1
|
Lifshitz-Ben-Basat A, Taitelbaum-Swead R, Fostick L. Speech perception following transcranial direct current stimulation (tDCS) over left superior temporal gyrus (STG) (including Wernicke's area) versus inferior frontal gyrus (IFG) (including Broca's area). Neuropsychologia 2024; 202:108959. [PMID: 39029652 DOI: 10.1016/j.neuropsychologia.2024.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Imaging and neurocognitive studies have searched for the brain areas involved in speech perception, specifically when speech is accompanied by noise, attempting to identify the underlying neural mechanism(s). Transcranial direct current stimulation (tDCS), a noninvasive, painless cortical neuromodulation technique, has been used to either excite or inhibit brain activity in order to better understand the neural mechanism underlying speech perception in noise. In the present study, anodal (excitatory) and cathodal (inhibitory) stimulations were performed on 48 participants, either over the left Inferior Frontal Gyrus (IFG), which includes Broca's area (n = 10 anodal, and n = 10 cathodal) or over the left Superior Temporal Gyrus (STG), which includes Wernicke's area (n = 13 anodal, n = 15 cathodal). Speech perception was measured using a sentence recognition task accompanied by white noise with a signal-to-noise ratio of -10 dB. Speech perception performance was measured four times: at baseline, after each of the two sessions of stimulation (one active and one sham session, the order of which was randomized between participants), and at a two-week follow-up session. Groups receiving anodal and cathodal stimulation over the left IFG did not show an effect of stimulation type. For groups receiving left STG stimulation, anodal stimulation resulted in higher scores, regardless of whether it was given before or after sham stimulation. However, cathodal stimulation showed an effect only when active stimulation was applied following sham stimulation. These results showed that tDCS had a direct effect on improving speech perception only over left STG. Furthermore, while anodal stimulation was effective in whatever order it was given, cathodal stimulation was effective only following sham stimulation, thereby allowing some amount of training. These findings carry both theoretical and clinical implications for the relationship between the DMN's left IFG and left STG areas during speech perception accompanied by background noise.
Collapse
Affiliation(s)
| | | | - Leah Fostick
- Department of Communication Disorders, Ariel University, Israel
| |
Collapse
|
2
|
Medeiros W, Barros T, Caixeta FV. Bibliometric mapping of non-invasive brain stimulation techniques (NIBS) for fluent speech production. Front Hum Neurosci 2023; 17:1164890. [PMID: 37425291 PMCID: PMC10323431 DOI: 10.3389/fnhum.2023.1164890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Language production is a finely regulated process, with many aspects which still elude comprehension. From a motor perspective, speech involves over a hundred different muscles functioning in coordination. As science and technology evolve, new approaches are used to study speech production and treat its disorders, and there is growing interest in the use of non-invasive modulation by means of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Methods Here we analyzed data obtained from Scopus (Elsevier) using VOSViewer to provide an overview of bibliographic mapping of citation, co-occurrence of keywords, co-citation and bibliographic coupling of non-invasive brain stimulation (NIBS) use in speech research. Results In total, 253 documents were found, being 55% from only three countries (USA, Germany and Italy), with emerging economies such as Brazil and China becoming relevant in this topic recently. Most documents were published in this last decade, with 2022 being the most productive yet, showing brain stimulation has untapped potential for the speech research field. Discussion Keyword analysis indicates a move away from basic research on the motor control in healthy speech, toward clinical applications such as stuttering and aphasia treatment. We also observe a recent trend in cerebellar modulation for clinical treatment. Finally, we discuss how NIBS have established over the years and gained prominence as tools in speech therapy and research, and highlight potential methodological possibilities for future research.
