 and H5N6 viruses shared different genetic heterogeneity with H5N8 viruses and had been reassorted with wild bird-origin H5N1 viruses from Europe. By contrast, almost all H5N8 viruses exhibited only one phylogenic cluster with wild bird-origin H5N8 viruses in China and Korea, indicating that H5N8 viruses in China were more stable. Besides, we found that Korea is the main output geographic location in the spread of these H5N8 viruses to northern and eastern China, and especially, the co-circulation of H5N8 viruses occurred within China, with central China acted as a seeding population during the H5N8 epidemic. The statistical support was strong for viral migration from wild birds to chickens and ducks, indicating that 2.3.4.4b poultry-origin H5N8 viruses during 2020–2021 were originated from wild birds. Our findings provide novel insights into evolution and transmission dynamics of H5 subtype influenza viruses among poultry after novel H5N8 viruses invaded China for nearly one year.
Collapse
Affiliation(s)
- Hejia Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangzhou South China Biological Medicine, Co., Ltd, Guangzhou, China
| | - Jiahao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou, China
| | - Yunfen Sang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou, China
| | - Nan Shan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing, China
| | - Weihong Qiu
- Guangzhou South China Biological Medicine, Co., Ltd, Guangzhou, China
| | - Wenting Zhong
- Guangzhou South China Biological Medicine, Co., Ltd, Guangzhou, China
| | - Junbao Li
- Guangzhou South China Biological Medicine, Co., Ltd, Guangzhou, China
| | - Zhaoxia Yuan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- *Correspondence: Zhaoxia Yuan,
| |
Collapse
|
12
|
Highly Pathogenic Avian Influenza A(H5Nx) Virus of Clade 2.3.4.4b Emerging in Tibet, China, 2021. Microbiol Spectr 2022; 10:e0064322. [PMID: 35446151 PMCID: PMC9241900 DOI: 10.1128/spectrum.00643-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H5N8 and H5N1 highly pathogenic avian influenza viruses (AIVs) of clade 2.3.4.4b were isolated from dead migratory birds and fecal samples collected in Tibet, China, in May 2021. Phylogenetic analyses showed that the viruses isolated in this study may have spread from wintering or stopover grounds of migratory birds in South Asia. We monitored two disparate clade 2.3.4.4b H5Nx viruses in migratory birds in Tibet during their breeding season. The data revealed that breeding grounds may exhibit a potential pooling effect among avian influenza viruses in different migratory populations. IMPORTANCE In this study, 15 H5N8 and two H5N1 highly pathogenic avian influenza viruses of clade 2.3.4.4b were isolated from dead migratory birds and fecal samples in Tibet, China. Isolates of H5N1 virus of clade 2.3.4.4b have been rarely reported in China. Our findings highlight that breeding grounds may exhibit a potential pooling effect among avian influenza viruses (AIVs) in different migratory populations. In addition to intensification of the surveillance of AIVs in migratory birds in Tibet, China, international cooperation should be strengthened.
Collapse
|
13
|
Emergence, Evolution, and Biological Characteristics of H10N4 and H10N8 Avian Influenza Viruses in Migratory Wild Birds Detected in Eastern China in 2020. Microbiol Spectr 2022; 10:e0080722. [PMID: 35389243 PMCID: PMC9045299 DOI: 10.1128/spectrum.00807-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
H10Nx influenza viruses have caused increasing public concern due to their occasional infection of humans. However, the genesis and biological characteristics of H10 viruses in migratory wild birds are largely unknown. In this study, we conducted active surveillance to monitor circulation of avian influenza viruses in eastern China and isolated five H10N4 and two H10N8 viruses from migratory birds in 2020. Genetic analysis indicated that the hemagglutinin (HA) genes of the seven H10 viruses were clustered into the North American lineage and established as a novel Eurasian branch in wild birds in South Korea, Bangladesh, and China. The neuraminidase (NA) genes of the H10N4 and H10N8 viruses originated from the circulating HxN4 and H5N8 viruses in migratory birds in Eurasia. We further revealed that some of the novel H10N4 and H10N8 viruses acquired the ability to bind human-like receptors. Animal studies indicated that these H10 viruses can replicate in mice, chickens, and ducks. Importantly, we found that the H10N4 and H10N8 viruses can transmit efficiently among chickens and ducks but induce lower HA inhibition (HI) antibody titers in ducks. These findings emphasized that annual surveillance in migratory waterfowl should be strengthened to monitor the introduction of wild-bird H10N4 and H10N8 reassortants into poultry. IMPORTANCE The emerging avian influenza reassortants and mutants in birds pose an increasing threat to poultry and public health. H10 avian influenza viruses are widely prevalent in wild birds, poultry, seals, and minks and pose an increasing threat to human health. The occasional human infections with H10N8 and H10N3 viruses in China have significantly increased public concern about the potential pandemic risk posed by H10 viruses. In this study, we found that the North American H10 viruses have been successfully introduced to Asia by migratory birds and further reassorted with other subtypes to generate novel H10N4 and H10N8 viruses in eastern China. These emerging H10 reassortants have a high potential to threaten the poultry industry and human health due to their efficient replication and transmission in chickens, ducks, and mice.