Collapse
|
3
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Moliadze V, Stenner T, Matern S, Siniatchkin M, Nees F, Hartwigsen G. Online Effects of Beta-tACS Over the Left Prefrontal Cortex on Phonological Decisions. Neuroscience 2021; 463:264-271. [PMID: 33722674 DOI: 10.1016/j.neuroscience.2021.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
The left posterior inferior frontal gyrus in the prefrontal cortex is a key region for phonological aspects of language processing. A previous study has shown that alpha-tACS over the prefrontal cortex applied before task processing facilitated phonological decision-making and increased task-related theta power. However, it is unclear how alpha-tACS affects phonological processing when applied directly during the task. Moreover, the frequency specificity of this effect is also unclear since the majority of neurostimulation studies tested a single frequency only. The present study addressed the question whether and how 10 Hz online tACS affects phonological decisions. To this end, 24 healthy participants received tACS at 10 Hz or 16.18 Hz (control frequency) or sham stimulation over the left prefrontal cortex during task processing in three sessions. As an unexpected finding, 16.18 Hz significantly impaired task accuracy relative to sham stimulation, without affecting response speed. There was no significant difference in phonological task performance between 10 Hz and 16.18 Hz tACS or between 10 Hz and sham stimulation. Our results support the functional relevance of the left prefrontal cortex for phonological decisions and suggest that online beta-tACS may modulate language comprehension.
Collapse
Affiliation(s)
- Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| | - Tristan Stenner
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Sally Matern
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, Bielefeld, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
5
|
Ware A, Lum JAG, Kirkovski M. Continuous theta-burst stimulation modulates language-related inhibitory processes in bilinguals: evidence from event-related potentials. Brain Struct Funct 2021; 226:1453-1466. [PMID: 33718987 DOI: 10.1007/s00429-021-02253-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/03/2021] [Indexed: 01/28/2023]
Abstract
The dorsolateral prefrontal cortex (DLPFC) is activated when bilinguals switch between languages. Language switching can also elicit the N2 event-related potential (ERP). This ERP component appears to capture the cognitive control processes related to conflict monitoring, response selection and response inhibition. In the present study, continuous theta-burst stimulation (cTBS) was used to examine the role of the left DLPFC in bilingual language switching, using a picture-naming task. Participants in the study were 17 Afrikaans-English bilinguals. The picture-naming task consisted of non-switch and switch trials. On non-switch trials, participants named two consecutive pictures in the same language. On switch trials, participants named consecutive pictures in different languages (e.g., Afrikaans and then English). The participants completed three testing sessions. In each session, participants received either cTBS to the left DLPFC or the vertex, or sham stimulation, and then completed the picture-naming task. The results showed that following DLPFC stimulation, the N2 ERP was attenuated on switch trials compared to non-switch trials. Vertex or sham stimulation did not modulate the N2 ERP. cTBS did not affect language switching at the behavioural level. These results provide support for the role of the left DLPFC in the cognitive control processes underlying bilingual language switching. Furthermore, the study demonstrates that these processes can be modulated via non-invasive brain stimulation and the effects detected at the neural level.
Collapse
Affiliation(s)
- Anna Ware
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC, 3121, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC, 3121, Australia.
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC, 3121, Australia
| |
Collapse
|
6
|
van Bree S, Sohoglu E, Davis MH, Zoefel B. Sustained neural rhythms reveal endogenous oscillations supporting speech perception. PLoS Biol 2021; 19:e3001142. [PMID: 33635855 PMCID: PMC7946281 DOI: 10.1371/journal.pbio.3001142] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/10/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Rhythmic sensory or electrical stimulation will produce rhythmic brain responses. These rhythmic responses are often interpreted as endogenous neural oscillations aligned (or "entrained") to the stimulus rhythm. However, stimulus-aligned brain responses can also be explained as a sequence of evoked responses, which only appear regular due to the rhythmicity of the stimulus, without necessarily involving underlying neural oscillations. To distinguish evoked responses from true oscillatory activity, we tested whether rhythmic stimulation produces oscillatory responses which continue after the end of the stimulus. Such sustained effects provide evidence for true involvement of neural oscillations. In Experiment 1, we found that rhythmic intelligible, but not unintelligible speech produces oscillatory responses in magnetoencephalography (MEG) which outlast the stimulus at parietal sensors. In Experiment 2, we found that transcranial alternating current stimulation (tACS) leads to rhythmic fluctuations in speech perception outcomes after the end of electrical stimulation. We further report that the phase relation between electroencephalography (EEG) responses and rhythmic intelligible speech can predict the tACS phase that leads to most accurate speech perception. Together, we provide fundamental results for several lines of research-including neural entrainment and tACS-and reveal endogenous neural oscillations as a key underlying principle for speech perception.
Collapse
Affiliation(s)
- Sander van Bree
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Ediz Sohoglu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Matthew H. Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Centre de Recherche Cerveau et Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Music as a scaffold for listening to speech: Better neural phase-locking to song than speech. Neuroimage 2020; 214:116767. [DOI: 10.1016/j.neuroimage.2020.116767] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
|
8
|
Kösem A, Bosker HR, Jensen O, Hagoort P, Riecke L. Biasing the Perception of Spoken Words with Transcranial Alternating Current Stimulation. J Cogn Neurosci 2020; 32:1428-1437. [PMID: 32427072 DOI: 10.1162/jocn_a_01579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent neuroimaging evidence suggests that the frequency of entrained oscillations in auditory cortices influences the perceived duration of speech segments, impacting word perception [Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875, 2018]. We further tested the causal influence of neural entrainment frequency during speech processing, by manipulating entrainment with continuous transcranial alternating current stimulation (tACS) at distinct oscillatory frequencies (3 and 5.5 Hz) above the auditory cortices. Dutch participants listened to speech and were asked to report their percept of a target Dutch word, which contained a vowel with an ambiguous duration. Target words were presented either in isolation (first experiment) or at the end of spoken sentences (second experiment). We predicted that the tACS frequency would influence neural entrainment and therewith how speech is perceptually sampled, leading to a perceptual overestimation or underestimation of the vowel's duration. Whereas results from Experiment 1 did not confirm this prediction, results from Experiment 2 suggested a small effect of tACS frequency on target word perception: Faster tACS leads to more long-vowel word percepts, in line with the previous neuroimaging findings. Importantly, the difference in word perception induced by the different tACS frequencies was significantly larger in Experiment 1 versus Experiment 2, suggesting that the impact of tACS is dependent on the sensory context. tACS may have a stronger effect on spoken word perception when the words are presented in continuous speech as compared to when they are isolated, potentially because prior (stimulus-induced) entrainment of brain oscillations might be a prerequisite for tACS to be effective.
Collapse
Affiliation(s)
- Anne Kösem
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands.,Université Lyon 1
| | - Hans Rutger Bosker
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
9
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
10
|
Zoefel B, Davis MH, Valente G, Riecke L. How to test for phasic modulation of neural and behavioural responses. Neuroimage 2019; 202:116175. [PMID: 31499178 PMCID: PMC6773602 DOI: 10.1016/j.neuroimage.2019.116175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
Research on whether perception or other processes depend on the phase of neural oscillations is rapidly gaining popularity. However, it is unknown which methods are optimally suited to evaluate the hypothesized phase effect. Using a simulation approach, we here test the ability of different methods to detect such an effect on dichotomous (e.g., "hit" vs "miss") and continuous (e.g., scalp potentials) response variables. We manipulated parameters that characterise the phase effect or define the experimental approach to test for this effect. For each parameter combination and response variable, we identified an optimal method. We found that methods regressing single-trial responses on circular (sine and cosine) predictors perform best for all of the simulated parameters, regardless of the nature of the response variable (dichotomous or continuous). In sum, our study lays a foundation for optimized experimental designs and analyses in future studies investigating the role of phase for neural and behavioural responses. We provide MATLAB code for the statistical methods tested.