Collapse
|
14
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview December 2021 - March 2022. EFSA J 2022; 20:e07289. [PMID: 35386927 PMCID: PMC8978176 DOI: 10.2903/j.efsa.2022.7289] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between 9 December 2021 and 15 March 2022, 2,653 highly pathogenic avian influenza (HPAI) virus detections were reported in 33 EU/EEA countries and the UK in poultry (1,030), in wild (1,489) and in captive birds (133). The outbreaks in poultry were mainly reported by France (609), where two spatiotemporal clusters have been identified since October 2021, followed by Italy (131), Hungary (73) and Poland (53); those reporting countries accounted together for 12.8 of the 17.5 million birds that were culled in the HPAI affected poultry establishments in this reporting period. The majority of the detections in wild birds were reported by Germany (767), the Netherlands (293), the UK (118) and Denmark (74). HPAI A(H5) was detected in a wide range of host species in wild birds, indicating an increasing and changing risk for virus incursion into poultry farms. The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. This requires the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures, surveillance plans and early detection measures in the different poultry production systems. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. Some of these viruses were also detected in wild mammal species in the Netherlands, Slovenia, Finland and Ireland showing genetic markers of adaptation to replication in mammals. Since the last report, the UK reported one human infection with A(H5N1), China 17 human infections with A(H5N6), and China and Cambodia 15 infections with A(H9N2) virus. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium.
Collapse
|
15
|
Zhai B, Liu L, Li X, Lv X, Wu J, Li J, Lin S, Yin Y, Lan J, Du J, Wu C, Wen Y, Wang Y, Wang Y, Hou Z, Li Y, Chai H, Zeng X. The Variation of Duck RIG-I-Mediated Innate Immune Response Induced by Different Virulence Avian Influenza Viruses. Front Microbiol 2022; 13:842721. [PMID: 35300481 PMCID: PMC8921926 DOI: 10.3389/fmicb.2022.842721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/11/2022] [Indexed: 01/22/2023] Open
Abstract
In recent years, the emerging highly pathogenic avian influenza (HPAI) A(H5N8) virus has been reported with features of widely spread, an expanding host range, and cross-species transmission, attracting wide attention. The domestic duck plays a major role in the epidemiological cycle of the HPAI H5N8 virus, but little is known concerning innate immune responses during influenza infection in duck species. In this study, we used two wild-bird-origin viruses, H5N8 and H4N6, to conduct duck infection experiments, and detect the load of the two viruses, and retinoic acid-inducible gene I (RIG-I) and interferon β (IFN-β) in the host's natural immune response. Through comparison, it is found that the expression levels of RIG-I and IFN-β are both fluctuating. The innate immunity starts rapidly within 6 h after infection and is inhibited by the virus to varying degrees. The expression of RIG-I and IFN-β decreased on 1-2 days post-infection (dpi). The HPAI H5N8 virus has a stronger inhibitory effect on RIG-I than the low pathogenic avian influenza (LPAI) H4N6 virus and is the strongest in the lungs. After infection with HPAI H5N8 virus, 2 dpi, viral RNA replicates in large amounts in the lungs. It has been proven that RIG-I and IFN-β play an important role in the innate immune response of ducks to HPAI H5N8 virus infection, especially in the lungs. The main battlefield of RIG-I and IFN-β after infection with the LPAI H4N6 virus is in the rectum. Both viruses have been effectively controlled after 7 dpi. These results will help to understand the transmission mechanisms of avian influenza virus in wild ducks and help effectively prevent and control avian influenza.
Collapse
Affiliation(s)
- Boyu Zhai
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lanlan Liu
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiang Li
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xinru Lv
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinyan Wu
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jing Li
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shengze Lin
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuxiang Yin
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jiaqi Lan
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jianan Du
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Chenwei Wu
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yi Wen
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yajun Wang
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yulong Wang
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhijun Hou
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yanbing Li
- Chinese Academy of Agricultural Sciences Harbin Veterinary Research Institute, Harbin, China
| | - Hongliang Chai
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiangwei Zeng
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis 2022; 114:252-260. [PMID: 34800687 PMCID: PMC8595975 DOI: 10.1016/j.ijid.2021.11.009] [Citation(s) in RCA: 363] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To estimate the coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE) against concerned outcomes in real-world settings. METHODS Studies reporting COVID-19 VE from August 6, 2020 to October 6, 2021 were included. The summary VE (with 95% confidence intervals (95% CI)) against disease related to COVID-19 was estimated. The results were presented in forest plots. Predefined subgroup analyses and sensitivity analyses were also performed. RESULTS A total of 51 records were included in this meta-analysis. In fully vaccinated populations, the VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, COVID-19-related hospitalization, admission to the intensive care unit, and death was 89.1% (95% CI 85.6-92.6%), 97.2% (95% CI 96.1-98.3%), 97.4% (95% CI 96.0-98.8%), and 99.0% (95% CI 98.5-99.6%), respectively. The VE against infection in the general population aged ≥16 years, the elderly, and healthcare workers was 86.1% (95% CI 77.8-94.4%), 83.8% (95% CI 77.1-90.6%), and 95.3% (95% CI 92.0-98.6%), respectively. For those fully vaccinated against infection, the observed effectiveness of the Pfizer-BioNTech vaccine was 91.2% and of the Moderna vaccine was 98.1%, while the effectiveness of the CoronaVac vaccine was found to be 65.7%. CONCLUSIONS The COVID-19 vaccines are highly protective against SARS-CoV-2-related diseases in real-world settings.
Collapse
Affiliation(s)
| | | | | | | | | | - Weidong Zhang
- Corresponding author: Weidong Zhang, Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China. Tel: +86-0371-67781964
| |
Collapse
|