Collapse
Affiliation(s)
- Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229, EV Maastricht, the Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229, EV Maastricht, the Netherlands
| |
Collapse
|
11
|
Zoefel B, Allard I, Anil M, Davis MH. Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation. J Cogn Neurosci 2019; 32:226-240. [PMID: 31659922 DOI: 10.1162/jocn_a_01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several recent studies have used transcranial alternating current stimulation (tACS) to demonstrate a causal role of neural oscillatory activity in speech processing. In particular, it has been shown that the ability to understand speech in a multi-speaker scenario or background noise depends on the timing of speech presentation relative to simultaneously applied tACS. However, it is possible that tACS did not change actual speech perception but rather auditory stream segregation. In this study, we tested whether the phase relation between tACS and the rhythm of degraded words, presented in silence, modulates word report accuracy. We found strong evidence for a tACS-induced modulation of speech perception, but only if the stimulation was applied bilaterally using ring electrodes (not for unilateral left hemisphere stimulation with square electrodes). These results were only obtained when data were analyzed using a statistical approach that was identified as optimal in a previous simulation study. The effect was driven by a phasic disruption of word report scores. Our results suggest a causal role of neural entrainment for speech perception and emphasize the importance of optimizing stimulation protocols and statistical approaches for brain stimulation research.
Collapse
|
12
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
13
|
Choi JY, Perrachione TK. Noninvasive neurostimulation of left temporal lobe disrupts rapid talker adaptation in speech processing. BRAIN AND LANGUAGE 2019; 196:104655. [PMID: 31310963 PMCID: PMC6688950 DOI: 10.1016/j.bandl.2019.104655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Talker adaptation improves speech processing efficiency by reducing possible mappings between talkers' speech acoustics and listeners' phonemic representations. We investigated the functional neuroanatomy of talker adaptation by applying noninvasive neurostimulation (high-definition transcranial direct current stimulation; HD-tDCS) to left superior temporal lobe while participants performed an auditory word identification task. We factorially manipulated talker variability (single vs. mixed talkers) and speech context (isolated words vs. connected speech), measuring listeners' speech processing efficiency under anodal, cathodal, or sham stimulation. Speech processing was faster for single talkers than mixed talkers, and connected speech reduced the additional processing costs associated with mixed-talker speech. However, the beneficial effect of connected speech in the mixed-talker condition was significantly attenuated under both anodal and cathodal stimulation versus sham. Stimulation of left superior temporal lobe disrupts the brain's ability to use local phonetic context to rapidly adapt to a talker, revealing this region's causal role in talker adaptation.
Collapse
Affiliation(s)
- Ja Young Choi
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States; Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA, United States
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States.
| |
Collapse
|
14
|
Kayser C. Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes. Front Hum Neurosci 2019; 13:249. [PMID: 31396064 PMCID: PMC6663999 DOI: 10.3389/fnhum.2019.00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Converging results suggest that perception is controlled by rhythmic processes in the brain. In the auditory domain, neuroimaging studies show that the perception of sounds is shaped by rhythmic activity prior to the stimulus, and electrophysiological recordings have linked delta and theta band activity to the functioning of individual neurons. These results have promoted theories of rhythmic modes of listening and generally suggest that the perceptually relevant encoding of acoustic information is structured by rhythmic processes along auditory pathways. A prediction from this perspective-which so far has not been tested-is that such rhythmic processes also shape how acoustic information is combined over time to judge extended soundscapes. The present study was designed to directly test this prediction. Human participants judged the overall change in perceived frequency content in temporally extended (1.2-1.8 s) soundscapes, while the perceptual use of the available sensory evidence was quantified using psychophysical reverse correlation. Model-based analysis of individual participant's perceptual weights revealed a rich temporal structure, including linear trends, a U-shaped profile tied to the overall stimulus duration, and importantly, rhythmic components at the time scale of 1-2 Hz. The collective evidence found here across four versions of the experiment supports the notion that rhythmic processes operating on the delta time scale structure how perception samples temporally extended acoustic scenes.
Collapse
Affiliation(s)
- Christoph Kayser
- Department for Cognitive Neuroscience & Cognitive Interaction Technology, Center of Excellence, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Boosting Learning Efficacy with Noninvasive Brain Stimulation in Intact and Brain-Damaged Humans. J Neurosci 2019; 39:5551-5561. [PMID: 31133558 DOI: 10.1523/jneurosci.3248-18.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Numerous behavioral studies have shown that visual function can improve with training, although perceptual refinements generally require weeks to months of training to attain. This, along with questions about long-term retention of learning, limits practical and clinical applications of many such paradigms. Here, we show for the first time in female and male human participants that just 10 d of visual training coupled with transcranial random noise stimulation (tRNS) over visual areas causes dramatic improvements in visual motion perception. Relative to control conditions and anodal stimulation, tRNS-enhanced learning was at least twice as fast, and, crucially, it persisted for 6 months after the end of training and stimulation. Notably, tRNS also boosted learning in patients with chronic cortical blindness, leading to recovery of motion processing in the blind field after just 10 d of training, a period too short to elicit enhancements with training alone. In sum, our results reveal a remarkable enhancement of the capacity for long-lasting plastic and restorative changes when a neuromodulatory intervention is coupled with visual training.SIGNIFICANCE STATEMENT Our work demonstrates that visual training coupled with brain stimulation can dramatically reduce the training period from months to weeks, and lead to fast improvement in neurotypical subjects and chronic cortically blind patients, indicating the potential of our procedure to help restore damaged visual abilities for currently untreatable visual dysfunctions. Together, these results indicate the critical role of early visual areas in perceptual learning and reveal its capacity for long-lasting plastic changes promoted by neuromodulatory intervention.
Collapse
|
16
|
van Bree S, Formisano E, van Barneveld D, George E, Riecke L. No evidence for modulation of outer hair-cell function by 4-Hz transcranial alternating current stimulation. Brain Stimul 2019; 12:806-808. [PMID: 30745259 DOI: 10.1016/j.brs.2019.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022] Open
Affiliation(s)
- Sander van Bree
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom.
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands
| | - Denise van Barneveld
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Center, the Netherlands
| | - Erwin George
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Center, the Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands
| |
Collapse
|
17
|
Abstract
When humans listen to speech, ongoing cortical oscillations entrain to the acoustic signal. New research demonstrates that electrically stimulating the brain in time with speech rhythm can improve intelligibility for speech in noise.
Collapse
Affiliation(s)
- Jonathan E Peelle
- Department of Otolaryngology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
18
|
Pérez A, Dumas G, Karadag M, Duñabeitia JA. Differential brain-to-brain entrainment while speaking and listening in native and foreign languages. Cortex 2018; 111:303-315. [PMID: 30598230 DOI: 10.1016/j.cortex.2018.11.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The study explores interbrain neural coupling when interlocutors engage in a conversation whether it be in their native or nonnative language. To this end, electroencephalographic hyperscanning was used to study brain-to-brain phase synchronization during a two-person turn-taking verbal exchange with no visual contact, in either a native or a foreign language context. Results show that the coupling strength between brain signals is increased in both, the native language context and the foreign language context, specifically, in the alpha frequency band. A difference in brain-to speech entrainment to native and foreign languages is also shown. These results indicate that between brain similarities in the timing of neural activations and their spatial distributions change depending on the language code used. We argue that factors like linguistic alignment, joint attention and brain-entrainment to speech operate with a language-idiosyncratic neural configuration, modulating the alignment of neural activity between speakers and listeners. Other possible factors leading to the differential interbrain synchronization patterns as well as the potential features of brain-to-brain entrainment as a mechanism are briefly discussed. We concluded that linguistic context should be considered when addressing interpersonal communication. The findings here open doors to quantifying linguistic interactions.
Collapse
Affiliation(s)
- Alejandro Pérez
- Centre for French & Linguistics, University of Toronto Scarborough, Toronto, Canada; Psychology Department, University of Toronto Scarborough, Toronto, Canada; BCBL, Basque Center on Cognition Brain and Language, Donostia-San Sebastián, Spain.
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France; CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France; Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Melek Karadag
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Andoni Duñabeitia
- BCBL, Basque Center on Cognition Brain and Language, Donostia-San Sebastián, Spain; Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
19
|
Khoshkhoo S, Leonard MK, Mesgarani N, Chang EF. Neural correlates of sine-wave speech intelligibility in human frontal and temporal cortex. BRAIN AND LANGUAGE 2018; 187:83-91. [PMID: 29397190 PMCID: PMC6067983 DOI: 10.1016/j.bandl.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 12/06/2017] [Accepted: 01/20/2018] [Indexed: 05/09/2023]
Abstract
Auditory speech comprehension is the result of neural computations that occur in a broad network that includes the temporal lobe auditory cortex and the left inferior frontal cortex. It remains unclear how representations in this network differentially contribute to speech comprehension. Here, we recorded high-density direct cortical activity during a sine-wave speech (SWS) listening task to examine detailed neural speech representations when the exact same acoustic input is comprehended versus not comprehended. Listeners heard SWS sentences (pre-exposure), followed by clear versions of the same sentences, which revealed the content of the sounds (exposure), and then the same SWS sentences again (post-exposure). Across all three task phases, high-gamma neural activity in the superior temporal gyrus was similar, distinguishing different words based on bottom-up acoustic features. In contrast, frontal regions showed a more pronounced and sudden increase in activity only when the input was comprehended, which corresponded with stronger representational separability among spatiotemporal activity patterns evoked by different words. We observed this effect only in participants who were not able to comprehend the stimuli during the pre-exposure phase, indicating a relationship between frontal high-gamma activity and speech understanding. Together, these results demonstrate that both frontal and temporal cortical networks are involved in spoken language understanding, and that under certain listening conditions, frontal regions are involved in discriminating speech sounds.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- School of Medicine, University of California, San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, United States
| | - Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, United States; Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Ln., Room 535, San Francisco, CA 94158, United States; Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Ln., Room 535, San Francisco, CA 94158, United States
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia University, Mudd Building, Room 1339, 500 W 120th St., New York, NY 10027, United States
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, United States; Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Ln., Room 535, San Francisco, CA 94158, United States; Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Ln., Room 535, San Francisco, CA 94158, United States.
| |
Collapse
|
20
|
Andoh J, Matsushita R, Zatorre RJ. Insights Into Auditory Cortex Dynamics From Non-invasive Brain Stimulation. Front Neurosci 2018; 12:469. [PMID: 30057522 PMCID: PMC6053524 DOI: 10.3389/fnins.2018.00469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) has been widely used as a research tool to modulate cortical excitability of motor as well as non-motor areas, including auditory or language-related areas. NIBS, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have also been used in clinical settings, with however variable therapeutic outcome, highlighting the need to better understand the mechanisms underlying NIBS techniques. TMS was initially used to address causality between specific brain areas and related behavior, such as language production, providing non-invasive alternatives to lesion studies. Recent literature however suggests that the relationship is not as straightforward as originally thought, and that TMS can show both linear and non-linear modulation of brain responses, highlighting complex network dynamics. In particular, in the last decade, NIBS studies have enabled further advances in our understanding of auditory processing and its underlying functional organization. For instance, NIBS studies showed that even when only one auditory cortex is stimulated unilaterally, bilateral modulation may result, thereby highlighting the influence of functional connectivity between auditory cortices. Additional neuromodulation techniques such as transcranial alternating current stimulation or transcranial random noise stimulation have been used to target frequency-specific neural oscillations of the auditory cortex, thereby providing further insight into modulation of auditory functions. All these NIBS techniques offer different perspectives into the function and organization of auditory cortex. However, further research should be carried out to assess the mode of action and long-term effects of NIBS to optimize their use in clinical settings.
Collapse
Affiliation(s)
- Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Reiko Matsushita
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| |
Collapse
|
21
|
Neural Prediction Errors Distinguish Perception and Misperception of Speech. J Neurosci 2018; 38:6076-6089. [PMID: 29891730 DOI: 10.1523/jneurosci.3258-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/08/2018] [Accepted: 03/28/2018] [Indexed: 11/21/2022] Open
Abstract
Humans use prior expectations to improve perception, especially of sensory signals that are degraded or ambiguous. However, if sensory input deviates from prior expectations, then correct perception depends on adjusting or rejecting prior expectations. Failure to adjust or reject the prior leads to perceptual illusions, especially if there is partial overlap (and thus partial mismatch) between expectations and input. With speech, "slips of the ear" occur when expectations lead to misperception. For instance, an entomologist might be more susceptible to hear "The ants are my friends" for "The answer, my friend" (in the Bob Dylan song Blowing in the Wind). Here, we contrast two mechanisms by which prior expectations may lead to misperception of degraded speech. First, clear representations of the common sounds in the prior and input (i.e., expected sounds) may lead to incorrect confirmation of the prior. Second, insufficient representations of sounds that deviate between prior and input (i.e., prediction errors) could lead to deception. We used crossmodal predictions from written words that partially match degraded speech to compare neural responses when male and female human listeners were deceived into accepting the prior or correctly reject it. Combined behavioral and multivariate representational similarity analysis of fMRI data show that veridical perception of degraded speech is signaled by representations of prediction error in the left superior temporal sulcus. Instead of using top-down processes to support perception of expected sensory input, our findings suggest that the strength of neural prediction error representations distinguishes correct perception and misperception.SIGNIFICANCE STATEMENT Misperceiving spoken words is an everyday experience, with outcomes that range from shared amusement to serious miscommunication. For hearing-impaired individuals, frequent misperception can lead to social withdrawal and isolation, with severe consequences for wellbeing. In this work, we specify the neural mechanisms by which prior expectations, which are so often helpful for perception, can lead to misperception of degraded sensory signals. Most descriptive theories of illusory perception explain misperception as arising from a clear sensory representation of features or sounds that are in common between prior expectations and sensory input. Our work instead provides support for a complementary proposal: that misperception occurs when there is an insufficient sensory representations of the deviation between expectations and sensory signals.
Collapse
|
22
|
Zoefel B, Archer-Boyd A, Davis MH. Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech. Curr Biol 2018; 28:401-408.e5. [PMID: 29358073 PMCID: PMC5807089 DOI: 10.1016/j.cub.2017.11.071] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
Abstract
Due to their periodic nature, neural oscillations might represent an optimal "tool" for the processing of rhythmic stimulus input [1-3]. Indeed, the alignment of neural oscillations to a rhythmic stimulus, often termed phase entrainment, has been repeatedly demonstrated [4-7]. Phase entrainment is central to current theories of speech processing [8-10] and has been associated with successful speech comprehension [11-17]. However, typical manipulations that reduce speech intelligibility (e.g., addition of noise and time reversal [11, 12, 14, 16, 17]) could destroy critical acoustic cues for entrainment (such as "acoustic edges" [7]). Hence, the association between phase entrainment and speech intelligibility might only be "epiphenomenal"; i.e., both decline due to the same manipulation, without any causal link between the two [18]. Here, we use transcranial alternating current stimulation (tACS [19]) to manipulate the phase lag between neural oscillations and speech rhythm while measuring neural responses to intelligible and unintelligible vocoded stimuli with sparse fMRI. We found that this manipulation significantly modulates the BOLD response to intelligible speech in the superior temporal gyrus, and the strength of BOLD modulation is correlated with a phasic modulation of performance in a behavioral task. Importantly, these findings are absent for unintelligible speech and during sham stimulation; we thus demonstrate that phase entrainment has a specific, causal influence on neural responses to intelligible speech. Our results not only provide an important step toward understanding the neural foundation of human abilities at speech comprehension but also suggest new methods for enhancing speech perception that can be explored in the future.
Collapse
Affiliation(s)
- Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK.
| | - Alan Archer-Boyd
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| |
Collapse
|
23
|
Riecke L, Formisano E, Sorger B, Başkent D, Gaudrain E. Neural Entrainment to Speech Modulates Speech Intelligibility. Curr Biol 2017; 28:161-169.e5. [PMID: 29290557 DOI: 10.1016/j.cub.2017.11.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023]
Abstract
Speech is crucial for communication in everyday life. Speech-brain entrainment, the alignment of neural activity to the slow temporal fluctuations (envelope) of acoustic speech input, is a ubiquitous element of current theories of speech processing. Associations between speech-brain entrainment and acoustic speech signal, listening task, and speech intelligibility have been observed repeatedly. However, a methodological bottleneck has prevented so far clarifying whether speech-brain entrainment contributes functionally to (i.e., causes) speech intelligibility or is merely an epiphenomenon of it. To address this long-standing issue, we experimentally manipulated speech-brain entrainment without concomitant acoustic and task-related variations, using a brain stimulation approach that enables modulating listeners' neural activity with transcranial currents carrying speech-envelope information. Results from two experiments involving a cocktail-party-like scenario and a listening situation devoid of aural speech-amplitude envelope input reveal consistent effects on listeners' speech-recognition performance, demonstrating a causal role of speech-brain entrainment in speech intelligibility. Our findings imply that speech-brain entrainment is critical for auditory speech comprehension and suggest that transcranial stimulation with speech-envelope-shaped currents can be utilized to modulate speech comprehension in impaired listening conditions.
Collapse
Affiliation(s)
- Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| | - Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Etienne Gaudrain
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands; CNRS UMR 5292, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics, Inserm UMRS 1028, Université Claude Bernard Lyon 1, Université de Lyon, 69366 Lyon Cedex 07, France
| |
Collapse
|
24
|
Rufener KS, Ruhnau P, Heinze HJ, Zaehle T. Transcranial Random Noise Stimulation (tRNS) Shapes the Processing of Rapidly Changing Auditory Information. Front Cell Neurosci 2017. [PMID: 28642686 PMCID: PMC5463504 DOI: 10.3389/fncel.2017.00162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural oscillations in the gamma range are the dominant rhythmic activation pattern in the human auditory cortex. These gamma oscillations are functionally relevant for the processing of rapidly changing acoustic information in both speech and non-speech sounds. Accordingly, there is a tight link between the temporal resolution ability of the auditory system and inherent neural gamma oscillations. Transcranial random noise stimulation (tRNS) has been demonstrated to specifically increase gamma oscillation in the human auditory cortex. However, neither the physiological mechanisms of tRNS nor the behavioral consequences of this intervention are completely understood. In the present study we stimulated the human auditory cortex bilaterally with tRNS while EEG was continuously measured. Modulations in the participants’ temporal and spectral resolution ability were investigated by means of a gap detection task and a pitch discrimination task. Compared to sham, auditory tRNS increased the detection rate for near-threshold stimuli in the temporal domain only, while no such effect was present for the discrimination of spectral features. Behavioral findings were paralleled by reduced peak latencies of the P50 and N1 component of the auditory event-related potentials (ERP) indicating an impact on early sensory processing. The facilitating effect of tRNS was limited to the processing of near-threshold stimuli while stimuli clearly below and above the individual perception threshold were not affected by tRNS. This non-linear relationship between the signal-to-noise level of the presented stimuli and the effect of stimulation further qualifies stochastic resonance (SR) as the underlying mechanism of tRNS on auditory processing. Our results demonstrate a tRNS related improvement in acoustic perception of time critical auditory information and, thus, provide further indices that auditory tRNS can amplify the resonance frequency of the auditory system.
Collapse
Affiliation(s)
| | - Philipp Ruhnau
- Department of Neurology, Otto-von-Guericke UniversityMagdeburg, Germany
| | | | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke UniversityMagdeburg, Germany
| |
Collapse
|